
Abstract. The eigenfrequencies and eigenfunctions of
plasmon oscillations in an inénite linear cluster of spherical
nanoparticles are found analytically within the framework of
the quasi-static approach and numerically within the frame-
work of the énite element method. It is shown that the
spectrum of plasmon oscillations is complex and contains
previously unknown, highly localised modes in a high-
frequency region of the spectrum. The results obtained can
be used in designing plasmon nanowaveguides and nanolasers.

Keywords: nanoparticles, nanowaveguide, plasmon modes, nano-
plasmonics.

1. Introduction

Currently, thanks to the success of nanotechnology, nano-
plasmonics (a éeld of nanophotonics), which investigates
the collective oscillations of conduction electrons in metal
particles, is being actively developed [1]. One of the
important tasks of nanoplasmonics is to study the optical
properties of linear and other clusters, resulting, in
particular, from the desire to use arrays of plasmon
nanoparticles as waveguides. This may allow the integration
of advanced silicon electronics with high-performance
optical plasmon waveguides [2 ë 8].

The exact solution to the scattering problem of an
electromagnetic wave on a spherical particle was found
more than 100 years ago by Mie [9] and independently by
Debye [10]. In 1979, Bergman [11], solving the quasi-static
problem aimed at énding the effective dielectric constant of
a two-component medium with spherical inclusions, pro-
posed to expand eigenfunctions ë and in fact, the potential
inside the particles ë in spherical harmonics with the centre
in each sphere. A similar approach was used by Ge

0
rardy

[12], who considered the problem of énding the absorption
spectrum of the cluster consisting of several spheres of
arbitrary size. An important result of papers [11, 12] was the
calculation of the coefécients that describe the interaction
between the two multipole potential distributions located at
different points. It may be noted that similar coefécients
were calculated by Claro [13].

A good understanding of the physical processes that
occur when light interacts with the clusters can be achieved
by using a model in which each particle is approximated by
a point electric dipole, while quadrupole and higher
moments are ignored. At the same time Claro [14], studying
a cluster consisting of two, three and an inénite number of
particles showed that the dipole model works well as long as
the distance between the centres of the particles are three
times larger than their radius. This model is used to
calculate the dispersion curves of plasmon modes in a linear
cluster in the quasi-static case [2] and in the case of when the
retardation is taken into account [15], as well as to calculate
the energy transfer by a linear chain of nanoparticles in the
quasi-static approximation [16]. Weber and Ford [15] also
considered the effect of absorption in the particles on the
dispersion curves of propagating plasmons. Koenderink and
Polman [17] showed that at the point of intersection of the
dispersion curves of plasmons with the dispersion curve of
photons in free space we can observe not only a serious
discrepancy between the results obtained by taking into
account the retardation in the quasi-static case, but also a
break in the dispersion curves.

The question about the impact of higher-order multi-
poles on the optical properties of the cluster rises in many
works. For example, in the quasi-static case the multipole
interaction was considered in [13, 14, 18]. The authors of
papers [19 ë 21] solved the quasi-static problem for two
spheres in the bispherical coordinates, each term of the
expansion of the potential in these coordinates taking into
account already an inénite number of ordinary multipoles.
In paper [22] the problem for two cylinders was exactly
solved in the bipolar coordinates.

The analytical solution to the problem of interaction of
light with clusters of spherical particles with allowance for
the retardation effects was érst obtained by Ge

0
rardy [23]

while calculating their absorption cross section. In this case
the electromagnetic éeld was expanded in vector spherical
harmonics. Later this problem was considered by many
authors, including Mackowski [24] and Xu [25]. The
distribution of plasmon oscillations along the cluster was
érst studied in [26]. Chern et al. [27] investigated the linear
cluster consisting of several spherical particles (up to twelve)
and placed in an external éeld. Pinchuk [28] studied the
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dependence of the intensity of light scattering by a linear
cluster, consisting of ten nanospheres, on the angle of
incidence of the external plane wave. Khlebtsov et al.
[29] compared the dipole and multipole solutions to the
problem of scattering of light by a dimer. To calculate the
optical properties of the clusters, numerical methods are
actively used, including the énite difference time domain
(FDTD) method [3], énite element method (FEM) [30] and
the discrete dipole approximation (DDA) [31, 32]. Andersen
et al. [32] numerically investigated the optical properties of
different conégurations of spherical particles and compared
the results obtained by the methods used in [23, 25], as well
as by the discrete dipole approximation with one or more
dipoles in the particle. The inêuence of the substrate was
considered in [33 ë 35]. Demidenko et al. [36] studied the
optical properties of the cluster of magnetic-plasmonic
particles on an insulating substrate.

