
Abstract. This paper presents a defect ë deformation (DD)
theory of the formation of a nanoparticle ensemble under cw
laser irradiation. A formula is derived for a bimodal
nanoparticle size distribution function expressed through a
bimodal growth rate of laser-induced DD surface gratings.
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This communication presents defect ë deformation (DD)
theory of the formation of a bimodal nanoparticle ensemble
under cw laser irradiation. Antipov et al. [1] compared
predictions of this theory to their experimental data on the
formation of a bimodal nanoparticle ensemble on PbTe élm
under cw laser irradiation.

Let the z � 0 plane coincide with a free sample surface
(exposed to laser radiation) and the z axis be directed to the
bulk of the medium. Laser irradiation produces mobile
point defects in a surface layer of thickness h. Their
concentration is nd(x; y; z; t) � Nd(x; y; t�f (z), where
Nd(x; y; t) is the defect concentration at z � 0; the function
f (z) will be deéned below [see Eqn (3)]; and d � v (vacan-
cies) or i (interstitials). The defect êux on the surface is given
by

jd�r� � ÿDdHNd �Nd
Dd

kBT
ydHxf

����
z�0
:

Here, r � (x; y); Dd is the surface diffusion coefécient;
H � exq=qx� eyq=qy; ex and ey are unit vectors along the x
and y axes, respectively; yd � OdK is the deformation
potential of the defects; Od is the volume change upon the
formation of one defect; K is the elastic modulus;
xf � xf(x; y; z; t) � divuf is the strain in the layer;
uf � uf(x; y; z; t) is the displacement vector in the layer;
kB is the Boltzmann constant; and T is the absolute
temperature. Considering the layer as a surface élm, we
express the strain in the layer, xf, through the bending
coordinate z � z(x; y; t) (z-axis displacement of the points in
the middle plane of the élm):

xf � ÿn�zÿ h=2�D 1� l 2D� L4D2
ÿ �

z; (1)

where v � (1ÿ 2sP)=(1ÿ sP); sP is Poisson's coefécient;
D � q2=qx 2 � q2=qy 2; and the scale parameters have the
form

l 2 � f 21
24

sP
1ÿ sP

h2; L4 � f 42
1920

�
sP

1ÿ sP

�2
h4:

The linear, sign-alternating variation of the strain in the
élm with z, represented by (1), is characteristic of Lamb
waves in plates [2].

The terms with l � h and L � h in (1) were obtained by
generalising standard thin plate bending theory, which uses
the Kirchhoff approximation [2] and gives only the érst term
on the right-hand side of (1) (l � L � 0). The correction
factors f1 > 1 and f2 > 1 are treated as étting parameters.
Using the formulas for jd(r) and xf in the continuity
equation, we obtain the following equation of surface
diffusion and drift:

qNd

qt
� DdDNd ÿ gdNd ÿ

nhDdyd
2kBT

�div NdH Dz� l 2D2z� L4D3z
ÿ �� �

;

where gÿ1d is the defect lifetime. Taking into account the
dependence of the surface defect diffusion coefécient in the
drift term on surface strain,

Dd � D0
d exp�ÿ�Ed ÿ yadxf�=kBT �

� Dd 0�1� �yadxf=kBT�� � Dd 0�1� �nhyad=2kBT �Dz�,
where Dd 0 is the diffusion coefécient with an initial acti-
vation energy Ed, and yad > 0 is the activation deformation
potential, we obtain the nonlinear equation

qNd

qt
� Dd 0DNd ÿ gdNd ÿ

nhDd 0yd
2kBT

�div NdH Dz� l 2D2z� L4D3z��ÿ�
ÿ n 2h 2Dd 0ydyad

4�kBT�2
Dzdiv NdH Dz� l 2D2z� L4D3z��:ÿ�

(2)

The equation for z can be obtained by generalising the
equation of thin plate bending [2]:
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yd
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qnd
qz

dz� nyd
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�
zÿ h
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�
Dnddz

�
. (3)

Here, c 2 � Ef=rf (1ÿ s 2
P); l 20 � h 2=12; rf and Ef are,

respectively, the density and Young's modulus of the
élm; sjj is the tangential stress in the defect-enriched élm;
and s? is the normal stress acting on the élm from the
substrate. Since h < L, where L is a characteristic lateral
length scale for the forming DD surface structure, the
defect density nd rapidly adjusts to the z-axis strain
distribution:

nd�x; y; z; t� �
2

h

�
h

2
ÿ z

�
Nd�x; y; t�.

