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Abstract.  Using one-dimensional semiclassical Maxwell – Bloch 
equations with account for the coherent polarisation dynamics, we 
have studied spike generation regimes of a superradiant distributed 
feedback laser in the case of inhomogeneous broadening of the 
spectral line of an active medium. By analysing the dynamic spectra 
of inversion of the active medium and laser radiation, we have 
revealed the relationship of individual spikes of radiation and their 
modulation with specific parts in the spectral line of the active 
medium and mode beatings. It has been shown that the broadening 
and shift of the lasing spectrum with respect to the initial electro-
magnetic Bragg-cavity modes is accompanied by a strong spectral 
gradient of inversion that is typical of the superradiant regimes. 

Keywords: superradiance, distributed feedback, spike multimode 
generation. 

1. Introduction 

Qualitative analysis of the dynamics of class-D lasers [1] with 
sufficiently large spatial and spectral densities of active centres 
has shown that at constant pumping the generated radiation 
is a quasi-periodic sequence of trains of ultrashort and high-
power pulses in a wide range of parameters [2 – 5]. Because 
these pulses are similar to single pulses of collective spontane-
ous emission (see [6 – 11] and references therein), they can be 
called Dicke superradiance. It should be noted that superradi-
ance in class-D lasers differs from the usual (i.e., described 
within the balance equations) generation in class-B lasers by 
the presence of coherent dynamics of not only the field and 
inversion but also of polarisation. However, the high density 
of active centres inevitably leads to inhomogeneous broaden-
ing of the spectral line, which prevents self-phasing of the 
dipoles in the process of collective spontaneous emission of 
the pulse. According to the theory of mode superradiance [8], 
the use of low-Q cavities reduces requirements to relaxation 
rates of polarisation and population inversion of the levels. 
The authors of [4, 5] have shown that a resonant periodic Bragg 
structure [11 – 13] makes it possible to thin out the spectrum 
of unstable ‘hot’ modes due to the presence of the band gap 

and nonuniform dependence of the mode increments on the 
wave number. Thus, the use of selective cavities should allow 
one to realise superradiant generation regimes in active media 
with inhomogeneous broadening, including semiconductor 
heterostructures with ensembles of quantum dots [14], and 
optical crystals doped with rare-earth elements [15]. 

This paper is devoted to a detailed analysis of the spectral 
and temporal dynamics of superradiant generation in class-D 
distributed feedback lasers with inhomogeneous broadening 
of the active medium within the framework of the one-dimen-
sional space-time model. 

2. Two-level model of a superradiant distributed 
feedback laser 

Consider a one-dimensional model of a laser with distributed 
feedback that arises due to Bragg reflections on a periodic 
modulation of the real part of the dielectric constant of the 
matrix of the active medium: 

e = e– Re[1 + 4b
– 
exp(2ik0z)]. 	 (1)

Here k0c / e = w0 is the frequency of the waves in the centre 
of the Bragg resonance, which for simplicity is assumed to 
coincide with the centre of an inhomogeneously broadened 
line of the active medium. The radiation field is represented as 
a sum of two counterpropagating linearly polarised waves 

E = Re[[A+(z, t) exp(ik0z) + A–(z, t) exp(–ik0z)]

	 ´ exp(–iw0t)],	 (2)

consistent with the medium polarisation 

P = Re[[P+(z, t, D) exp(ik0z) + P–(z, t, D) exp(–ik0z)]

	 ´ exp(–iw0t)],	 (3)

and spectral-dependent population inversion of active centers 

N(z, t, D) / [N0 f(D)] = n(D) + Im[nz(D) exp(2ik0z)].	 (4)

In the inversion we single out a smoothly inhomogeneous 
part n and component nz, modulated with a half-wave period 
l/2 that is close to the modulation period of the dielectric con-
stant, and taking into account the beatings of two counter-
propagating waves. 

