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Abstract.  We present the results of a numerical-analytical study of 
formation of an output beam with a given intensity distribution for 
a resonator with a back deformable mirror (DM) and semitrans-
parent spherical front mirror. Using the theory of inverse  
optical problems in the diffraction approximation, the basic charac
teristics of a laser resonator with a DM are considered as functions 
of the reference resonator configuration and the form of the distri-
bution function, describing the given intensity. The laser beam for-
mation in the reference resonator with plane-parallel and concen-
tric configurations is compared. In the investigated resonators, the 
given intensity distribution is a fundamental mode; the selectivity 
(determined by the power losses of transverse modes) of the resona-
tor with a DM is comparable with that of the reference resonator. 
It is shown that the formation of the given intensity distributions 
(uniform, super-Gaussian, or having several maxima) requires a 
DM with the amplitude of deformations of the optical surface of the 
order of l and the number of control channels from 1 to nearly 10. 

Keywords: laser beam, given intensity distribution, resonator with 
a back deformable mirror, inverse problem, diffraction.

1. Introduction

A promising way for solving the problem of formation of 
laser beams with given parameters is associated with the use 
of the modalities of active (adaptive) optics [1, 2], e. g., deform-
able mirrors (DMs). However, the deformation amplitude of 
the reflecting DM surface is limited (usually within 1 – 10 mm), 
and the number of control channels (the number of DM atten-
uators) is about 10 [2]. The capabilities of DMs are greater in 
such multi-pass systems as interferometers, multi-pass tele-
scopes, optical resonators. In these systems phase deforma-
tions accumulate, which makes it possible to vary not only the 
phase distribution of the output radiation, but also the distri-
bution of its intensity within the system. Intracavity modali-
ties of active optics are particularly promising. They are 
applicable to the solution of a wide scope of problems: correc-
tion of aberrations, introduced into the output radiation by 
the optical nonuniformity of the active medium and thermal 
deformations of the resonator mirrors [3 – 5]; maximisation of 
the output radiation power [6, 7]; formation of beams with the 
given intensity distribution (see, e.g., [8 – 14] and other papers); 
implementation of dynamic oscillation regimes [6, 7, 15].

In the present paper, we consider the problem of formation 
of output laser radiation with the given intensity distribution. 
Using the theory of inverse optical problems [16] with the 
resonator specific features taken into account [12], the resona-
tors with a back DM and semitransparent output mirror are 
investigated. Within the framework of the developed approach, 
using the diffraction approximation in relation to the con
figuration of the reference resonator, the basic characteristics 
of the system are studied, namely, the quality of formation of 
the given intensity distribution of the output radiation and its 
phase distribution, the resonator selectivity (with respect to 
transverse modes), the desired shape of the reflecting surface 
of the DM. Considerable attention is paid to the problem of 
optimising the reference resonator configuration in relation 
with diffraction effects.

2. Basic relations

Consider an inverse problem of intracavity formation of an 
output beam with a given intensity distribution under the fol-
lowing limitations imposed on the parameters of the resonator 
and the characteristics of laser radiation. We study a passive 
(without active medium) two-mirror resonator with a back 
DM. A beam with given intensity distribution I(r) (r = (x, y) 
being the radius-vector of a point at the mirror aperture in the 
cylindrical coordinate system with the z axis coinciding with 
the optical axis of the resonator) is incident on the output 
semitransparent mirror (STM), the beam phase distribution 
being j0(r). It is required to determine the shape of the reflect-
ing surface of the DM, providing the given intensity distribu-
tion I(r) in the aperture plane of the output STM reflector (as 
the field distribution in a resonator mode).

The mathematical formulation of the problem is reduced 
to the study of the solutions of the resonator equation [17]:

( )U r1y exp[ij1(r1)]P1(r1)K(r1, r2)P2(r2)

