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Modelling of a diode laser with a resonant grating
of quantum wells and an external mirror

D.V. Vysotskii, N.N. Elkin, A.P. Napartovich, V.I. Kozlovskii, B.M. Lavrushin

Abstract. A three-dimensional numerical model of a diode laser
with a resonant grating of quantum wells (QWs) and an external
mirror is developed and used to calculate diode laser pulses that are
long compared to the time of reaching a stationary regime and are
short enough to neglect heating of the medium. The consistent solu-
tions of the Helmholtz field equation and the system of diffusion
equations for inversion in each QW are found. A source of charge
carriers can be both an electron beam and a pump laser beam. The
calculations yielded the longitudinal and radial profiles of the gen-
erated field, as well as its wavelength and power. The effective
threshold pump current is determined. In the created iteration algo-
rithm, the calculation time linearly increases with the number of
QWs, which allows one to find the characteristics of lasers with a
large number of QWs. The output powers and beam divergence
angles of a cylindrical laser are calculated for different cavity
lengths and pump spot radii. After calculating the fundamental
mode characteristics, high-order modes were additionally calcu-
lated on the background of the frozen carrier distributions in the
QW grating. It is shown that all the competing modes remain below
the excitation threshold for the pump powers used in the experi-
ment. The calculated and experimental data for the case of pump-
ing by a nanosecond electron beam are qualitatively compared.

Keywords: resonant heterostructure, method of counterpropagating
waves, eigenvalues, nonlinear operator.

1. Introduction

Heterostructures with a large number of quantum wells
(QWs) are of practical interest for application in vertical-cav-
ity surface-emitting lasers (VCSELs) with an external mirror.
They can be pumped by either electron beams or laser diodes
[1]. Both types of pumping can be identically simulated by
introducing an effective pump current [2]. Longitudinally
electron-beam-pumped diode lasers can be used in display
technologies as quasi-cw monochromatic light sources [3,4].
A distinguishing feature of these lasers is the absence of opti-
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cal confinement in the direction perpendicular to the cavity
axis. The transverse laser filed distribution is determined by
the variation of the complex permittivity [5], which, in turn, is
controlled by the distribution of the effective pump current
density. The external mirror stabilises the spatial field distri-
bution of the generated mode. Modelling of a VCSEL with a
QW grating and an external mirror is a complicated compu-
tational problem due to the complex geometry of the laser
structure and a nonlinear character of equations in partial
derivatives with eigenvalues. A VCSEL structure contains a
large number of layers, whose interfaces partially reflect light.
In the active-medium layers, the electromagnetic field equa-
tions must be solved self-consistently with nonlinear diffusion
equations for current carriers. A mathematical model of the
laser must adequately take into account all the above circum-
stances.

The authors of [6] described a method of calculating a
VCSEL with two Bragg mirrors and a small number of QWs,
which was based on the use of counterpropagating waves and
on the circumstance that the propagation of plane waves
through a set of homogeneous quarter-wave layers of the
Bragg mirror can be easily calculated using the transfer-
matrix (7-matrix) formalism. The amplitudes of counter-
propagating waves at the lower and upper interfaces of the set
of layers are related to each other by a matrix that is a product
of T-matrices with dimensions 2 x 2. One can expand the spa-
tially inhomogeneous fields into plane waves and apply the
T-matrix to the expansion components. Starting from some
plane and making one round trip of the cavity using this
transform, one can close the system of equations. In the
obtained system of equations, the sought function is the field
distribution of the wave of one direction in a chosen reference
plane. In the discrete approximation, the authors of [6]
reduced the problem to solving the matrix equation Au=0 for
a finite-dimensional vector u that describes the field in a refer-
ence plane. The explicit expressions derived for the elements
of the highly dimensional matrix 4 contained an unknown
parameter, namely, an eigenvalue A that determines the exact
value of the optical mode frequency. The matrix equation
Au=0 can be solved by fitting 1. This method requires a large
memory for calculating the completely filled matrix 4 and, in
addition, it is useless for describing optically nonlinear media,
which are of most interest for modelling of lasers.

