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Abstract.  In order to increase the output power of DFB lasers, we 
consider the possibility of using two-dimensional distributed feed-
back. Within the framework of this scheme, the feedback circuit 
includes four partial wave fluxes propagating in mutually orthogonal 
directions, which makes it possible to provide coherent radiation 
from a spatially extended planar active medium characterised by 
large values of the Fresnel parameter. By analogy with the one-
dimensional distributed feedback, the wave coupling can be ensured 
by using both the structures with a periodically varying effective 
refractive index (static two-dimensional Bragg structures) and the 
gain modulation (photo-induced two-dimensional Bragg structures). 
Within the semiclassical approximation, the initial conditions and 
nonlinear dynamics of lasers with the above-described two-dimen-
sional Bragg structures are analysed. Self-similarity conditions are 
found, allowing one to scale the laser parameters with increasing 
active region size, which is accompanied by an increase in the inte-
grated output power. 

Keywords: DFB laser, two-dimensional Bragg structures, static and 
light-induced gratings. 

1. Introduction 

Already the first papers [1 – 4] devoted to the use of distributed 
feedback (DFB) lasers described two types of periodic Bragg 
structures, where two counterpropagating electromagnetic 
waves should experience distributed re-reflections. The struc-
tures of the first type are static gratings with a periodically 
varying refractive index or dielectric layer thickness. An alter-
native method is to periodically change the gain. For practical 
realisation of such a scheme, the inversion of the active 
medium should be ensured by two intersecting light beams of 
the pump source, forming a standing wave. Bragg structures 
of the second type are called dynamic or photo-induced struc-
tures [5, 6]. To date, there are many implementations of DFB 
lasers with both static and dynamic Bragg structures [5 – 8], 
some of which are already a traditional component of laser 
technology [9]. 

In this paper, in order to drastically increase the power of 
DFB lasers, we consider the possibility of using two-dimen-

sional distributed feedback [10] (Fig. 1). In the framework 
such a scheme, the feedback circuit includes not two, but four 
partial wave fluxes propagating in orthogonal directions. 
This makes it possible to provide coherent radiation from a 
spatially extended planar active medium, characterised by large 
values of the Fresnel parameter with respect to propagation 
directions of the partial wave fluxes. In this case, by analogy 
with the one-dimensional distributed feedback, the wave 
coupling can be ensured by using both the structures with a 
periodically varying refractive index or thickness of the dielec-
tric layer (static two-dimensional Bragg structures) and the 
gain modulation (dynamic two-dimensional Bragg structures). 
In the class of static two-dimensional Bragg structures, the 
most simple in terms of practical implementation is a dielectric 
plate with the chequered corrugation of one of the surfaces 
[11, 12] (Fig. 1). To implement the dynamic gain grating it is 
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Figure 1.  General scheme of a two-dimensional DFB laser based on a 
corrugated dielectric waveguide (a), checkerboard approximation of the 
waveguide surface in an enlarged scale (b) and diagram illustrating the 
coupling of the partial waves (k±x, z are the wave vectors of the partial 
waves, K± are the translation vectors of the grating) (c).
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possible to affect the medium with resonant quantum transi-
tions by four pump beams (Fig. 2). 

In this paper, using the semiclassical approximation we 
describe the dynamics of two-dimensional distributed feedback 
lasers based on both static and dynamic Bragg structures. We 
find the threshold generation conditions as well as stable single-
frequency regions where the use of the two-dimensional DFB 
allows one to synchronise radiation of the active medium that 
is planar extended in two orthogonal directions. 

2. Static and dynamic two-dimensional  
Bragg structures 

In the optical spectrum, a two-dimensional Bragg resonator 
can be implemented with the help of a dielectric plate with a 
doubly periodic sinusoidal modulation of one of the surfaces 
(see Fig. 1b), 

b(x, y) = b0 + b1[cos h
–
(x + z) + cos h

–
(x – z)],	 (1)

with the translation vectors K± = h
–
x0 ± h

–
z0 directed perpen-

dicular to each other. Here, h
–
 = 2p/d is the absolute value of 

projections of the translation vectors to the directions x and z; 
d is the modulation period along the specified coordinates. 
The two-dimensional Bragg structure (2) ensures coupling and 
mutual scattering of four partial waves fluxes, which propagate 
in the directions ±z (Cz