However, up to date the structure of the plasmon
eigenoscillations and the corresponding eigenfrequencies
of a linear cluster of spherical nanoparticles have been
studied neither in the quasi-static approximation, nor in case
of a retardation problem. Understanding the structure of
the eigenfunctions, i.e., the potential and éeld distributions,
as well as the dependence of plasmon frequencies on the
cluster geometry is important for describing the behaviour
of the cluster in an external éeld. In this case, along with the
external plane waves, it is possible to investigate the
interaction of a cluster with localised radiation of atoms
and molecules. Eigenoscillations (in the absence of the
external éeld) of clusters of nanoparticles can be found
from the solution of homogeneous Maxwell equations.
Fields, which arise when placing the cluster in an arbitrary
external éeld, can be found by their series expansion in the
eigenfunctions [1].

The aim of this work is to énd and analyse of
eigenoscillations of a linear cluster of spherical metal
nanoparticles, i.e., the dispersion curves of emerging plas-
mons and spatial potential distributions corresponding to
different plasmon modes.

The geometry of the problem is shown in Fig. 1. We will
use the formulation of the problem, similar to that used in
[11]. To calculate the spatial distribution of the potentials we
have also performed simulations by the énite element
method whose results were in good agreement with the
results obtained analytically.

2. Analytic solution to the problem
of eigenoscillations of a linear cluster
of spherical nanoparticles

Consider érst an arbitrary cluster consisting of spherical
nanoparticles. Let it be located in an inénite homogeneous
and isotropic space with the dielectric constant eh. The

sphere with the number a has the radius aa and dielectric
constant e.

To énd in the quasi-static approximation plasmon
eigenmodes of nanoparticles of any shape and of their
clusters, it is needed to solve the homogeneous ë without
sources ë problem of potential theory, i.e., the Laplace
equation with the requirement of continuity of the potential
and normal component of electric induction at the boundary
of each sphere and with the condition of the potential
vanishing at inénity.

For a sphere of radius a0, this problem has a well-known
solution [1], and the eigenfunctions clm and eigenvalues of
the dielectric constant el have the form

clm�r� �
r lYm

l �y;j�; r4 a0;

a 2l�1
0

r l�1
Ym

l �y;j�; r > a0;
el
eh
� ÿ l� 1

l
;

8><>:
l � 1; 2; ::: ; m � ÿl ::: l; (1)

Ym
l �y;j� � �ÿ1�m

�
2l� 1

4p
�lÿm�!
�l�m�!

�1=2
Pm
l �cos y�exp� imj�;

where Ym
l (y;j) are the spherical harmonics; Pm

l ( cos y) are
the associated Legendre polynomials [37]; r; y;j are the
spherical coordinates associated with the centre of the
sphere. The case l � 0 corresponds to the trivial case of a
static charge distributed over the surface of the sphere. A
similar solution holds for the linear cluster, but we do not
take it into account.