An ideologically similar method of calculating active
VCSEL structures with a small number of QWs, which is free
of the above drawbacks, was described in [7,8]. It is well
known that conventional two-mirror optical cavities without
dispersive elements can be efficiently calculated by the
Fox-Li iteration method [9], which also allows one to take
into account nonlinear interaction with medium. The trans-
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formation of a filed passing from one transverse plane to
another in a layered medium is described by simple reflection
conditions at interfaces. A change in the field passing through
a QW with an inhomogeneous charge distribution determined
from the solution of the diffusion equation is described by a
nonlinear operator, because of which the problem must be
solved by iterations. For a heterostructure consisting of mul-
tiple QWs, the problem is more complicated. To solve this
problem, we developed a special iteration procedure in which
the time needed for solving the problem linearly depends on
the number of QWs [10].

In the present work, the iteration algorithm [10] is gener-
alised to the case of a VCSEL with a large number of QWs
and an external mirror. The calculated profiles and frequency
spectrum of the cavity modes for a cylindrical VCSEL are
presented. The limits of stable single-mode lasing are deter-
mined. A qualitative comparison with experiment is per-
formed.

2. Mathematical model of a VCSEL
with an external mirror

The heterostructure of a VCSEL with an external mirror con-
sists of a Bragg mirror and a grating of QWs separated by
barrier layers, from which generated carries diffuse into QWs
(Fig. 1). If the z axis is directed perpendicular to the substrate,
we can represent the VCSEL as a pile of plane layers {[z;_,
zil, k=1,..., L, where L is the total number of layers, {z,
k=0,..., L} is the sequence of coordinates of interfaces
between the layers, and /.= z,—z,_; is the thickness of the kth
layer. The number & = 0 is given to the infinitely thick alumi-
num layer of the structure. The refractive index and the
absorption coefficient are assumed to be homogeneous in all
the passive layers. The gain and refractive profiles depend on
pumping and emission.

— —
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Figure 1. Schematic of a VCSEL with an external mirror (relative di-
mensions of layers are shown unscaled): (/) external mirror; (2) air
gap; (3) antireflection coating; (4) sapphire disk; (5) glue layer; (6, 8)
protective layers; (7) heterostructure with a resonance grating of 25
QWs; (9) Bragg mirror consisting of 7.5 quarter-wave layer pairs; ( /0)
aluminum substrate.

In this study, we neglect polarisation effects and restrict
ourselves to the scalar diffraction model. It was also assumed
that the laser structure has an axial symmetry, which makes it
convenient to use cylindrical coordinates. The time depen-
dence of the field at the frequency w for a smooth field-ampli-
tude envelope can be represented in the form E(r,p,z,1)=
U(r,p,z)exp(-it), Q=wy +Aw—id, where w, is the reference
frequency, Aw = w-w, is the mode frequency shift, and ¢ is
the decay decrement. The frequency w, is chosen to be equal
to the transition frequency. The corresponding reference val-
ues of the wave vector and wavelength in vacuum are deter-
mined conventionally, wy= k¢, ko= 2m/A,.

Taking into account the circular symmetry of pumping,
the angular dependence of the field amplitude in the small-
signal approximation can be represented in the form
U(r,p,z)=U,,(r, z)exp(imp) (m is the angular harmonic num-
ber), and U,,(r, z) satisfies the equation

°U, . 18/(.0U,\ m’ 2,2 _j
S ol ) = Ut b — ) U,
—ikon*EU,, = 0.

Here, £=u +12Ak is the complex eigenvalue; Ak = Aw/c; u =
26/c is the difference between the threshold and actual mode
gains (hereinafter, mode decrement; u >0 corresponds to the
subthreshold regime); » and g are the refractive index and the
gain with pump-induced components in the absence of satu-
ration by the laser field.

To complete the statement of the problem, it is necessary
to impose a boundary condition at the side boundary (r =
I'max) and at the output mirror. If r,, is so large that the influ-
ence of the side boundary on the solution is weak, then the
field at the side boundary (r = r,,) can be assumed to be
Zero.

Above-threshold pumping (u < 0) leads to lasing at the
corresponding mode. The steady-state field of the axially
symmetric fundamental mode also satisfies Eqn (1) at m = 0.
However, the refractive index and the gain in each QW are
not given values any more, but must be found from the fol-
lowing system of nonlinear diffusion equations for carriers in
the pth QW [11]:

| U, |*In(x(Y,))

Da( 0y, Y B

v a(’ W) — 7y BN« Y, - -
_ _
= N p=1..Ng.