±) and ±x (Cx
±) and are given by the 

vector-potentials 

A = Re{[a1(y)(Cz
+e–ihz + Cz

–eihz)

	 + a2(y)(Cx
+e–ihx + Cx

–eihx)]eiwt},	 (2)

where a1,2(y) are the transverse mode structures of a planar 
dielectric waveguide. We assume that the average waveguide 
thickness b0 is limited by the condition of propagation of the 
only lowest TM1 waveguide mode. The effective coupling of the 
partial waves on structure (1) takes place when the resonance 
condition 

h » h
–
	 (3)

is fulfilled (see Fig. 1c). In this case, the waves Cz
± scatter into 

the waves Cx
± on a two-dimensional Bragg structure given by 

expression (1), and the direct coupling between the counter-
propagating waves z+ and Cx

– ¬® Cx
+ is absent. 

Note that in terms of practical realisation a doubly periodic 
sinusoidal corrugation can be replaced by a chequered-type 
corrugated surface.

By analogy with conventional one-dimensional Bragg 
structures, resonators formed due to periodic modulation of 
the characteristics of a dielectric plate (effective refractive 
index) should be called static. 

In the case of dynamic (photo-induced) Bragg gratings, 
the waves are coupled due to the gain modulation of the 
medium. In the two-dimensional variant, the doubly periodic 
grating of the active medium gain that is similar to (1) can be 
induced due to the interference of four plane linearly polarised 
(S-polarisation) pump waves (Fig. 2): 

Ap = Ap cos(k̂ y + wpt) Re ( ) ( )exp
k

z xx z
2

||0 0
+ -e = G) 	

	 ( ) ( ) ( )exp cos exp
k

z x
k

z xx z
2 2

|| ||0 0
+ - - + - +eo= =G G

	 ( ) ,exp
k

z x
2

||
+ - + o= G 3 	 (4)

where k|| = (wp/c) cos q and k̂  = (wp/c) sin q are the moduli of 
the wave-vector projections of the pump fields on the active 
material plane and perpendicular to it. As a result, the time-
averaged pump intensity in the plane of the active material 
y = const is expressed as 

| | ( ) ( ) .cos cos
A

k z x k z xA
2
2 2 2|| ||

p
t

2
2

= + - + +6 6@ @" , 	(5)

Therefore, in the active medium we will have two induced 
singly periodic diagonal (with respect to the axes x, z) gratings 
of inversion and gain, which prove additive due to orthogo-
nality of polarisations of the mentioned pairs (see Fig. 2). 

The condition of the Bragg resonance ensuring the coupling 
of four partial wave fluxes is written in this case as 

h = 2 (wp/c) cos q.	 (6)

The change in the angle q of incidence of the pump waves onto 
the plane of the active medium obviously allows changing the 
wave number, and, of course, the frequency of generated radi-
ation. Thus, similar to the one-dimensional prototypes, the 
two-dimensional DFB lasers with photo-induced gratings are 
frequency tunable. 

3. Nonstationary model of two-dimensional 
DFB lasers 

We will describe the interaction of the active medium with 
the  electromagnetic field within the semiclassical approach. 
Representing the electromagnetic field as a set of four partial 
wave fluxes [see (2)], we will write the resonance part of the 
polarisation P and inversion r of the active medium in the 
form [13]: 

P = y0 Re[i(Pz
+eih

–
z + Pz

–e–ih
–
z + Px

+eih
–
z + Px

–e–ih
–
z)eiw0t],
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Figure 2.  Scheme of a two-dimensional photo-induced DFB laser. 
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r = r0 + Re(r2ze2ih
–
z + r2xe2ih

–
z + rz–xe2ih

–
(z–x) 	 (7)