	 ´ exp[ij2(r2) + jc(r2)]K(r2, r)dr1dr2 = gU(r),	 (1)

where U(r) is the field distribution in the beam, incident on 
the STM reflector, corresponding to the distribution in the 
resonator mode; g is the eigenvalue of Eqn (1); j1 and j2 are 
the additional phases, introduced into the phase distribution 
of the field by the reflection from the STM and DM, respec-
tively; j1(r) = kr2r1, k = 2p/l is the wave number, l is the wave-
length, r1 = 1/R1 is the STM curvature, R1 is the curvature 
radius; j2(r) = kr2r2, r2 = 1/R2 is the curvature of the back 
DM in the absence of deformations, R2 is the curvature radius;  
Rj > 0 (Rj < 0) – for convex (concave) mirror, respectively 
( j = 1, 2 for the STM and DM, respectively); jc(r) = 2kS2(r) 
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is the additional phase, introduced by the deformation of the 
DM; S2(r) is the deviation of the DM reflecting surface shape 
from the reference spherical one; P1,2(r) is the aperture func-
tion of the STM and DM, respectively [Pj (r) = 1 within the 
aperture and Pj (r) = 0 beyond the aperture limits]; the diam-
eter (width) of the STM (DM) reflector aperture is 2a1 (2a2) 
and the corresponding Fresnel numbers are N1,2 = a

2
1,2/(ll); 

K(r1, r2) is the kernel of the propagation integral between the 
apertures of the reflectors. In the calculations we used the dif-
fraction approximation:

K(r1, r2) = exp(ikl)
2

( )
exp

i
i

l
k

l
k r r
2
1 2
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-; E,

where l is the resonator length.
Thus, the considered inverse problem is reduced to the fol-

lowing mathematical problem: to find a function jc(r) such that 
the given field distribution function U0(r) = ( )I r exp[ij0(r)] 
would be a solution of Eqn (1).

However, as known (see, e.g., [16, 18]), inverse optical 
problems do not always have a solution or may have an 
ambiguous solution. Numerical studies by the iterative method 
show that under the limitations introduced above, the con
sidered inverse problem has no solution in the general case. 
Let us formulate the problem with softer conditions for the 
given field. We will seek for the solution in the general form 
U(r) = |U(r)|exp[ij0(r) + ij(r)]; where the function |U(r)| 
should be close to ( )I r , and j(r) is the error of the given 
phase distribution formation. The characteristics of the given 
field distribution U0(r) are taken into account by choosing the 
function jc(r). With this aim, we derive an expression for jc(r) 
making use of the least-squares method to fit the left- and 
right-hand sides of relation (1) with the function U0(r) substi-
tuted into it instead of U(r). In other words, we minimise the 
mean square modulus of the difference between the given 
relative field distribution at the output STM reflector and the 
relative distribution, produced by the complete (forth and back) 
resonator roundtrip. As a result, for the additional phase, 
introduced by the reflection from the DM (up to a constant 
inessential in the present case), we obtain the relation

jc(r) = –P2(r) arg{Ui(r)U*r2(r) exp[ij2(r)]},	 (2)

where Ui(r) = òU0(r1)P1(r1) exp[ij1(r1)]K(r1, r)dr1 and Ur2(r) = 
òU0(r1)K*(r1, r)dr1 describe the field, incident on the DM and 
reflected from it (in the plane of the reflector aperture), respec
tively; U0(r) =  ( )I r exp[ij0(r)]. Expression (2) is valid for 
arbitrary functions j1(r) and j2(r), which allows the study 
of  the formation quality of the given intensity distribution 
depending on the configuration of the reference resonator. 
This expression agrees with the results of [12]; however, it 
explicitly takes into account the limitedness of the back mir-
ror aperture.

Let us specify the parameters of the resonator and the 
beam. For practical reasons, the shape of the reflecting sur-
face of the output mirror, as well as that of the back mirror in 
the absence of deformations, is chosen spherical; the cor
responding resonator (the reference-configuration resonator) 
is assumed to be stable, so that 0 £ g1g2 £ 1 (gj = 1 + lrj; 
j = 1, 2). The output beam is completely within the aperture 
of the semitransparent reflector. It is assumed that the phase 
distribution and the relative amplitude distribution do not 

change when the beam passes through the STM. The result of 
the solution of the inverse problem under study essentially 
depends on the choice of the phase distribution function j0(r). 
Let the phase distribution in the beam under formation coin-
cide with that of the fundamental mode of the reference reso-
nator (with infinite mirrors), j0(r) = – j1(r)/2. Under these con
ditions, we have Ui(r) = U*r2(r) in the DM aperture plane, and 
Eqn (2) is reduced to the form:

jc(r) = –2P2(r) arg{Ui(r) exp[ij2(r)/2]},	 (3)

where Ui(r) = ò ( )I r P1(r1) exp[ij1(r1)/2]K(r1, r)dr1.
In correspondence with Eqn (3), the DM implements phase 

conjugation of the field. Note, that the similar result of Refs [11] 
and [13] relates only to the resonators with plane-parallel 
reference configurations.