To describe the éeld near an arbitrary particle of the
cluster, say a particle with the number a, it is convenient to
introduce normalised potentials associated with the radius
vector ra of this particles:

F �0a�lm �r� �
clm�rÿ ra�
kclm�rÿ ra�k

:

Scalar product and norm are deéned as:

�f;c�a �
�
Va

HHf�HHcdV;

(2)

kck � �c;c� 1=2a ;

where Va is the particle volume.
In the case of a cluster of spherical nanoparticles the

potential inside each particle is sought as a linear combi-
nation of the eigenpotentials of an isolated particle:

F �a� �
X
ml

A
�a�
lm F �0a�lm : (3)

In (3) and below we use the notation
P

ml �P�1
m�ÿ1

P�1
l�jmj :

2a d

Figure 1. Geometry of the problem.
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The integral equation for the potential inside the particle
has the form [1]

sF�r� � 1

4p

�
V
dr 0H 0F�r 0�H 0 1

jrÿ r 0j �
�
V
K�r; r 0�F�r 0�dV 0,

(4)

s � 1

1ÿ e=eh
;

where integration is performed over the volume V for all
the spheres; r; r 0 2|aVa. For the points inside the particle a
we obtain from (4):

sF �a��r� �
�
Va

K�r; r 0�F �a��r 0�dV 0

�
X
b 6�a

�
Vb

K�r; r 0�F �b��r 0�dV 0; r 2 Va: (5)

For an isolated particle a according to (1) we have�
Va

K�r; r 0�F �0a��r 0�dV 0 � s0lF
�0a�; s0l �

l

2l� 1
: (6)

Substituting (3) into (5) and using (6), we obtain

�sÿ s0l�
X
ml

A �a�lm F �0a�lm �
X
b 6�a

�
Vb

K�r; r 0�
X
ml

A �b�lm F �0b�lm dV 0: (7)

Multiplying (7) scalarly [see equation (2)] by the function
F �0a�l 0m 0 and making a substitution l 0m 0> lm, we obtain

�sÿ s0l�A �a�lm �
X
m 0l 0

X
b 6�a

Q
�a;b�
lm l 0m 0 A

�b�
l 0m 0 ;

l; l 0 � 0; 1; ::: ; m � ÿl ::: l; m 0 � ÿl 0::: l 0; (8)

where

Q
�ab�
lm l 0m 0 � s0l 0 �F �0a�lm ;F �0b�l 0m 0 �a

� s0l 0

�
Va

HHc �almHHcbl 0m 0

kcalmkkcbl 0m 0 k
dV (9)

is the overlap integral of the potentials F �0a�lm and F �0b�l 0m 0 of
two spheres with the radii aa and ab, having the centres at
points with the coordinates ra and rb, respectively; calm�r� �
clm�rÿ ra�; cbl 0m 0 �r� � cl 0m 0 �rÿ rb�. The potential of the
particle b outside it can be expanded in series of the
eigenfunctions of the particle a:

cbl 0m 0 �r� �
a 2l 0�1
b

r
l�l 0�1
ab

X1
l 00�0

Xl 00
m 00�ÿl 00

�2l 0 � 1�Bl 00 l 0m 00m 0

� exp�i�m 0 ÿm 00�jb�Pm 0ÿm 00
l 0�l 00 �cos yb�cal 00m 00 �r�; (10)

Bl 00l 0m 00m 0 �

�ÿ1� l 0�m 0 �l 00 � l 0 �m 00 ÿm 0�!
��2l 0 � 1��2l 00 � 1��l 00 �m 00�!�l 00 ÿm 00�!�l 0 �m 0�!�l 0 ÿm 0�!� 1=2

;

where rab; yb;jb are the spherical coordinates of the vector
rab � rb ÿ ra in the coordinate system of the particle a. This
expression can be obtained, for example, from formulas
presented in [38].

Substituting (10) into (9) and using the orthogonality
condition of the functions �calm;cal 0m 0 �a � la 2l�1

a dll 0dmm 0 , we
énd that from the total sum we have only the term with
m 00 � m and l 00 � l :

Q
�a b�
lm l 0m 0 �

a
l 0�1=2
b a l�1=2

a

r
l�l 0�1
ab

� exp�i�m 0 ÿm�jb�Pm 0ÿm
l 0�l �cos yb��ll 0� 1=2Bll 0mm 0 , (11)

for other values of the indices the overlap integral is zero.
The system (8), (11) holds for any clusters of spherical

particles. In the case of periodically located identical nano-
particles (of radius a) the Bloch theorem is valid, and the
expansion coefécients A