	 + rz+xe2ih
–
(z+x)),

where Pz
±, r0, r2z, r2x, rz±x are the slowly varying amplitudes 

of the corresponding harmonics. 
Assuming that the Fresnel parameter for each of the partial 

wave fluxes is sufficiently large, 

lx2/lz l >> 1,  lz2/lx l >> 1,

propagation of the wave fluxes will be described in geometric 
optics approximation, neglecting diffraction effects. In these 
approximations the amplification process of partial waves (2) 
in the active medium, and their mutual scattering at the static 
Bragg grating (1) or the nonlinear grating formed by modula-
tion of the inversion of the medium (5), can be expressed by 
the system of averaged equations: 
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Here, X = x/lz, Z = z/lz, t = ugrt/lz are the normalised spatial 
coordinates and time; 
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k = w0/c; w0 is the Bragg frequency; ugr is the group velocity of 
the partial waves in a regular dielectric waveguide; rg is the 

ratio of the intensities of the periodic and the uniform compo-
nents of the pump [for the pump intensity distribution defined 
by (5), rg = 0.5]; re is the equilibrium value of inversion in the 
absence of radiation; ba is the active layer thickness; T1 is the 
relaxation time of inversion of the active medium. The coupling 
coefficient of the partial waves in the case of a static ‘checker-
board’ Bragg grating is given by [10] 
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The coupling coefficient and the effective thickness of the 
waveguide beff [3] are written under the assumption that all 
partial waves are of TM type. 

Assuming that the transverse relaxation time T2 is small 
compared with other time scales, we will use the balanced 
approach by representing the components of the medium 
polarisation in the form 

(2 ),P C C C Cz z z z x z x x z x0 2b r r r r= + + ++ + - +
-
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+
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0

2
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w

r m
=

is the normalised pump intensity determining the gain of the 
active medium; m is the dipole moment.

Note that in writing the system of equations (8) – (10) the 
space and time coordinates are normalised to the active medium 
length lz. Therefore, the boundary conditions in the absence 
of external energy fluxes are expressed as

0, 0, 0, 0,C C C Cx X x X L z Z z Z0 0 1x
= = = =+

=
-

=
+

=
-

=
t t t t 	 (11)

where Lx = lx /lz. 
As initial conditions we will use the seed small-amplitude 

noise field: 

( , , 0) [ ( , )],exp iC X Z c X Z, ,x z x z0t j= = -
! !t 	 (12)

where ( , )X Z,x zj!  are random functions. 
The total output power can be expressed as a sum of powers 

of four partial wave fluxes, emitted in the directions ±z and 
±x from the end faces of the active medium (see Fig. 1), 

,S
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S
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1
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4. Small-signal approximation.  
Self-excitation conditions 

Assuming that the field amplitudes of the partial waves are 
small, the system of equations (8), (10) can be linearised and 
reduced to the form 
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In the case of a static two-dimensional Bragg grating, 
when the partial waves are coupled due to modulation of the 
thickness of the dielectric structure [see (1)], we can set rg = 0 
in equations (15). In the strong wave-coupling approximation 
(a >> 1), in the absence of the active medium ( bu  = 0) the 
spectrum of two-dimensional Bragg resonator eigenmodes is 
found analytically [11] 
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where n, m are the mode indices; dm, n = (wm, n – w0)/ugr is the 
complex detuning of eigenmode frequencies from the Bragg 
carrier frequency. The spectrum shows two groups of modes: 
the frequency of one group are in the vicinity of the exact 
Bragg resonance frequency (16b), and the frequencies of the 
other group are arranged symmetrically (16a) near the band-
gap boundaries, d = ±2a. 

To remove the symmetry and its corresponding degener-
acy, we assume that the resonator length is twice its width 
lz = 2lx (Lx = 0.5). Then the highest-Q mode is the mode with 
indices {m = 0, n = 1} of a group of modes (16b). The frequency 
of this mode coincides with the Bragg frequency (Re d0,1 = 0) 
and the damping constant has the form 

Im d0,1 = p2/a2.	 (17)

This decrement is at least half the damping constants of all 
other modes, which provides high selective properties of a 
two-dimensional Bragg resonator. Accordingly, in the pres-
ence of an active medium the lasing threshold is found from 
the expression 

2b = Im d0,1.	 (18)

Figure 3 shows the dependence of the lasing threshold, 
given by expression (18) and found by solving numerically the 
corresponding system of characteristic equations. One can see 
that at large wave-coupling coefficients a this formula yields 
good approximation of the threshold conditions, but at a = 2, 
which is used below for simulating the nonlinear dynamics, 
there is a noticeable difference in the values of b. 

