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Abstract.  A mechanism providing an essential enhancement of the 
conversion efficiency of a single high harmonic in gaseous media is 
first proposed using an appropriate change in the phase mismatch 
and group-velocity mismatch in the vicinity of resonance. 

Keywords: high harmonic generation, phase mismatch and group-
velocity mismatch.

1. The basic method for enhancing the harmonic generation 
efficiency (including high harmonics) is the phase-velocity 
matching of the fundamental radiation and the harmonic 
radiation. Phase matching (PM) for high harmonic genera-
tion (HHG) is hampered by relatively strong dispersion of 
refractive indices of atomic media, effect of free electrons, 
temporary variations in the particle concentration caused by 
ionisation of the medium, dependence of the harmonic phase 
on the fundamental radiation intensity. As a rule, PM is 
achieved using laser radiation beams with an appropriate 
phase shift and (or) compensating for the atomic dispersion 
by the dispersion of the electron gas. The phase matching in 
HHG is achieved in the waveguide regime [1] and in a capil-
lary discharge [2], as well as by implementing quasi-synchro-
nous PM in hollow waveguides [3] and by controlling the 
laser radiation wavefront [4, 5].

2. The present paper shows that the change in the phase 
mismatch and group-velocity mismatch during the HHG pro-
cess in gaseous media near resonance may provide PM. The 
influence of group-velocity mismatch on the PM processes 
has been analysed mainly for frequency conversion processes 
in crystals (see, e.g., [6, 7]) and for the third harmonic genera-
tion in the waveguide regime [8]. For HHG in gaseous media 
the effect of the group-velocity mismatch is believed not to be 
essential. In the case of plasma media with the electron and 
ion density of 1018 cm–3 the coherence length of the qth har-
monic Lc q = p/Dkq is ~ 0.01 cm. Here Dkq = qk1 – kq is the 
phase mismatch and ki is the ith harmonic wave number. For 
the duration of a transform limited pulse t = 50 fs the charac-
teristic quasi-static interaction length Lg q = t/uq in such media 
is about 5 cm. Here uq  =1/uq – 1/u1 is the group-velocity mis-
match and ui is the group velocity of the ith pulse. Therefore, 
to equalise its effect with that of the phase mismatch, the 

quasi-static interaction length should be decreased by two or 
three orders of magnitude. The appropriate value of uq cor-
responds to the group-velocity mismatch which is by nearly 
an order of magnitude smaller than its typical values for crys-
tals in the optical range. However, using gaseous media with 
increased group-velocity mismatch, in particular, the media 
with autoionisation resonances, allows equalising the effects 
of group and phase mismatch. Note that since the group 
velocity is determined by the derivative of the wave number, 
the growth of the group-velocity mismatch may be more 
essential than the change in the wave number (and, therefore, 
the phase mismatch) and can be observed in a region lying far 
away from the resonance.

3. The analysis of wave propagation during the HHG was 
carried out using the fixed field approximation. Within the 
framework of the slowly varying amplitude approximation 
and the first-order dispersion theory, the envelope function of 
the generated pulse 
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in the moving coordinate system (z = z, m = t – z/u1) may be 
written in the form (see, e.g., [6, 7])
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Here gq = 2pw 
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 q N/kqc 2; ai is the absorption coefficient for the 

ith harmonic; N is the concentration of the atomic particles; 
dq( m) is the time-dependent dipole moment, oscillating at the 
frequency of the harmonic;
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f1 is the initial phase of the fundamental radiation. In Eqn (1) 
the change in electron and ion concentrations during the 
pulse is not taken into account and the inequality |¶d(m)/¶m < 
wq|d(m)| is supposed to be valid.

Within the spectral approach the harmonic amplitude is 
presented as a Fourier integral
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Then the right-hand side of Eqn (1) may be written as an inte-
gral that, alongside with the frequency-shifted amplitudes of 
the fundamental radiation, entering the dipole moment (the 
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so-called convolution), contains also the phase mismatch for 
all spectral components (see, e.g., [9]). Under the near-reso-
nance conditions at the frequency of the harmonic only the 
wave number of the harmonic changes essentially, while the 
fundamental radiation wave number is practically indepen-
dent of the frequency within the line width (up to the ratio of 
the spectrum width to the radiation frequency).Then for the 
harmonic amplitude in the spectral representation we have
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Here Yq(z, W) = Fq(z, W)exp(iuqWz + aqz); d(W) is the Fourier 
transform of the time-dependent dipole moment; jq(W) = uqW 
- Dkq(W) is the generalised mismatch.

The dipole moment d(W) was determined using the tech-
nique, described in [10, 11]. The present solution is a set of 
odd harmonics, distributed in the plateau region. In the case 
of a relatively narrow spectrum (DWq <<  w1) we present the 
solution for the dipole moment in the form of a Gaussian 
function dq(W) = dq0exp[–(W/DWq)2]. Then the spectral density 
of the harmonic radiation sq(z, W) = |Fq(z, W)|2 is
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The analysis of Eqn (3) implies that the radiation spectral 
density of the harmonic is determined by the generalised mis-
match jq, as well as by the value of DWq.