�a�
lm can be expressed as

A
�a�
lm � A

�k�
lm exp�ikra�; (12)

where k is the reciprocal lattice vector. Substituting (12)
into (8), we obtain

�sÿ s0l�A �k�lm �
X
l 0m 0

Q
�k�
lm l 0m 0A

�k�
l 0m 0 ; (13)

where

Q
�k�
lm l 0m 0 �

X
b 6�a

Q
�a b�
lm l 0m 0 exp�ÿikrab�: (14)

In the case of an inénite linear cluster of spherical
nanoparticles, expression (14) can be rewritten in the form

Q
�k�
lm l 0m 0 �

X
n 6�n 0

Qnlmn 0 l 0m 0 exp�ÿi�n 0 ÿ n�kd �;

Qnlmn 0 l 0m 0 �
�

a

rab

�l�l 0�1
exp�i�m 0 ÿm�jb� (15)

�Pm 0ÿm
l 0�l �cos yb��ll 0�1=2Bll 0mm 0 ;

where n and n 0 are the serial numbers counted from the
particles located at the origin of the coordinates;
rab � jn 0 ÿ njd is the distance between the particles,
which is determined by their serial numbers (n; n 0) and
the cluster period d. In this case we can assume that jb � 0,
and yb � 0 or p depending on the direction of the
displacement vector. As a result we obtain

Qnlmn 0 l 0m 0 �
�

a

jn 0 ÿ njd
�l�l 0�1

�
�

n 0 ÿ n

jn 0 ÿ nj
�l�l 0
�ll 0� 1=2dm 0mBll 0mm 0 : (16)

By substituting expression (16) into (15), selecting real
and imaginary parts and assuming that the particle a is at
the coordinate origin, we énd
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Q
�k�
lm l 0m 0 �

�
a

d

�l�l 0�1X1
n�1

cos�nkd�
n l�l 0�1 Kll 0mdmm 0 ;

i

�
a

d

�l�l 0�1X1
n�1

sin�nkd�
n l�l 0�1 Kll 0mdmm 0

8>>>><>>>>: (17)

for even and odd l� l 0, respectively. In (17)

Kll 0m � 2�ÿ1�l 0�m 0
�

ll 0

�2l� 1��2l 0 � 1�
�1=2

� �l� l 0�!
��l�m�!�lÿm�!�l 0 �m�!�l 0 ÿm�!� 1=2

:

In this case it differs from zero only at jmj4 l 0; l.
One can see from (17) that Q

�k�
lm l 0m 0 is diagonal with

respect to the azimuthal quantum numbers. Thus, instead of
(13) we have a set of systems of equations in which m enters
as a parameter:

�sÿ s0l�A �k�lm �
X1
l 0�jmj

Q
�k�
lm l 0m A

�k�
l 0m; m � 0; 1; ::: : (18)

We will use this system to énd the eigenfunctions and
eigenfrequencies of the plasmons. Because the obtained
solution depends only on the modulus of the vector k, we
can consider the range 04 kd=p4 1.

Recall that the potential distribution inside the particles,
corresponding to each resonance value of the dielectric
constant and to each azimuthal number m, is given by

F �a��m� �
X1
l�jmj

A
�a�
lm F �0a�lm :

The potential outside the cluster is calculated from the
integral transform (3) using expressions (4) and (6),
modiéed for external potentials:

F�r� �
X
a

F� a�out�r�;

F �a�out�r� �
X
ml

A �a�lm
s0l
s
F �0a�lm �r� �

X
ml

B �a�lm F �0a�lm �r�; r 2 Vÿ;

where Vÿ is the region outside the cluster and S is the
corresponding eigenvalue of (18).