In a photo-induced DFB laser, the static Bragg grating is 
absent (a = 0) and partial wave fluxes are coupled through 
periodic inversion gratings rx+z and rz–x. Assume that such 
dynamic gratings are fabricated by using pump radiation in 
the form of standing waves (4), (5), which corresponds to 
rg = 0.5. For the chosen relation between length and width of 
the structure (Lx = 0.5), the system of linear equations (15) 
becomes a one-parameter system and takes the form 

¶
¶

¶
¶
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Numerical simulation of the linear stage of transition pro-
cesses based on equations (19) makes it possible to find the 
threshold lasing condition b > 1.36. In this case the laser fre-
quency coincides with the Bragg frequency. 

5. Simulation of processes of radiation  
synchronisation in static and dynamic  
two-dimensional DFB lasers 

In simulating the nonlinear dynamics of a two-dimensional 
DFB laser with the help of the system of equations (8), (10), 
the wave-coupling coefficient is different from zero in the case 
of the static Bragg resonator. To this end, the pumping is 
assumed spatially uniform: rg = 0. In the subsequent simulation 
we use coefficient a = 2, at which the most uniform spatial 
distribution of the fundamental mode fields of a two-dimen-
sional Bragg resonator is achieved. The threshold lasing con-
dition (18), as seen from Fig. 3, is as follows: b = 0.6. In the 
case of moderate excesses over the threshold (b £ 3), stationary 
lasing is established (Fig. 4). 

The process of synchronisation and establishment of sta-
tionary lasing is shown in Fig. 5, which plots the spatial dis-
tribution of field amplitudes of partial waves at successive 
instants of time (the amplitudes are normalised to maximum 
amplitudes at a given time and, therefore, the increasing aver-
age radiation intensity in the processes of generation develop-
ment is not visible in this figure). At the initial stage (t = 0) 
initial random noises are shown, but already after several round 
trips of radiation through the cavity (t = 2), the characteristic 

b
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0.4

0.2

0
2 3 4 5 6 7 a

Figure 3.  Dependence of the threshold value of the gain b on the wave-
coupling coefficient a in a laser with a two-dimensional Bragg resona-
tor. The dashed curve shows the approximation  by expression (18). 
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scales of field inhomogeneities are of the order of the active 
region size. In this case, the phases of the fields at this stage 
become regular. At t = 4 the structure of the fields of the 
partial waves that is close to the structure of the fundamental 
mode of a two-dimensional Bragg resonator is formed at the 
linear stage of the transition process. At t ³ 18 the growth of 
the field amplitudes is limited by a drop in the average inver-
sion of the active medium, resulting in a stationary lasing 
regime. In the simulated case of a relatively small excess over 
the threshold (b = 1), field distribution in the stationary 
regime is close to that of the fundamental mode. However, as 
the excess over the threshold (b > 2) increases, there is a 
noticeable distortion of the structure of the fields in the sta-
tionary regime compared to the fundamental mode, which is 
due to a nonuniform distribution of inversion. Analysis of the 
emission spectrum shows that in the stationary regime the 
laser frequency is close to the Bragg frequency. With an 
increase in the normalised pump intensity b, transition occurs 
to the regimes of periodic (b > 3), and then chaotic (b > 7) 

self-similarity, which is accompanied by the complication of 
the spectrum of the generated radiation. 

Note that the stationary solutions of equations (8) – (10), 
realised at a fixed moderate excess over the threshold b = const, 
have the property of self-similarity. If the normalised relaxation 
time of inversion T1t  is decreased, then the spatial distribution 
of the amplitudes of partial waves in the stationary lasing 
regime is preserved. At the same time, the normalised wave 
amplitude, polarisation components, and the normalised output 
power change according to the law 

, , .const const constC T P T ST, ,x z x z1 1 1= = =
! !t t t t t t 	 (20)

Using the mentioned self-similarity of the stationary solu-
tions we can formulate the laws of an increase in the size of 
the active medium and integrated output power. Because the 
parameters entering into equations (8) – (10) are normalised by 
the length lz, at a fixed physical relaxation time T1 a decrease 
in the dimensionless parameter T1t  is achieved by increasing the 
size of the active region lx, z. In this case, it is needed to reduce 
proportionally the equilibrium value of the population inver-
sion re (for example, by decreasing the pump power density) 
and depth of corrugation b1, keeping the products lx, z re = const 
and lx, z b1 = const. Then, while maintaining the ratio of geo-
metric dimensions of the active region lx/lz = const the inte-
grated pump power Q = hwp relxlzba/T1 increases according to 
the law Q/lx, z = const. Similarly, the total integrated output 
power will increase: S/lx, z = const. 