Here, Y, = N,/N,; is the normalised carrier density; N, is the
carrier density; Ny =|—7n + t;r2+4Bjtr/(ed)]/(2B) is the
transparency carrier density; j, is the effective transparency
current density; D is the diffusion coefficient; 7, is the nonra-
diative recombination time; B is the nonlinearity coefficient
(for radiative recombination); e is the elementary electric
charge; d is the QW thickness; Ny, is the total number of
QWs; j= Jf(r/ro)/(Zn)ff(r/ro)rdr is the equivalent density of
the injection current creating the same flux of charge carriers
in the QW as a pumping electron or laser beam of a given
density; J is the total equivalent current, which, in these calcu-
lations, is taken to be identical in all QWs; f(p) is the pump
profile function; f{0) = 1; p = r/ry; and ry is the effective radius
of the pump region. The radiation intensity /, in the pth QWs
is assumed to be normalised to the saturation intensity /,=
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(helhg) [Ny /(ggTw)], s0 that [Up ,|*=1I,/I,. At the side boundar-
ies of the active layers (r = rp,y), We impose zero boundary
conditions for Y,(r). The refractive indices and the gains in
active layers are calculated by the iteration formulas

g = goln(x(¥y)),

R — Smin
ny = g — N2 ), )
a+(l—a)YM-9 y<1,
x(Y) = ( )
Y, Y>1,

where @ =exp(gmin/g0); o is @ parameter with the gain dimen-
sionality; g, 1S @ negative value corresponding to the absorp-
tion of laser radiation in a QW in the absence of pumping; n
is the QW refractive index in the absence of charge carriers;
and R is the line broadening factor.

The equivalent injection current density is related to the
electron-beam current density by the formula [7]

_ #°E
7= 3E,Ny

where j® is the axial electron-beam current density in A cm™2,
E, is the beam-electron energy in eV, E, is the energy gap
width of barrier layers, and » = (.75 is the portion of pump-
electron energy transferred to the structure with QWs. The
remaining energy is carried away by reflected and secondary-
emission electrons and is absorbed in the Bragg mirror. For
the experimental parameters £, = 40 eV, 3E, = 7.08 ¢V, and
Ngyw = 25, the equivalent injection current density and the
electron-beam current density are related by the expression

j=170Acm? <> ;> =1 Acm™.

Eqns (1)—(3) and the corresponding boundary conditions
for m = 0 determine the eigenvalues and nonlinear operator
functions. In the steady-state lasing regime, the condition u =
0 (Re£=0) must be fulfilled. The procedure of solving Eqn (1)
with this condition is described in detail in [10], and here we
present the general scheme of solving.

The total wave field in each horizontal plane within the
limits of barriers and homogeneous structural layers is repre-
sented in the form of a sum of two waves propagating up and
down the structure. Each of the waves is found by separating
the components with positive and negative projections of the
wave vector on the vertical axis in the three-dimensional
Fourier image of the field. The field propagation between two
neighbouring QWs is calculated using the 7T-matrix formal-
ism for Fourier components, which ensures a fast calculation
of the round-trip operator. The field propagation through
QWsiis calculated by transformation from Fourier to physical
space at the QW boundaries using the fast Hankel transform
algorithm [12] and by solving the one-dimensional Helmholtz
equation with the boundary conditions at the QW boundaries
that correspond to the local radial coordinate. This approach
is justified when the QW thickness is considerably smaller
than the field wavelength.

The use of an external mirror makes it necessary to include
into the calculation the filed propagation to this mirror, the
reflection by the spherical mirror, and the backward propaga-
tion to the structure. In the theory of two-mirror cavities

[12—14], one usually uses the paraxial optics approximation
in which the field propagation is described by a parabolic
operator, which allows one to explicitly relate the distribu-
tions of fields in two separate planes. In this case, the possibil-
ity of taking into account the interference of counterpropa-
gating waves, which plays a key role in resonant QW gratings,
is lost. In our technique of calculating the filed propagation
inside an active structure, we do not use the paraxial optics
approximation, which eliminates the mentioned problem. To
unify the calculation algorithm, we also solved the Helmholtz
equation in the external part of the cavity and described the
reflection from the output mirror by transferring the reflec-
tion boundary condition at the curved mirror to the reference
plane transversely to the optical axis. The applicability of this
approximation, which is widely used in the theory of two-
mirror cavities [12, 13], was verified by us in test calculations.
It was found that the accuracy of this approximation is
acceptable for the entire region of the external cavity param-
eters. Thus, the described procedure allows us to determine
the round-trip operator.