3. Illustrations of the analytical solutions and
their comparison with the results of simulations
using the énite element method

The inénite system of linear equations (18) was solved
numerically taking into account the number of harmonics
lmax � 85 and the number of neighbours nmax � 45. We
assumed that the cluster is in a vacuum (eh � 1). The
increase in lmax and nmax does not lead to any noticeable
change in the result. We calculated the resonance values of e
and the eigenvectors corresponding to them. Plasmon
frequencies o of the corresponding modes were determined
on the assumption of the classical Drude theory:
e(o) � 1ÿ o 2

pl=o
2, where opl is the the plasma frequency

of metal, i.e., o � opl=
�����������
1ÿ e
p

.
Figures 2 and 3 show the resonance frequencies o=opl of

plasmons as a function of the distance between the particles

d=(2a). Let us draw attention to the fact that the modes are
present both in the low frequency region (o=opl < 1=

���
2
p

),
and in the high-frequency region (1=

���
2
p

< o=opl < 1). The
latter are called M-type modes and are characterised by
strong localisation in the gap between the nanoparticles.
They were érst discovered relatively recently [21, 39] in
studying plasmon resonances in a cluster of two nano-
particles. First we should note that these modes can emerge
only at distances that do not exceed d=(2a) � 1:2, this ratio
holding true for an inénite linear cluster and for a cluster of
two spheres.

By analogy with the case of two spheres [21, 39] in Figs 2
and 3 we can single out three types of dispersion curves. The
modes whose resonance frequency tends to zero with
decreasing distance between the particles correspond to
antisymmetric plasmon oscillations, i.e., L modes. The
modes whose resonance frequency tends to a énite value,
which is between 0 and opl=

���
2
p

correspond to symmetric
plasmon oscillations, i.e., T modes. The modes whose
plasmon frequencies tend to opl correspond to highly

o=opl

0.3

0.4

0.5

0.6

0.7

0.8

1.00 1.25 1.50 1.75 2.00 2.25 d=�2a�

Figure 2. Resonance frequencies o=opl of plasmon oscillations in a
linear cluster of spherical nanoparticles as a function of the parameter
d=(2a) at m � 0 and k � 0. Solid curves are the calculations with account
for 85 harmonics. Dotted lines correspond to the érst éve resonance
values of o=opl �

��������������������
l=�2l� 1�p

for a single sphere.

o=opl

1.00 1.25 1.50 1.75 2.00 2.25 d=�2a�
0.4

0.5

0.6

0.7

0.8

Figure 3. Resonance frequencies o=opl of plasmon oscillations in a
linear cluster of spherical nanoparticles as a function of the parameter
d=(2a) at m � 1 and k � 0. Solid curves are the calculations with account
for 85 harmonics. Dotted lines correspond to the érst éve resonance
values of o=opl �

��������������������
l=�2l� 1�p

for a single sphere.
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localised plasmon oscillations, i.e., M modes. Speaking of
symmetry, we mean that the symmetry plane is perpendi-
cular to the cluster axis and is in the middle of two nearest
spheres.

With increasing the ratio d=�2a� the resonance frequen-
cies of plasmon modes of the cluster undergo transition to
the frequencies o=opl �

��������������������
l=�2l� 1�p

(l � 1; 2; ::: at m � 0
and l5m at m 6� 0) of plasmon oscillations of various
multipolarity in a single sphere. In the case when k � 0 the
frequencies of antisymmetric modes tend to the frequencies
with odd l at even m and to even l at odd m. The frequencies
of symmetric modes transform into the frequency with even
l at even m and with odd l at odd m. In the case kd � p the
situation is similar, but with account for a change in
symmetry, i.e., the frequencies of symmetric modes trans-
form into the frequencies with odd l at even m and with even
l at odd m, etc.

Consider now the spatial structure of the potential,
which corresponds to different modes (Figs 4 ë 9). These
potential distributions are obtained by the énite element
method in solving the Laplace equation with the help of the
Comsol Multiphysics software package. In this case, the
resonance values of e, obtained by solving system (18), are in
good agreement with those found in numerical simulations.
We also compared the éelds inside the particles obtained
analytically and calculated using the Comsol software
package, and found their good agreement.

In the axially symmetric case (m � 0, Figs 4 and 5), the
spatial structure of the antisymmetric (L mode) and
symmetric (T mode) potentials corresponds on the whole
to the structure of the potential of an isolated sphere for
l � 1 and 2, respectively: F � r lPl ( cos y). Interaction
between the spheres in this case is reduced only to a
quantitative redistribution of the potential. In this case,

the L mode is bright, i.e., has a non-zero (inénite) dipole
moment along the cluster axis and can be excited by an
external plane wave, while the T mode is dark.