The results of numerical simulations of equations (8) – (10) 
show that the above scaling of the parameters does lead to 
the establishment of stationary lasing with the integrated out-
put power increasing with decreasing normalised longitudinal 
relaxation time T1t  (Fig. 6). Note that the dynamics of the 
transient processes also depends on T1t  , tending to simplifica-

tion with decreasing T1t . In the case T1t  ® 0, corresponding to 
an ultimately rapid relaxation of inversion within the scales of 
changes in the amplitudes of electromagnetic fields, the equa-
tions for the harmonics of the medium inversion in system (8) 
are reduced to algebraic. 

In a photo-induced DFB laser, the partial wave fluxes are 
coupled on periodic gratings of inversion rx + z and rz – x. As in 
the analysis of the initial conditions, we assume that dynamic 
gratings can be fabricated by using the pump radiation in the 
form of standing waves (4), for which rg = 0.5. Simulation of 
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Figure 4.  Time dependences of the normalised power in a laser with a 
two-dimensional Bragg resonator at different excesses over the threshold 
b; a = 2, T̂1 = 1. 

t = 0

t = 2

t = 4

t = 18

Cz
+ Cx

+X

Z

X

Z

Figure 5.  Evolution of the spatial distribution of the amplitudes of the 
partial waves   Ĉ+

x  and  Ĉ+
z  in the active region of the laser with a two-

dimensional Bragg resonator; a = 1, b = 1, T̂1 = 1. 
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Figure 6.  Time dependences of the normalised power under conditions 
of self-similar scaling of the parameters in a laser with a two-dimension-
al Bragg resonator at different  T̂1 and a = 2, b = 2. 
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the nonlinear dynamics shows (Fig. 7) that, similarly to the 
two-dimensional Bragg resonator, the two-dimensional gain 
grating also allows for the establishment of stationary genera-
tion in a laser with a spatially extended active medium, whose 
frequency coincides with the Bragg frequency. In the case of a 
substantial excess over the lasing threshold, similarly to the 
static Bragg structures, self-modulation generation regimes 
with a complex multi-frequency radiation spectrum are realised. 
At the same time while maintaining the level of b constant 
in  a  two-dimensional photo-induced DFB laser, the above-
described self-similarity of stationary solutions also takes 
place. As in the case of static Bragg structures, it is possible 
to increase the integrated output power with increasing geo-
metric dimensions of the system and simultaneously decreasing 
proportionally pump intensity.

6. Conclusions 

The analysis shows that the two-dimensional distributed feed-
back can be effectively used to synchronise the radiation of 
spatially extended laser active media. The proposed feedback 
mechanism can be implemented on the basis of both static 
two-dimensional Bragg structures formed by dielectric plates 
with a doubly periodic modulation of the thickness and 
dynamic gain gratings induced by the interference of several 
pump waves. Lasers with a static and dynamic two-dimen-
sional distributed feedback produce four coupled wave fluxes 
propagating in mutually perpendicular directions, and pro-
viding for coherent radiation through the total volume of the 
active medium. In this paper, we have found threshold lasing 
conditions within the framework of the semiclassical approxi-
mation. Based on the numerical simulations, we have investi-
gated the dynamics of transient processes and identified char-
acteristics of stationary lasing, including the self-similarity 
conditions. 

As practical applications of the investigated mechanism of 
the distributed feedback, we can single out quantum-well het-
erolasers. To date, heterostructures have been realised, in which 
under pumping at the radiation wavelength of the order of 
one micron, the lateral (transverse) size reaches up to several 
hundreds of microns and there is a technological possibility of 
its further increase to thousands of microns [14 – 15]. 
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Figure 7.  Time dependences of the normalised power in a two-dimen-
sional photo-induced DFB laser at different excesses over the threshold 
b; rg = 0.5, T̂1 = 1.