Surface élm bending gives rise to a displacement of the
medium in the substrate, u � u(x; y; z; t), which satisées the
equation q2u=qt 2 � c 2t Du� (c 2l ÿ c 2t ) �grad divu, where cl
and ct are, respectively, the longitudinal and transverse
sound velocities in the substrate. Let us establish three
boundary conditions at the élm-substrate interface. The z-
axis displacement is continuous, that is, uz(z � h) � z. The
normal stress in the substrate at the interface determines the
normal stress in the élm, s?(x; y):�

quz
qz
� �1ÿ 2bs�

�
qux
qx
� quy

qy

��
z�h
� s?�x; y�

rsc
2
l

;

where rs is the density of the medium in the substrate and
bs � c 2t =c

2
l . There is no tangential stress:�

quxa
qz
� quz
quxa

��
z�h
� 0; xa � fx; yg:

Using the Fourier expansions

Nd�r; t� �
X
q

Nd�q� exp�iqr� lqt�;

z�r; t� �
X
q

zq exp�iqr� lqt�; (4)

s? � s?�r; t� �
X
q

s?�q� exp�iqr� lqt�;

the displacement vector in the substrate can be written as a
superposition of quasi-Rayleigh waves, which are a quasi-
static (zero frequency, oq � 0) analogue of a Rayleigh
dynamic surface wave [2]:

ulxa � ÿi
X
q

qxaR�q� exp�iqrÿ klz� lqt�;

ulz �
X
q

klR�q� exp�iqrÿ klz� lqt�;
(5)

utza � ÿi
X
q

qxa
q

ktQ�t� exp�iqrÿ ktz� lqt�;

utz �
X
q

qQ�t� exp�iqrÿ ktz� lqt�:
Here, k 2

l; t � q 2 � lq
2=cl; t, R(q) and Q(t) are Fourier

amplitudes.

Formulas (4) deéne a superpositional DD structure
composed of coupled two-dimensional (2D) surface DD
gratings of defect density and surface relief. Each DD
grating with a wave vector q can be thought of as a
quasi-static Lamb wave with a wavelength L � 2p=q, which
is maintained by a self-consistent point defect distribution.
Each quasi-Lamb wave q is related to a quasi-Rayleigh wave
with the same wave vector q from superposition (5).

Solving the boundary value problem in a Fourier
representation with the constraint l 2

q =c
2
l; tq

2 5 1, we énd
s?�q� � zq2q(bs ÿ 1)rsc

2
t . Using this relation in the equation

for z, taking into account that q2z=qt 2 � 0 in the adiabatic
approximation and calculating the integrals, we obtain a
linear relation between the bending coordinate and surface
defect density: zq(t) �

P
d Zd(q)Nq(t); where the DD cou-

pling coefécient is given by

Zd�q� � ÿ
2yd�1� nl0

2q 2�
sjjhq 2�1� ljjq 2 � 2�1ÿ bs�ms=sjjqh�

:

Here, we use the following expression for the shear
modulus: ms � rsc

2
t . The characteristic scale parameter is

ljj � h(rfc
2=12sjj)

1=2 � h. For simplicity, in what follows we
will take into account the contribution of only one defect
species.