In the case of a symmetric M1 mode (m � 0, Fig. 6) the
situation is different ë we have a strong concentration of the
charge of one sign near the gap between the nanospheres
and more or less uniform distribution of the charge of
opposite sign in the particle. At points of nanospheres
located remotely from the gap, the potential in fact vanishes.
Note that for all M modes typical is the localisation of
charges near the gap between the spheres. However, unlike
the M1 mode, in the case of M2 modes both positive and
negative charges are concentrated in the gap region.

At m � 1 (Figs 7 and 8) the situation is similar ë the
interaction is reduced to the redistribution of the charge.
Only in this case the L mode becomes dark and corresponds
to the mode with l � 2 for one sphere, while the T mode
becomes bright with a dipole moment directed along the
cluster axis, and corresponds to the mode with l � 1 for one
sphere. The M modes (Fig. 9) in this case are also bright;
however, both positive and negative charges are localised in
the region near the gap between the nanospheres.

F
1

ÿ1

Figure 4. Spatial distribution of the potential F1 of the L1 mode at
m � 0; kd=p � 0; d=(2a) � 1:11; e � ÿ5:011 and o=opl � 0:408.

F
1

ÿ1

Figure 5. Spatial distribution of the potential F1 of the T1 mode at
m � 0; kd=p � 0; d=(2a) � 1:11; e � ÿ1:262 and o=opl � 0:665:

F

0

ÿ1

Figure 6. Spatial distribution of the potential F of the M1 mode at
m � 0; kd=p � 0; d=(2a) � 1:11; e � ÿ0:7721 and o=opl � 0:751.

F
1

ÿ1

Figure 7. Spatial distribution of the potential F of the L1 mode at
m � 1; kd=p � 0; d=(2a) � 1:11; e � ÿ2:139 and o=opl � 0:564:

F

ÿ1

1

Figure 8. Spatial distribution of the potential F of the T1 mode at
m � 1; kd=p � 0; d=(2a) � 1:11; e � ÿ1:554 and o=opl � 0:626:
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With increasing distance between the particles in the
cluster the M-mode potential localisation weakens, and in
the case of a critical distance between the spheres
d=(2a) � 1:2, M-type localised plasmons disappear, while
the L- and T-type plasmons do not experience signiécant
changes, i.e., their spatial structure is preserved and the
resonance values of the dielectric constant become equal to
known resonance values for a single sphere.

4. Conclusions

We have developed an analytic description of plasmon
oscillations of an inénite linear cluster of spherical nano-
particles. We have obtained the dependences of the
resonance values of the dielectric constant on the wave
number (reciprocal lattice vector) and distance between the
spheres in the cluster. We have found their corresponding
spatial distribution of the potential. We have observed
previously unknown high-frequency modes with strong
localisation of the potential in the gap between the cluster
particles, i.e., M modes. The results obtained analytically,
have been compared with the simulation results by the énite
element method using the Comsol Multiphysics software
package. We have established their good agreement.

Thus, this work is in fact an exhaustive study of plasmon
oscillations of a linear cluster of spherical particles in the
quasi-static approximation. Account for the retardation
will, of course, affect the results, especially in the frequency
region o � ck, where c is the speed of light. The results of
such a study will be given elsewhere.

Acknowledgements. This work was supported by the
Russian Foundation for Basic Research (Grant Nos 11-
02-91065, 11-02-92002, 11-02-01272).

References
1. Klimov V.V. Nanoplazmonika (Nanoplasmonics) (Moscow:

Fizmatlit, 2010).
2. Maier S.A., Brongersma M.L., Kik P.G., Meltzer S.,

Requicha A.A.G., Atwater H.A. Adv. Mater., 13, 1501 (2001).
3. Maier S.A., Kik P.G., Atwater H.A. Phys. Rev. B, 67, 205402

(2003).
4. Maier S.A., Brongersma M.L., Kik P.G., Atwater H.A. Phys.