4. For the analysis we have chosen the HHG process in 
laser plasma, consisting of indium ions, i.e., under the condi-
tions, close to the experiment [12], in which a substantial 
increase (~200 times) was observed for the intensity of the 
13th harmonic of Ti : sapphire laser radiation with the fre-
quency near the strong transition into the autoionisation state 
In II 4d105s2 1S0 – 4d95s25p(2D)1P1. In the calculations the 
plasma density (i.e., the concentration of ions and electrons) 
was set to be 1018 cm–3, the laser radiation intensity amounted 
to 2 ´ 1014 W cm–2, the radiation wavelength was equal to 
0.8  mm. Figure 1 shows a fragment of the time dependence of 
the dipole moment for a Gaussian laser pulse with the FWHM 
duration of 40 fs. In the calculation of d(t) following the 
method of Refs [10, 11] the Slater wave functions [13] of the 
initial state were used. The inset in Fig. 1 shows the corre-
sponding dependence of the dipole moment spectral distribu-
tion in the range of the 13th harmonic. From the figure it fol-
lows that DW13 = 0.064w1.

The calculation of phase and group-velocity mismatch 
was accomplished using the values of the oscillator strengths 
and transition frequencies from [14]. The total phase mis-
match of singly charged indium ions and free electrons was 
–129 cm–1, the group-velocity mismatch was – 970 fs cm–1, the 
absorption coefficient was equal to 10–2 cm–1. Figure 2 pres-
ents the dispersion dependence of the radiation spectral den-
sity of the 13th harmonic (solid curve) for the 1-mm-long 
plasma and the constant values of phase and group-velocity 
mismatches mentioned above. The dashed curve presents the 
dependence, obtained at the group-velocity mismatch two 
orders of magnitude smaller (i.e., typical for the absence of 
resonance). From Fig. 2 it is seen that the maximal spectral 

density of the harmonic at larger group-velocity mismatch is 
essentially higher (nearly by 340 times), and the spectrum of 
the main maximum is nearly 3.3 times narrower. The radia-
tion energy of the harmonic in this case is ~120 times greater. 
The values of the phase and group-velocity mismatches and 
their ratio are essentially changed within the linewidth of laser 
radiation, which requires the analysis of partial spectral com-
ponents. In the inset of Fig. 2 the dispersion dependences of 
the spectral density of the 13th and 15th harmonics are pre-
sented, which were calculated with the changes of phase and 
group-velocity mismatches taken into account. It is seen that 
the spectrum of the 13th harmonic acquired an indented 
shape which is determined by the relation between the disper-
sion terms of different orders. The maximal spectral density 
of the 13th harmonic is 277 times higher than the spectral 
density of the 15th harmonic, and the radiation energy of the 
13th harmonic is nearly 65 times greater than that of the 15th 
harmonic.

Note, that in the experiment [12] the central line of the 
13th harmonic was also shifted; however, its spectrum was 
almost two times narrower that that of adjacent harmonics, 
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Figure 1.  Fragment of the normalised time dependence of the dipole 
moment for a Gaussian fundamental beam (T is the oscillation period). 
The inset shows the corresponding dependence of the square of dipole 
moment on the oscillation frequency in the region of the 13th harmonic.
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Figure 2.  Spectral density of the 13th harmonic s13 versus frequency far 
from the resonance (dashed curve) and near the resonance (solid curve). 
The inset shows the frequency dependence of the spectral density of the 
13th harmonic (solid curve) and the 15th one (dashed curve) within the 
linewidth of laser radiation with the change of the phase and group de-
tunings taken into account.



803Compensation for phase mismatch of high harmonics by the group-velocity mismatch

and the spectral broadening of all harmonics was greater than 
the calculated one. The change in the spectra of harmonics 
may be explained as follows. In the calculations the depen-
dence of the harmonic phase on the laser radiation intensity 
was not taken into account. When the gradients of the tempo-
ral and spatial intensity distributions are significant, this cir-
cumstance may change the spectrum of the harmonic. The 
change in the concentration of the indium ions was also not 
taken into account, which is valid at relatively low intensities. 
Preliminary analysis of the effect of the concentration change 
on the nonlinearity coefficient has shown that the spectral 
width of the harmonic increases nearly by 1.2 times. In the 
estimates the change in the ion concentration as a function of 
time was approximated by the function 1 – a{1 + tanh[b(t – 
td)/t]}, where a = 0.3, td = 0, and b = 4 are coefficients deter-
mined from agreement with the formulae of the ADK-theory 
[15]. However, at the laser radiation intensities greater by an 
order of magnitude than the one involved in the calculations, 
the spectral broadening of high harmonics due to the change 
in the plasma composition during the pulse agreed with the 
experiment.

5. Thus, a mechanism for enhancing the efficiency of high 
harmonic generation and selecting a single harmonic in the 
plateau region is proposed by changing the phase and group-
velocity mismatches near the resonance. In this case under the 
phase mismatch the difference in group velocities provides the 
PM regime at the frequency, changing due to the medium dis-
persion with the radiation linewidth. As a result the width and 
position of the central frequency component of the harmonic 
are changed. The demonstrated possibility of a substantial 
intensity increase of a separate harmonic agrees with the 
known experimental data.
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