Dynamics of a superradiant laser can be described by the 
standard semiclassical Maxwell – Bloch equations [4, 5, 16] 
for  dimensionless amplitudes of counterpropagating waves 
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a± = A±e–/(2pdN0), for the spectral density of the medium 
polarisation p± = P±/[dN0 f(D)] (dipole moment per unit of 
its volume), as well as for the above two components of the 
inversion: 
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Here f (D) = D0/p(D2 + D0
2) is the inhomogeneous broadening 

of the spectral line given for definiteness by the Lorentz func-
tion; D = (w – w0)/wc is the normalised detuning the transition 
frequency w of the active centre from the central frequency 
of  the line; D0 = 1/(T2

*wc) is the characteristic width; wc = 
2 /d N2 0 0 'p w e is the cooperative frequency of the medium with 

the concentration N0 of active centres; d is the dipole moment 
of the working two-level transition; I = wc

2/w0
2; Lc = c/wc e  

is the cooperative length; c is the speed of light in a vacuum; 
b = b

–
/ I  is the dimensionless amplitude of Bragg modula-

tion of the dielectric constant (the ratio of the band gap half-
width to the cooperative frequency); t = twc and z = zwc e /c 
are the dimensionless time and longitudinal coordinate; G1,2 are 
the dimensionless relaxation rate of inversion and polarisation 
of one active centre; np is the pump-induced inversion. 

In the investigated class of lasers, the bandwidth of inho-
mogeneous broadening exceeds not only the relaxation rates 
of inversion and polarisation of individual active centres but 
also their cooperative frequency (see below) and the rate of 
decay of the field in the ‘cold’ (at zero inversion) cavity. Thus, 
the studied below effective superradiance in the case of domi-
nant inhomogeneous broadening of the active medium occurs 
under the conditions [5, 16] 

11~ ~1 1b
L2

1 1
2

0
1G

D
,	 (6)

when the parameter b = bL characterising the integral coeffi-
cient of Bragg reflections of counterpropagating waves is of the 
order of unity. In the numerical simulation presented below, 
we assumed that I = 2.3 ́  10–6, D0 = 4, G2 = 2G1 = 0.01. These 
values agree qualitatively with the real parameters of quantum 
dot heterostructures [14], suitable for the implementation of 
superradiance. 

Under the assumption that in the initial state the medium 
is inverted, and the generation process starts with small initial 
polarisation noises, the initial conditions to equations (5) are 
as follows: n = 1, nz = 0, p± = 10–4, a± = 0. The boundary 
conditions at the edges of a sample with dimensionless length 
L = Bwc e /c correspond to the free (without reflections at the 
edges) radiation output: 

a+(z = –L/2) = 0,   a–(z = L/2) = 0.	 (7)

Boundary conditions (7) can be also approximately used for the 
small effective reflections from the sample ends [R << bL/(2p)]. 

We assume that the integral coefficient of Bragg reflection is 
b = bL G  1*. 

3. Peculiarities of superradiant generation spectra 

As shown in [6, 8], in the case of homogeneous broadening of 
the spectral line of the active medium, the polariton modes, 
which represent symmetrical superposition of counterpropa-
gating electromagnetic-field waves (a– and a+) and active 
medium polarisation (p– and p+), determine the superradiance 
dynamics. In the case of strong inhomogeneous broadening 
of the line, superradiance occurs on the electromagnetic modes, 
i.e., on the ‘cold’ Bragg-cavity modes modified by the inverted 
active medium [5, 16]. Typical spectra of the modes obtained 
from variance and characteristic equations [5] for the dimen-
sionless frequency detunings W = (w – w0)/wc are presented in 
Figs 1 – 3 by dashed lines; the asterisks show the growth rates. 

In the simplest case, the emission spectrum near the 
threshold exhibits only the modes near the edges of the band 
gap of the Bragg cavity, the modes having the maximum 
growth rate (Fig. 1b). Their beatings determine the spike 
structure of the radiation field in Fig. 1a, because the dura-
tion of each of the spikes and the period of their repetition 
are given by the intermode interval (Fig. 1b). At the lasing 
threshold (Fig. 1, at np ~ 0.5 in Fig. 4), the energy in the indi-
vidual spikes is minimal, and their duration Dt ~ L is maximal 
(Fig. 1a). The repetition period of the pulse trains in this case 
is largely determined by the growth rate of the modes (hence, 
by the coupling coefficient b of the waves) rather than by the 
inverse pump rate 1/G1. 