Rev. B, 65, 193408 (2002).
5. Maier S.A., Kik P.G., Atwater H.A., Meltzer S., Harel E.,

Koel B.E., Requicha A.A.G. Nat. Mater., 2, 229 (2003).
6. Maier S.A., Atwater H.A. J. Appl. Phys., 98, 011101 (2005).
7. Ozbay E. Science, 311, 189 (2006).
8. Gramotnev D.K., Bozhevolnyi S.I. Nat. Photonics, 4, 83 (2010).
9. Mie G. Ann. Phys., 25, 377 (1908).
10. Debye P.J.W. Ann. Phys., 30, 57 (1909).
11. Bergman D.J. Phys. Rev. B, 19, 2359 (1979).

12. Ge
0
rardy J.M., Ausloos M. Phys. Rev. B, 22, 4950 (1980).

13. Claro F. Phys. Rev. B, 25, 2483 (1982).
14. Claro F. Phys. Rev. B, 30, 4989 (1984).
15. Weber W.H., Ford G.W. Phys. Rev. B, 70, 125429 (2004).
16. Brongersma M.L., Hartman J.W., Atwater H.A. Phys. Rev. B,

62, R16356 (2000).
17. Koenderink A.F., Polman A. Phys. Rev. B, 74, 033402 (2006).
18. Claro F. Phys. Rev. B, 25, 7875 (1982).
19. Ruppin R. Phys. Rev. B, 26, 3440 (1982).
20. Ruppin R. J. Phys. Soc. Jpn., 58, 1446 (1989).
21. Klimov V.V., Guzatov D.V. Appl. Phys. A, 89, 305 (2007).
22. Vorobev P. Zh. Eksp. Teor. Fiz., 137 (2), 220 (2010) [ J. Exp.

Theor. Phys., 110 (2), 193 (2010)].
23. Ge

0
rardy M.J., Ausloos M. Phys. Rev. B, 25, 4204 (1982).

24. Mackowski D.W. J. Opt. Soc. Am. A, 11, 2851 (1994).
25. Xu Y.-L. Appl. Opt., 34, 4573 (1995).
26. Quinten M., Leitner A., Krenn J.R., Aussenegg F.R. Opt. Lett.,

23, 1331 (1998).
27. Chern R.L., Liu X.X., Chang C.C. Phys. Rev. E, 76, 016609

(2007).
28. Pinchuk A.O. J. Phys. Chem. A, 113, 4430 (2009).
29. Khlebtsov B., Melnikov A., Zharov V., Khlebtsov N.

Nanotechnol., 17, 1437 (2006).
30. Chen M.W., Chau Y.F., Tsai D.P. Plasmonics, 3, 157 (2008).
31. Etchegoin P., Cohen L.F., Hartigan H., Brown R.J.C.,

Milton M.J.T., Gallop J.C. Chem. Phys. Lett., 383, 577 (2004).
32. Andersen A.C., Sotelo J.A., Niklasson G.A., Pustovit V.N.

adsabs.harvard.edu/full/2004ASPC..309..709A.
33. Pinchuk A., Hilger A., von Plessen G., Kreibig U. Nanotechnol.,

15, 1890 (2004).
34. Pinchuk A., Schatz G. Nanotechnol., 16, 2209 (2005).
35. Letnes P.A., Simonsen I., Mills D.L. Phys. Rev. B, 83, 075426

(2011).
36. Demidenko Y., Makarov D., Lozovski V. J. Opt. Soc. Am. B, 27,

12 (2010).
37. Landau L.D., Lifshitz E.M. Quantum mechanics. Nonrelativistic

Theory (Oxford: Pergamon Press, 1977; Moscow: Nauka, 2008).
38. Danos M., Maximon L.C. J. Math. Phys., 6, 766 (1965).
39. Klimov V.V., Guzatov D.V. Phys. Rev. B, 75, 024303 (2007).

F

1

ÿ1

Figure 9. Spatial distribution of the potential F of the M1 mode at
m � 1; kd � 0; d=(2a) � 1:11; e � ÿ0:8595 and o=opl � 0:73:
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