Our approach, which is based on the unified solution of
the Helmholtz equation beyond the parabolic approximation,
allows one to find the mode spectrum for composite cavities,
including cavities almost randomly filled by plane layers with
smoothly changing properties in the transverse plane.

The condition of field reproduction after a round trip is
described by the operator equation

P(g,nEu=u 4)

for the function u with the complex eigenvalue &. The positive
or negative real part of & determines the field decay or growth
rate, respectively. The imaginary part of £ determines the fre-
quency spectrum of optical modes. In addition to the wave
field, the round-trip operator P includes the sought distribu-
tions of gains g and refractive indices # in the entire volume of
the structure, as well as the eigenvalue £. The method of solv-
ing the obtained system of equations is described in [10] and,
due to its complexity, is not given in this paper.

3. Experimental data

The active part of the VCSEL contained 25 QWs (Ga, sIng 5P,
8 nm) separated by barrier layers (Al 35Gag 15Ing sP, i ~ 182.7
nm) (Fig. 1). Thus, the QW grating represented a finite peri-
odic structure with the optical period length equal exactly to
Ao=640 nm. From the top and bottom, the active part of the
VCSEL was bounded by protecting GalnP layers with the
thickness # = 6 nm, which protected the upper and lower bar-
rier layers from oxidation in the process of the active element
fabrication. In the experiment with electron-beam pumping,
the lower protecting layer was adjacent to a Bragg mirror
consisting of 7.5 pairs of alternating quarter-wave SiO,/TiO,
layers. The lower SiO, layer was coated by an Al layer 1 um
thick. The electron-beam pumping was performed through
layers 8—10 (Fig. 1). The upper surface of the structure was
glued to a (0001)-oriented sapphire disk 4 mm thick, which
was the optical window of the laser. The glue layer had a
thickness of 55 um and a refractive index of 1.5. The outer
surface of the sapphire disk was antireflection coated. The
external spherical mirror had a diameter of 1.5 cm, a plane
outer surface, and a concave inner surface with a curvature
radius of 3 cm, which was used as a substrate for deposition
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of the second semitransparent Bragg mirror consisting of
Si0,/TiO, quarter-wave layers. The number of layers was
varied to achieve refection coefficients in the region of
0.95-0.99.

The laser operated in a pulsed regime due to insufficiently
efficient heat removal and a relatively high lasing threshold.
Due to a specific feature of the laser, the pulsed regime was
achieved by periodic scanning of the electron-beam spot
along a line segment 3 mm long. The excitation pulse dura-
tion for an individual point of the line was determined by the
electron-beam diameter and the scanning rate (103 cm s™'); the
scanning frequency was 50 Hz. The line segment was move-
able along the active element surface. A pulse falling into the
region of a cavity mode excited a laser pulse, whose typical
shape in the case of the electron-beam spot diameter of 40 um
is shown in Fig. 2. The laser pulse duration can be increased
to 100 ns by using a larger electron-beam spot and a lower
scanning rate. The total electron-beam current was change-
able within a range of 0—2.5 mA at the electron energy from
30to 50 keV. The electron-beam diameter was changed within
a range of 25—100 um by changing the focusing current in an
electromagnetic focusing lens.

1.5
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Figure 2. Laser pulse time profile at ry = 40 um, L = 2.5 cm, and J°=
2mA.

A characteristic laser pulse spectrum is shown in Fig. 3.
The main peak in the spectrum corresponds to a wavelength
of 644.4 nm, and the width of the spectrum at the level of 10%
is approximately equal to 1.3 nm. The structure of the spec-
trum is caused by the use of the external cavity and by an
imperfect antireflection coating of the outer surface of the
sapphire layer.