Fourier transforming Eqn (2) and using expressions for
zq(t), we obtain an equation for the Fourier amplitude of
surface defect density, Nq � Nd(q; t) with allowance for the
DD wave self-action effect:

qNq

qt
� lqNq �Dd 0

1

Ncr

�
X
q1 6�q
�qq1�

�1� nl 20 q
2
1 �

�1� l 2jjq
2
1 � 2�1ÿ bs�ms=sjjhq1�

Nq1Nqÿq1 (6)

ÿDd 0
2

N 2
cr

yad
yd

q 2�1� nl 20 q
2� 2

�1� l 2jjq
2 � 2�1ÿ bs�ms=sjjhq� 2

jNqj 2Nq:

Here, l � L � 0 in the nonlinear terms, and the growth rate
is given by

lq � ÿgd �Dd 0q
2

�
�
e
�1� nl 20 q

2��1ÿ l 2q 2 � L 4
dq

4�
1� l 2jjq

2 � 2�1ÿ bs�ms=sjjhq
Y�qc ÿ q� ÿ 1

�
; (7)

where e � Nd 0=Ncr, Nd 0 � Nd(q � 0) is a control param-
eter, with Ncr � sjjkBT=vy

2
d (critical defect density). Because

(7) contains a Y function [Y(qc ÿ q) � 0 for q > qc and
Y(qc ÿ q) � 1 for q < qc], lq is zero for the limiting bending
mode with q � qc � p=h. When the defect density exceeds
the critical level (e > 1), the growth rate has a maximum at
L � Lm � 2p=qm � 2ph(rfc

2=12sjj)
1=2�(Nd 0=Ncr)

1=2 ÿ1�ÿ1=2
in a long-wavelength region (L peak). At high values of the
control parameter e, a second, shorter wavelength max-
imum (S peak) emerges at L � Lc � 2p=qc � 2h.

Figure 1 shows the bimodal growth rate of a DD
grating, lq � lq(L), where L � 2p=q, calculated by formula
(7) with e � 57 and h � 0:5� 10ÿ5 cm, sP � 0:35; sjj �
6� 109 erg cmÿ3, Dd 0 � 10ÿ8 cm2 sÿ1, rfc

2 � 1012 erg cmÿ3,
ms � 8� 1010 erg cmÿ3, bs � 0:8, gd � DdR

ÿ2, and R � 5�
10ÿ6 cm. The scale parameters, l � 7:489� 10ÿ7 cm and
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L � 1:885� 10ÿ6 cm, were calculated with étting parame-
ters f1 � 1 and f2 � 3:4. At kBT � 0:05 eV and yd � 102 eV,
the critical defect density is Ncr � 4� 1016 cmÿ3.

According to numerical simulations of the nonlinear
regime of the DD surface instability [3], three-wave inter-
actions of DD waves on an isotropic surface lead to the
formation and angular ordering of equilateral triangles
(triads) of DD grating wave vectors. The triads are formed
by wave vectors related to both the longer (L) and shorter
(S) wavelength peaks (Fig. 1). Similar triads are formed on a
(111) crystalline surface (see Ref. [1]). Each DD triad from
superposition (4) with a period L � 2p=q and wave number
q within the S or L peak will be thought of as a 2D
hexagonal supercrystal whose regular sites are occupied by
nanoparticle nuclei (accumulations of interstitials), by
analogy with atoms that occupy regular lattice sites in a
crystal (Fig. 2). The surface concentration of 'supervacan-
cies' (vacant sites), nsv, in a hexagonal supercrystal with a
lattice parameter L is given by a standard thermodynamic
formula. Therefore, the nanoparticle (nanodot) size distri-
bution function can be written in the form

ndot�L� � aLÿ2 ÿ nsv�L� � aLÿ2

��1ÿ exp�ÿEsv�L�=kBT �� � aLÿ2�Esv�L�=kBT �; (8)

where Esv is the binding energy of a nucleus in a regular
superlattice site (energy of supervacancy formation); aLÿ2

is the surface density of cells in the superlattice; and a is a
proportionality coefécient which takes into account the
shape of a regular hexagonal cell. To énd Esv, we use the
following expression for the DD interaction energy in a
bent layer of thickness h:

W � ÿ
�
S

dr

� h

0

dz ydnd1�r; z�x�r; z�

� ÿS
� h

0

dz
X
q

ydndq�z�xÿq�z�;

where S is the surface area of the layer. The energy of
supervacancy formation on a regular site of a hexagonal
supercrystal (Fig. 2) with a period L � 2p=q then takes the
form

Esv�q� � ÿ3
L 2

Sa
S

� h

0

dzydnd�q; z�xÿq�z� �
L 2

a
hny 2

d

sjj

� 1� nl 20 q
2

�1� l 2jjq
2 � 2�1ÿ bs�ms=�sjjqh��

jNd�q�j 2:

Using this relation and (8), we énd the size distribution
of nanoparticle nuclei:

ndot�q� �
h

Ncr

� 1� nl 20 q
2

�1� l 2jjq
2 � 2�1ÿ bs�ms=�sjjqh��

jNd�q�j 2; (9)

where the spectral function of defect density êuctuations,
|Nd(q)j2, can be found by solving the steady-state
(qNq=qt � 0) equation (6) with the quadratic term (which
maintains a constant number of defects in the triad)
neglected:

jNqj 2 � N 2
cr

lq
Dd 0q

2

yd
2yad

� �1� l 2jjq
2 � 2�1ÿ bs�ms=�sjjhq��

2

�1� nl 20 q
2� 2

: (10)

The nucleus size, L � 2p=q, determines the nanoparticle
size in the laser-induced ensemble. Substituting (10) into (9),
we obtain the steady-state nanoparticle size distribution
function in the form

ndot�q� �

C

� �1� l 2jjq
2 � 2�1ÿ bs�ms=�sjjhq��
�1� nl 20 q

2�
��

lq
Dd 0q

2

�
; (11)

where C � Ncrhyd=2yad and the growth rate lq is given by
(7). The wave number q is related to the nanoparticle size L
by q � 2p=L. Since lq is bimodal at suféciently high e
values (Fig. 1), the size distribution function (11) is also
bimodal at such e values (Fig. 3). As shown by Antipov et
al. [1], the distribution function (11), shown in Fig. 3,
adequately represents the experimentally determined bimo-
dal size distribution for a nanoparticle ensemble produced
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Figure 1. Bimodal growth rate of a DD grating as a function of its
period. The growth rate was calculated by formula (7) with e � 57 and
the values of the other parameters speciéed in text. The cutoff grating
period is L � 2h, which corresponds to the limiting bending mode with
q � qc � p=h.
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Figure 2. (a) Spatial match between three DD gratings with wave vectors
q1, q2 and q3 (jq1j � jq2j � jq3j � q) (triad) and (b) superpositional
hexagonal DD structure deéned by cos q1r� cos q2r� cos q3r: a 2D
supercrystal corresponding to a triad with a wave number q. The dark
areas are zones where interstitials (nanoparticle nuclei) are concentrated.
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by cw laser irradiation of a PbTe semiconductor élm
[1, Fig. 5].

In conclusion, note that this work is the érst to examine
a bimodal growth rate of DD instability (Fig. 1), which
results in a bimodal nanoparticle size distribution function
(Fig. 3). This is due to the fact that the present layer bending
strain calculation xf [Eqn (1)] has gone beyond the com-
monly used Kirchhoff approximation [2]. In the Kirchhoff
approximation, only the érst term on the right-hand side of
(1) is retained (l � L � 0). As a result, both the growth rate
(Fig. 1) and nanoparticle size distribution function (Fig. 3)
have only one, longer wavelength (L) maximum.
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Figure 3. Normalised bimodal nanoparticle size distribution function
calculated with the parameters used in growth rate calculation (Fig. 1).
For comparison with the experimentally determined normalised size
distribution in Ref. [1], C in (11) is treated as a normalisation factor and
is taken to be 5.
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