When the DM aperture is unlimited, relation (3) yields the 
exact solution of the inverse problem. If the aperture of the 
mirror is limited, then a part of the beam |Ui(r)|2, propagat-
ing beyond the edges of the DM, leaves the resonator, and 
Eqn (3) yields the solution with close-to-minimal difference 
between the given U0(r) and arisen U(r) field distributions (in 
the sense of the quality criterion accepted above).

Equation (1) together with relation (3) allows one to 
determin the spectra of eigenfunctions U and eigenvalues g 
and to investigate the quality of the given intensity distribu-
tion formation depending on the reference resonator configu-
ration and the characteristics of the given distribution.

When use is made of a DM, the limitation of its deforma-
tion amplitude should be taken into account [2]. Keeping this 
in mind, the analysis of relation (3) for beams with a uniform 
amplitude distribution (for Fresnel numbers N1 > 1) shows 
that it is preferable to use resonators with plane-parallel or con-
centric reference configurations (g1g2 = 1). However, depend-
ing on the end use of the system and the given parameters of 
the output beam, resonators with other reference configura-
tions may be also of practical interest (e.g., a semiconfocal 
reference resonator [19]).

In the numerical experiment significant attention is paid 
to the study of the role of radiation diffraction by the reflector 
edges in the formation of the given intensity distribution. The 
diffraction causes undesirable modulation in the intensity and 
phase distributions of the output radiation, leads to severe 
requirements to the DM, may reduce the laser efficiency due 
to the radiation losses because of mismatch between the 
dimensions of the beam and the active element in the resona-
tor. The following methods for reducing the diffraction effect 
are considered: (i) increasing the size of the DM; (ii) using 
a resonator with a concentric (at 0 < g1 < 1) reference con-
figuration (which allows reduction of the beam size at the 
back mirror because of the concavity of the output reflector); 
(iii) choosing I(r) in the form of a function that decreases 
monotonically to zero or near-zero level when approaching 
the STM edges.

To estimate the role of diffraction in the choice of the ref-
erence resonator configuration, we will analyse the relation 
for the field, incident on the DM, taking the results of Ref. [17, 
pp 93 – 96] into account. Let a two-dimensional cylindrical 
beam with a uniform amplitude distribution be specified at the 
STM. The beam width increases in the course of propagation 
due to diffraction effects, and in the plane of the DM aper-
ture, it becomes nearly 1 + 1/ g N1 1p  times greater (N1g1 > 1, 
g1 > 0). At the same time the dimensions of the beam change 
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by g1 times due to the cylindrical shape of its wave front. 
Hence, in the plane of the DM reflector aperture, the beam 
half-width is

a02 » a1g1(1 + 1/ g N1 1p ).	 (4)

High-quality formation of the given distribution is provided if 
the DM reflector aperture half-width is not smaller than the 
beam half-width, i.e., a2 ³ a02. From this condition and rela-
tion (4), it is clear that in the case of a plane-parallel reference 
resonator (g1 = g2 = 1), it is reasonable to choose the DM 
aperture half-width equal to (or not smaller than)

a2 » a1(1 + 1/ N1p ).	 (5)

Note also that the transverse dimension of the beam in the 
cross sections located closer to the back mirror appear to be 
greater than the given dimension 2a1 of the beam at the STM 
reflector. Therefore, when using a rod active element with the 
constant width 2a1 of cross sections along the optical axis, a 
part of the beam near the DM appears to be outside the active 
element. This leads to the reduction of the active medium effi-
ciency and to lowering of the quality of the given distribution 
formation. This drawback is eliminated using a resonator with 
a concentric configuration, since if we assume that

g1 » 1/( /( )N1 1 4 1p+  + 1/ N4 1p )2,	 (6)

then, taking Eqn (4) into account, in all places inside the reso-
nator the dimensions of the cross sections of the laser beam 
and the active element will become approximately the same 
(a1 » a2 » a02). Besides, because the beam incident on the DM 
reflector (with diffraction broadening and geometrical con-
vergence taken into account) is practically completely located 
within its aperture, the field formation quality provided is nearly 
the same as in the case of a resonator with a DM, plane-parallel 
reference configuration and increased aperture (5) of the back 
mirror.