The laser beam structure in the far-field zone depended on
the optical length of the cavity, on the diameter of the excita-
tion region, and on the quality of alignment of the external
mirror. In a well-aligned cavity with an optical length consid-
erably smaller than the curvature radius of the external mir-
ror, the far-field distribution usually had one peak with an
angular divergence of 7.5 mrad, which is close to the diffrac-
tion limit.

The laser power reached 3.2 W at the output mirror reflec-
tivity of 0.985. It also depended on the cavity length L and the
radius of the excited region. When this radius was small
(ro ~ 15 um), a stable lasing was observed in the range of L =
2.8—3.0 cm (nearly semiconcentric cavity), when the size of
the excitation region was comparable with the transverse size

400 F
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2 300
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5 200 b
8

100

0 .| Aafa. b 1 1 aMLamd
642 643 644 645 646 647
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Figure 3. Experimental laser radiation spectrum at ry = 40 um, L =
2.5 cm, and J° =2 mA.

of generated cavity modes. A significant excess of the trans-
verse dimensions of the fundamental mode over the excitation
region diameter (which occurred at L < 2.8 cm) lead to sup-
pression of lasing. At the excitation region radius of 40 pum,
we observed a weak dependence of the laser power on the cav-
ity length in a wide range (L = 1.0-3.0 cm). We also measured
the laser power at L = 2.0 cm with an electron-beam current
J® =2 mA (equivalent current J = 340 mA) as a function of
the electron-beam radius at the active laser element. In the
case of strong focusing (small beam radius), lasing did not
occur, despite the fact that the excitation density was maxi-
mal. Lasing began at a weaker focusing. The maximum power
was achieved at ry ~ 40 um. With further defocusing of the
electron beam, the laser power decreased again due to a
strong decrease in the excitation density.

4. Calculation results and discussion

Calculations were performed with the following values of
parameters entering Eqns (1) and (2): D = 0.5 cm® s, 7,
I ns, B=3.5x10"""cm3 57!, R = 2.5, gy = 3400 cm™, g,in =
—1000 cm™!, and j,=400 A cm™>. At these parameters, the
saturation intensity was I;=172 kW cm™. Since precise data
on the pump profile function were unknown, the calculations
were performed for a model profile f(p) =(1+p*!, which was
assumed to be constant along the length of the structure. The
effective transparency current density corresponds to the
axial density of the electron-beam transparency current j% =
2.35 A cm™2. In most calculations, the external mirror diame-
ter is taken to be 0.4 mm, the amplitude reflectivity of the
surface is 0.985, and the curvature radius is 3 m. An increase
in the mirror diameter lead to a strong increase in the calcula-
tion time due to a smaller discrimination of high-order modes.
Optical modes of a VCSEL were denoted by standard
symbols TEM,,,,, where m is the angular index corresponding
to the dependence ~exp(img) and 7 is the radial number. The
number of nodes of the radial digital network was N, = 1024
for all presented calculation results.

4.1. Calculation of nonlinear laser characteristics

In the considered case, the mode spectrum is not separated
into purely longitudinal and purely transverse modes. In
other words, a change in the field carrier frequency changes
both the longitudinal and transverse mode structures.
Nevertheless, the longitudinal structure of the laser optical
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modes, which is determined by the total contribution of the
Bragg laser dispersion, the resonance QW structure, and the
distance to the external mirror can be separated in the limit of
large pump region radius. In this case, one can represent the
field in the form of counterpropagating plane waves and cal-
culate the small-signal round-trip gain as a function of the
radiation wavelength. A result of such calculation is shown in
Fig. 4 for a heterostructure in which QWs form homogeneous
layers with constant gains (g, = 3400 cm™!) and refractive
indices (19 = 3.62). The linear gain spectrum G shown in Fig.
4 is determined as the ratio of the intensity of the wave
reflected from the structure to the intensity of the plane wave
incident from the side of the external mirror. The central peak
corresponds to the resonance mode of the structure, for which
the total intensity in each QW is twice as high as the average
intensity in the structure, which leads to an increase in the
effective gain. In addition, the effect of the constructive inter-
ference in QWs with a high refractive index leads to an
increase in the effective refractive index and to a shift of the
resonance wavelength by 2.3 nm from the reference point 640
nm. The other peaks, whose height is approximately twofold
smaller that the level G = 1, lie approximately periodically
with an interval of 14 nm. They appear due to a shift of inter-
ference fringes with respect to the QW grating with changing
wavelength. The fall of the gain at the spectrum edges relates
to the width of the reflection band of the Bragg mirror (~ 190
nm). Here, we did not take into account the material gain dis-
persion since lasing occurred at close-to-resonance wave-
lengths with a width noticeably smaller than the material gain
linewidth (see Fig. 3).
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Figure 4. Dependence of the linear plane wave gain G on the incident
radiation wavelength at L =3 cm and a QW gain of 3400 cm™'.