For the regimes with a significant excess over the threshold 
(Figs 2b and 3b), the number of generated spectral compo-
nents increases, and the widths of the spectra of individual 
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Figure 1.  Spike oscillogram of the radiation intensity I|a|2 (a) and field 
spectrum |Sa(D)| on the right end-face of the laser with the parameters 
D0 = 4, b = 0.1, b = 1, G1 = 0.01, G2 = 0.02, np = 1 and L = 7 [dashed curve 
with asterisks (right y axis) shows the growth rates (decrements) Im[W ] 
of ‘hot’ modes at the linear stage of generation] (b). 

* At b >> 1 in a ‘cold’ Bragg cavity the modes near the band gap become 
high-Q modes and their quasi-stationary generation eliminates the super-
radiance regime.
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‘hot’ modes and their growth rates increase significantly as 
compared with the predictions of the linear theory. In these 
regimes, several modes of the Bragg resonator with the largest 
growth rates develop simultaneously under conditions of 
strong inhomogeneous broadening (two, four and six modes 
in Figs 1 – 3, respectively). As follows from Fig. 3 plotted for 
the active-medium and Bragg-cavity parameters optimal with 
respect to the mean pulse energy at a maximal constant pump 
np = 1, radiation of different spectral components is usually 
coherent (as evidenced by the pronounced beatings of the 
generated pulses) although not absolutely (slight asymmetry 
of the spectrum and not strict repetition rate of pulse trains is 
apparent). 

With increasing the parameters np (and L or b) (Figs 2, 3 
and the dependence in Fig. 4) generation becomes optimal with 
the maximum energy in the individual spikes, defined by the 
condition of coincidence of the order of the Rabi frequency 
with the so-called actual cooperative frequency ~1/D0. It is 
calculated by the number of active centres from the spectral 

region involved in the superradiance, and has the same 
meaning as the cooperative frequency in the theory of super-
radiance for an active medium with homogeneous broaden-
ing, i.e., sets the growth rates of unstable waves and the mini-
mum duration of the spikes of superradiance. The repetition 
period of the trains in the optimal case is determined by the 
characteristic time of the pump 1/G1.

The dependences of the main characteristics of the indi-
vidual superradiant pulses (spikes) (average duration Dt, Rabi 
frequency WR = I|a|, energy e and repetition period of pulse 
trains D) on np in Fig. 4 show that near the lasing threshold 
the spike duration and repetition period of pulse trains are 
maximal while the amplitude and pulse energy are minimal. 
According to [4, 5, 16] and calculations performed in this work, 
superradiance arises when the following threshold parame-
ters are exceeded: for the parameter b = bL ~ 1/3, for the 
cavity length L ~ D0, for the pump level np ~ 0.5. Further, 
with increasing pump level, cavity length L and coupling coef-
ficient b of the waves, the pulse energy increases, and the tem-
poral characteristics Dt and D decrease. The maximum values 
of the cavity length and coupling coefficient at which these 
dependences are valid, are determined by (6), and the number 
of superradiant modes essentially depends on b and the pump 
parameters. 

Figure 5 presents in detail typical spectra of inversion, 
complex field amplitude and field amplitude modulus at the 
sample edge (for ease of comparison all the spectra of the field 
are normalised to the maximum value). The band gap of width 
2b is shown by a filled rectangle. At the band gap edges two 
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Figure 2.  Spike oscillogram of the radiation intensity I|a|2 (a) and the 
field spectrum |Sa(D)| on the right end-face of the laser with same param-
eters as in Fig. 1 but with length L = 10 and np = 0.8 (b). 
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Figure 3.  Spike oscillogram of the radiation intensity I|a|2 (a) and the 
field spectrum |Sa(D)| on the right end-face of the laser with same param-
eters as in Fig. 2 and the maximal pump level np = 1 (b). 
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Figure 4.  Dependences of the average duration Dt, Rabi frequency WR 
and energy e in the superradiant spike as well as of the repetition period 
D between the trains of pulses on np for the same parameters as in 
Fig.  2. 
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Figure 5.  Typical spectra (i.e., dependences of the frequency detuning D 
at an instant t = 950) of inversion n (solid curve), complex field ampli-
tude |Sa| (dashed curve) and field amplitude modulus |Si| (dash-dotted 
curve) at the sample edge. The band gap of the Bragg-cavity frequencies 
is shown by a filled rectangle. The laser parameters are: D0 = 4, L = 10, 
b = 2/30, b = 2/3, G1 = 0.01, G2 = 0.02, np = 1. 
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symmetrical Bragg-cavity modes with maximal growth rates 
are generated, thereby removing the inversion of the active 
medium in the effective superradiant regime and making its 
value negative. Adjacent modes with a smaller growth rate have 
a spectral width of the order of the actual cooperative fre-
quency, which is an order higher than homogeneous broaden-
ing of the G2 line (6), and thus, still remove the inversion in 
the regime of superradiance. The dash-dotted curve in Fig. 5 
shows the spectrum |Si(D)| calculated from the field intensity. 
The narrowness of the spectrum also indicates the coherence 
of adjacent spectral components [17], its broad pedestal being 
due to the short-pulse beatings of superradiant modes.