Consider a plane-parallel resonator with the given field 
amplitude distribution, smoothed to the edges of the STM 
aperture. To estimate the optimal dimension of the near-edge 
smoothing area, we assume that the width 2a02 of the beam at 
the back mirror is equal to the width 2a1 of the given beam 
at  the output mirror. With this aim let us approximate the 
smoothed field distribution with a rectangular one: within the 
smoothing region with the width Da1 at the edges of the aper-
ture, the field is equal to zero, and in the centre of the aperture 
within the region with the half-width a1 – Da1, the field has a 
uniform distribution. We evaluate the width of the smoothed 
beam at the DM using relation (5) by replacing a1 with a1 – Da1 
in its right-hand side. Taking the equality a1 » a2 » a02 into 
account, we get

Da1 » a1/ N1p ,	 (7)

i.e., the dimension of the boundary smoothing region is cho-
sen to provide a look-ahead compensation of the diffraction 
beam divergence, occurring on the path from the output 
reflector to the DM. If the width of the smoothing region is 
smaller than that given by relation (7), then due to diffraction 

the quality of the given distribution formation becomes lower. 
If the width of the smoothing region is greater, then the beam 
concentrates near the resonator axis and the selectivity of the 
resonator (with respect to the power losses) becomes lower. 
Hence, the size of the smoothing region is an optimised param-
eter, depending on particular requirements to I(r) and the char-
acteristics of the laser resonator.

3. Results of the numerical experiment

In the numerical experiment, the additional phase (2) intro-
duced by the DM was first calculated at given I(r), g1, g2, 
P1(r), P2(r), N1 and N2. Then the integral equation (1) was 
solved. The mean square deviations (MSDs) of arising distri-
butions of intensity (sI) and phase (sj) from the given ones 
were accepted as the beam quality factors. The appropriate 
variances were calculated using the formulae
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Here J = |U 2| and the integration is performed within the 
limits of the output reflector aperture. At small MSDs (sj < 1) 
due to phase distortions of the field [20], the Strehl number of 
the resulting beam is Is » exp(– sj2).

Numerical studies were carried out for the resonators with 
plane-parallel and concentric reference configurations. Let 
the mirrors have rectangular shape and let the given intensity 
distribution function allow separation of variables x and y: 
I(r) = Ix(x)Iy(y). Then, Eqn (1) is split into two independent 
equations. Finally, we get jc(r) = jxc(x) + jyc(y), g = gx gy. 
The function jxc(x) (jyc(y)) and gx ( gy)# are found for a two-
dimensional (strip) resonator with the given intensity distri-
bution Ix(x) (Iy(y)).

The results of calculations based on Eqns (1) – (7) for a 
two-dimensional resonator are presented in Figs 1 – 3. In all 
figures the normalised spatial coordinate X = x/a1 is used. 
Figure 2 presents, for the investigated types of resonators, the 
dependences of the square modulus of eigenvalues on the 
number of the mode n (n = 0, 1, …). 

The obtained results of the numerical calculations agree 
with the analytical estimates of the effect of diffraction on the 
choice of configuration of the reference resonator presented 
above. Replacing the resonator having a DM and plane-parallel 
reference configuration with mirrors of similar size (Fig. 1a) by 
a resonator having an enlarged DM (Fig. 1b) or by a resona-
tor with a concentric reference configuration (Fig. 1c) results 
in more precise formation of the given field. If a super-Gauss-
ian intensity distribution, smoothed near the edges, is given 
(Fig. 1d), then, as one could naturally expect, the effect of dif-
fraction on the field formation becomes smaller.

In all considered cases, the given intensity distribution is a 
fundamental mode. The selectivity of the synthesised resona-
tor, as follows from the analysis of Fig. 2, appears to be close 
to that of a plane-parallel resonator. The phase distribution 
of the output radiation is close to the given one (uniform or 
cylindrical). In all calculations, the Strehl number Is > 0.9, 
which indicates the high quality of the obtained field.

The additional phase (path difference) introduced by the 
DM is comparable with the wavelength of the resonance radi-
ation. The maximal value of the DM deformation, as follows 
from the analysis of Fig. 1, amounts to ~ l/10, and the required 
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number of channels used to control the DM shape lies in the 
range from 2 to 7. Three-dimensional resonators are charac-
terised by the increased deformation range l/5 – l/2 and the 
increased number of control channels from 10 to 50. The 
technology of fabricating DMs with such characteristics is 
known [2].