As was mentioned above, the radial inhomogeneity caused
by the finiteness of the pump spot radius leads to a change in
the longitudinal structure and to the appearance of a trans-
verse structure of optical modes. Due to the nonlinearity of
the lasing process, it is very difficult to separate the effect of
individual variable parameters on the laser characteristics. To
clarify the role of the amplitude and the gain profile, we cal-
culated the linear amplification regime. In these calculations,
we also found such important characteristics as the lasing
threshold and the above-threshold mode discrimination as
functions of the pump beam diameter and the distance to the
mirror.

Let us illustrate the calculation results in the case with an
equivalent pump current of 400 mA (the corresponding elec-
tron-beam current in the pulse peak is 2.35 mA). Figure 5
shows the TEM,, and TEM,, mode decrements for three
pump beam radii versus the optical distance L from the upper
surface of the heterostructure to the spherical mirror (in what
follows, we call L the distance to the mirror). Since the
medium is amplifying, the equality of the mode decrement to
zero means that the mode has reached the lasing threshold,
while a negative value means that the threshold is exceeded.
Recall that the mode decrement in this paper is determined
from the field decay rate in the laser. As follows from Fig. 5,
the gain for the fundamental mode at a small pump spot
radius (rg = 20 um) exceeds the threshold value in the range L
=2.6-2.9 cm. As the mirror becomes closer to its position for
a semiconcentric cavity (L = 3 cm), losses at the mirror edge
increase. At distances smaller than 2.6 cm, the mode gain
decreases due to broadening of the field distribution. As the
pump spot diameter increases to 35 wm, the fundamental
mode turns out to exceed the excitation threshold for all the
shown distances to the mirror, while the higher-order modes
do not reach the threshold at L < 2.7 cm. For the pump spot
radius of 50 um, the fundamental mode remains above the
threshold. However, the next mode also lies above the thresh-
old at L < 2.9 cm. The decrease in the mode decrement u
demonstrated in Fig. 5 with increasing the pump spot radius
is explained by a better overlap of the mode field with the
excitation region. The characteristic mode radius is deter-
mined first of all by the curvature radius of the external mir-
ror and by the distance to it. The optimal situation for dis-
crimination of higher-order modes corresponds to an approx-
imate equality of dimensions of the pump beam and
fundamental mode. This approximate equality occurs in the
minimum of the curve for ry=20 um at L = 2.8 cm.

0.08

0.04

(=]

Mode decrement/cm !

-0.04

2.5 2.6 2.7 2.8 2.9 3.0
Distance to the mirror/cm

Figure 5. Dependences of the TEM, and TEM,; mode decrements
on L at an equivalent pump current of 400 mA and different pump spot
radii.

More complex effects are observed in the region of L from
2 to 2.5 cm. Figure 6 presents the decrements of the funda-
mental mode, of the second radial mode, and of the first
angular mode as functions of L for a pump spot radius of
25 um and an equivalent current of 200 mA. The minima of
each of the curves approximately correspond to the condition
when the mode and pump spot sizes are close to each other.
Both higher-order modes are below the excitation threshold
at all distances. However, the fundamental mode decrement
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demonstrates an unexpected behaviour. The fundamental
mode lies below the threshold at the distances L = 2.2—
2.35 cm. This is explained by the existence of a radially inho-
mogeneous phase incursion in 25 QWs of the heterostructure,
which qualitatively corresponds to a defocusing lens. The
appearance of a cuspidal point on the mode decrement plot
relates to a jump to the fundamental mode with a different
radial structure.
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Figure 6. Dependences of the TEMy,,, TEM,(, and TEM,; mode decre-
ments 4 on L at an equivalent injection current of 400 mA and a pump
spot radius of 25 um.