Broadening of the spectrum of ‘hot’ electromagnetic modes 
of the linear theory is caused by the appearance of satellites, 
shifted in the spectrum by the Rabi frequency WR = I |a|, 
which is defined by the peak value of the previous superradi-
ant pulse [2, 5, 16]. Such a process is possible if this frequency 
coincides in the order of magnitude with the actual coopera-
tive frequency ~1/D0. As can be seen from a dynamic spectrum 
for the complex field amplitude |Sa(D)| (Fig. 6a) and inversion 
n(D) (Fig. 6b), there can be several such satellites; their number, 
on the one hand, is limited by the presence of the band gap, 
and on the other, by attenuations in the active medium. Due 
to the hole ‘burning’ in the inhomogeneous spectrum of the 
population inversion under the action of the generated modes 
and the waves of the continuous spectrum, the spectral gra-
dient of inversion is formed (Fig. 5, solid curve), which effec-
tively increases the growth rates at the nonlinear stage of gen-
eration and allows the development of weaker (adjacent) 
modes that would damp according to the decrement calcu-
lated within the framework of the linear theory (Figs 1b – 3b). 

Dynamic spectra of the field and inversion show that for-
mation of individual spikes during superradiance coincides in 
time with formation of narrow spectral inversion holes (see 
Fig. 5, the solid and dashed curves, and Figs 6a and b). After 
an exposure to a train of pulses, there occurs a pause with a 
duration of the order of the time of pumping (~1/G1) during 
which the removed inversion is replenished (light area in 
Fig. 6b). When the inversion reaches n ~ 1, a train of super-
radiant pulses is again generated. The initial conditions for 
each of the spikes are given by phase and amplitude relations 
of the field and polarisation of the medium, which remained 
from the previous generation; therefore, they can vary dra-

matically from pulse to pulse, so that the strict periodicity of 
repetition of the spikes in the train and their sequence is not 
observed. 

4. Conclusions 

Thus, our analysis shows that the use of a distributed feed-
back based on periodic Bragg structures makes it possible 
to produce generation in the form of a sequence of ultrashort 
and high-power superradiant pulses in class-D lasers with an 
inhomogeneously broadened spectral line of the active medium. 
It is important to emphasise that for some active media (such 
as semiconductor heterostructures with quantum wells [10] 
and ensembles of quantum dots [14], optical crystals heavily 
doped with rare earth elements [15]) there have been recently 
achieved the parameters required for the implementation of 
superradiance regimes. For such media we have found the 
optimal parameters of the cavity, active medium and pump 
that provide generation of superradiant pulses with a peak 
power in a single spike. In particular, we have established that 
when the threshold is significantly exceeded, the emission spec-
trum of the ‘hot’ mode markedly broadens and the laser beam 
is formed by successive mode pulses that are frequency shifted 
by the quantity of the order of the Rabi frequency. 
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Figure 6.  Oscillogram of the field amplitude modulus |a(t)| (in units of 
Rabi frequency WR = I |a|) against the background of the dynamic 
spectrum of the same field amplitude |Sa(D)| (grey scale) (a) and a similar 
dynamic spectrum of the population inversion n on the right end-face of 
the sample (b) for a laser with the same parameters as in Fig. 5. 