The efficiency of formation of distributions, having several 
intensity maxima within the aperture limits, was also inves-
tigated (Fig. 3). Figure 3a corresponds to the distribution 

( )I Xx  = exp[–16(|X| – 0.5)2 ] with two maxima, and Fig. 3b 
corresponds to the distribution ( )I Xx  = exp[–35(|X| – 0.7)2 ] + 
exp[–35|X|2 ] with three maxima.

It follows from the analysis of Fig. 3 that for the forma-
tion of a beam with several maxima, the shape of the DM is 
similar to the function of the intensity distribution. This may 
be treated as the presence of several local resonators, coupled 
via the field, inside the unique resonator. If we tentatively 
consider each intensity peak as the radiation from a separate 
laser, then the DM, external with respect to all these lasers, 
provides phase matching of the lasers.

Annular beams are also of practical interest. One of their 
advantages is the efficient propagation in nonlinear media [21]. 
Figure 4 presents the given annular distribution of intensity 
I(r) = exp[–32(r/a1 – 0.5)2] and the distribution of the required 
additional phase, introduced by the DM.
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Figure 1.  Intensity and phase distributions for the resonator with a DM and plane-parallel reference configuration (N1 = N2 = 2.5, sI = 0.38, sj = 
0.28) (a), the resonator with an enlarged DM and plane-parallel reference configuration (N1 = 2.5, N1 = 4.6, sI = 0.13, sj = 0.14) (b), the resonator 
with a DM and concentric reference configuration (N1 = N2 = 2.5, g1 = 1/g2 = 0.7, sI = 0.14, sj = 0.11) (c), and the resonator with a DM and plane-
parallel reference configuration with the given super-Gaussian distribution (N1 = N2 = 2.5, sI = 0.1, sj = 0.17) (d): ( 1 ) and ( 2 ) the given and the 
formed intensity distributions; ( 3 ) the phase distribution of the output radiation; ( 4 ) the additional phase introduced by the DM. Figures 1a – c 
correspond to the uniform distribution, Ix(X) = 1; Fig. 1d corresponds to the super-Gaussian distribution, Ix(X) = exp(–4X4).
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Figure 2.  Square modulus of eigenvalues for different resonator con-
figurations as functions of the mode number: ( 1 ) reference plane-parallel 
resonator (N1 = 2.5, N2 = 4.6); ( 2, 3 ) resonators with a DM and plane-
parallel reference configuration (with Fresnel numbers N1 = N2 = 2.5, 
and N1 = 2.5, N2 = 4.6, respectively); ( 4 ) resonator with a DM and 
concentric reference configuration (N1 = N2 = 2.5, g1 = 0.7); ( 5 ) resona-
tor with a super-Gaussian distribution (N1 = N2 = 2.5, g1 = g2 = 1, 
Da1 » 0.35a1).
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In analogy with the two-dimensional case, the additional 
phase distribution function is similar to the distribution function 
of the given intensity distribution. The maximal mirror deforma-
tion, required to get an annular intensity distribution, amounts 
to ~ l/2. The required shape of the DM may be obtained by 
applying an axially symmetric annual stress to the back sur-
face of the DM (one control channel with annual drive).

4. Conclusion

Using the theory of inverse optical problems, we have studied 
the quality of formation of an output laser beam with the 
given intensity distribution as a function of the form of the 

given distribution function and the configuration of the stable 
reference resonator. It is proposed to use concentric reference 
resonators to provide matching of the dimensions of the given 
beam, which is broadened due to diffraction when approach-
ing the DM, with those of the active element. It is shown that 
the resonators with plane-parallel and concentric reference 
configurations provide formation of the given intensity distri-
bution of the output beam at back mirror deformation ampli-
tudes of the order of l with the number of degrees of freedom 
(number of DM drives) from 1 to nearly 10. If the given inten-
sity distribution possesses several maxima, then the synthesised 
resonator can be tentatively considered as several coupled local 
resonators, each responsible for the corresponding intensity 
maximum. The investigated resonators at optimal choice of 
their parameters provide the selectivity (with respect to power 
loss for transverse modes), comparable with that of a plane-
parallel resonator, and the matched volumes of the mode and 
the active medium. The error of the given intensity distribu-
tion formation is ~5%, the Strehl number exceeds 0.9.

The results of the present work may be used in the studies 
of phase matching of an array of lasers, in particular, an array of 
laser diodes.
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