4.2. Calculation of lasing and fundamental mode stability

To estimate variations caused in the laser beam power and
angular beam divergence by changes in L, we performed a
series of calculations of lasing at the fundamental mode for
different pump spot radii at an equivalent injection current of
400 mA (Fig. 7). As in the experiment, the calculated funda-
mental mode power only slightly depends on the cavity length
at rather large radii of the excitation region. The general
decrease in the power at ry > 25 um is associated with decreas-
ing excess of the pump density over the threshold. In experi-
ment we observed lower laser powers, which, obviously, is
caused by additional losses of laser radiation due to scattering
by multiple interfaces of the studied heterostructure and by
the surfaces of the sapphire substrate, which was not taken
into account in the calculation. The divergence angle of the
fundamental mode slowly increases with increasing L
(Fig. 7b). This increase is mainly caused by a decrease in the
mode diameter in the active heterostructure as the cavity con-
figuration becomes closer to semiconcentric. The experimen-
tal divergence angle of 7.5 mrad measured at L = 2.5 cm
agrees well with the calculated data.

The calculation results demonstrated in Fig. 7a for ry =
20 um show a sharp increase in the power as L approaches
3.0 cm, which was not observed in experiment and is related
to diffraction losses at the edge of the output mirror. Indeed,
the mode size at the output mirror in this situation increases
and, as illustrated in Fig. 8, becomes larger than the 400-um
diameter of the output mirror used in the calculation. In the
experiment, we used a mirror of a larger diameter, and the
losses caused by the propagation of radiation outside the mir-
ror were absent. However, we observed a sharp (up to several
degrees) increase in the output beam divergence, which agrees
with the calculation results shown in Fig. 7b.
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Figure 7. Dependences of the output power (a) and of the far-field di-
vergence angle 0 5 containing half of the output power (b) on L at an
equivalent injection current of 400 mA and different pump spot radii.

The calculated dependence of the fundamental mode power
on the equivalent injection current is shown in Fig. 9 for ry =
25 um and L = 2.5 cm. By extrapolation to zero laser power,
we found the threshold equivalent current to be Jy;, ~ 50 mA,
which qualitatively agrees with the experimental value of 35 mA
(J% = 0.2 mA). Our calculations predict an improvement of
the optical quality of the output beam with increasing power.
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Figure 8. Transverse intensity distribution at the output mirror for a
generated mode of a VCSEL with an external mirror at a pump spot
radius of 20 um, an equivalent injection current of 400 mA, and dif-
ferent L.
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decrement u as functions of the equivalent pump current in a VCSEL
with an external mirror at ry = 25 um and L = 2.5 cm.

The limiting current of single-mode lasing with respect to
the excitation of higher modes was found by solving a linear
problem in which the gain and refraction profiles in QWs are
formed by the fundamental mode and are frozen [10]. The
single-mode lasing stability is disturbed when the decrement
for any of higher-order modes is u = 0. As is shown in Fig. 9,
at pump currents corresponding to the fast-electron-beam
peak currents used in the experiment, the competing (closest
to the threshold) mode remains below the threshold. Thus,
single-mode lasing at the given parameters remains stable,
which agrees with experimental data. The use of an external
mirror significantly extends the range of pump currents excit-
ing single-mode lasing with respect to the same structure
without an external mirror, for which the theory predicts that
the critical current at which multimode lasing begins exceeds
the lasing threshold only by a factor of 1.5 [7].

5. Conclusions

The developed numerical method of calculating a VCSEL
with an external mirror allows one to find the spatial profiles
and determine the power and optical beam quality of a gener-
ated mode. The characteristic time of calculation of one con-
struction with a resonance grating of 25 QWs is about one
hour when using a Pentium IV PC. The created program
makes it possible to determine the lasing threshold for the
fundamental mode and determine its characteristics as func-
tions of the pump current and external cavity parameters.
Our software package provides the possibility of finding the
excitation threshold for higher-order modes against the back-
ground of the fundamental-mode-induced distributions of the
gain and nonlinear part of the refractive index, which deter-
mines the maximum output power achievable in the single-
mode regime. It is shown that, in agreement with experiment,
at a distance to the external mirror of 2.5 cm and a pump spot
radius of 25 pm, the higher-order modes remain below the
excitation threshold in the entire studied region of pump cur-
rents.
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