Quantum Electronics 41 (8) 738—741 (2011)

©2011 Kvantovaya Elektronika and Turpion Ltd

PACS numbers: 61.72.Yx; 66.30.Lw; 68.55.Ln; 61.80.Ba; 81.16.—¢c
DOI: 10.1070/QE2011v041n08 ABEH014645

Defect —deformation theory of the formation
of a nanoparticle ensemble with a bimodal size distribution
on solids under cw laser irradiation

V.I. Emel’yanov

Abstract. This paper presents a defect—deformation (DD)
theory of the formation of a nanoparticle ensemble under cw
laser irradiation. A formula is derived for a bimodal
nanoparticle size distribution function expressed through a
bimodal growth rate of laser-induced DD surface gratings.
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This communication presents defect—deformation (DD)
theory of the formation of a bimodal nanoparticle ensemble
under cw laser irradiation. Antipov et al. [1] compared
predictions of this theory to their experimental data on the
formation of a bimodal nanoparticle ensemble on PbTe film
under cw laser irradiation.

Let the z = 0 plane coincide with a free sample surface
(exposed to laser radiation) and the z axis be directed to the
bulk of the medium. Laser irradiation produces mobile
point defects in a surface layer of thickness /. Their
concentration is  ng(x,y,z,1) = Ng(x,y,1)f(z), where
Ny(x,y,1) is the defect concentration at z = 0; the function
f(z) will be defined below [see Eqn (3)]; and d = v (vacan-
cies) or i (interstitials). The defect flux on the surface is given
by

. D
Ja(r) = =D4qV N4 + Ny kB—dTadef :
z=0

Here, r =(x,y); Dy is the surface diffusion coefficient;
V = e,0/0x + ¢,0/0y; e, and e, are unit vectors along the x
and y axes, respectively; 04 = Q4K is the deformation
potential of the defects; Q4 is the volume change upon the
formation of one defect; K is the elastic modulus;
& =&(x,y,z,t) =divey is the strain in the layer;
ur = ue(x,y,z, 1) is the displacement vector in the layer;
kg 1s the Boltzmann constant; and 7 is the absolute
temperature. Considering the layer as a surface film, we
express the strain in the layer, &, through the bending
coordinate { = {(x, y, 1) (z-axis displacement of the points in
the middle plane of the film):
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where v = (1 —20p)/(1 — gp); ap is Poisson’s coefficient;
A= d/ox? +62/6y2; and the scale parameters have the

form
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The linear, sign-alternating variation of the strain in the
film with z, represented by (1), is characteristic of Lamb
waves in plates [2].

The terms with / ~ h and L ~ & in (1) were obtained by
generalising standard thin plate bending theory, which uses
the Kirchhoff approximation [2] and gives only the first term
on the right-hand side of (1) (/= L =0). The correction
factors f{ > 1 and f, > 1 are treated as fitting parameters.
Using the formulas for jy(r) and & in the continuity
equation, we obtain the following equation of surface
diffusion and drift:
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ON,
a—td = D4yANg — 74Nq —
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xdiv[NgV (AL + A% + L*A%0)],

where 74! is the defect lifetime. Taking into account the
dependence of the surface defect diffusion coefficient in the
drift term on surface strain,

Dy = Dgexp[—(Eq — 0,4¢/) /kpT)

~ Dyo[l + (02a&s/ksT)] = Dyao[l + (vh0,q/2ks T )AL,

where Dy, is the diffusion coefficient with an initial acti-
vation energy Ey, and 0,4 > 0 is the activation deformation
potential, we obtain the nonlinear equation

xdiv[NgV (AL + PA’L + L*A°))]

272
- %Acdiv [NaV (AL + PAYC+ LIND)]. (2)
4(kgT)

The equation for { can be obtained by generalising the
equation of thin plate bending [2]:
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Here, ¢ = E/p;(1 —af); g =h*/12; p; and E; are,
respectively, the density and Young’s modulus of the
film; a is the tangential stress in the defect-enriched film;
and ¢, is the normal stress acting on the film from the
substrate. Since & < A, where A is a characteristic lateral
length scale for the forming DD surface structure, the
defect density ny rapidly adjusts to the z-axis strain
distribution:

2(h
nd(xvyazv t) = Z <§_Z)Nd(x7y7 t)'

Surface film bending gives rise to a displacement of the
medium in the substrdte u= u(x y,z, t), which satisfies the
equation 0*u/d1? = ¢l Au+ (¢f — ¢?) xgraddive, where ¢
and ¢, are, respectively, the longitudinal and transverse
sound velocities in the substrate. Let us establish three
boundary conditions at the film-substrate interface. The z-
axis displacement is continuous, that is, u.(z = h) = {. The
normal stress in the substrate at the interface determines the
normal stress in the film, o, (x,y):

o, (x,)

Ou, Ou, Ou, B ,
|: 0z ( 2ﬁ5) ( E)] z=h B pscl2

where p, is the density of the medium in the substrate and
B = ¢l /ci. There is no tangential stress:

Ouy,  Ou, .
o o, )|,

Using the Fourier expansions

=2 Nala)
C(rv t) = Z Cq exp(iqr + ;“qt)v (4)
q

2 ol

Xy = {xay}'

q) exp(igr + A,1),

o, =0,(rt) = ) exp(igr + 2,1),

the displacement vector in the substrate can be written as a
superposition of quasi-Rayleigh waves, which are a quasi-
static (zero frequency, w, = 0) analogue of a Rayleigh
dynamic surface wave [2]:

Uy, = IZ qx
zkl

Uy, = —i Z q; kQ(t) exp(igr — kyz + 2,41),
q

q

q) exp(igr — kiz + 2,41),

q) exp(igr — kiz + 2,41,
%)

= Z qQ(t) exp(igr — kyz + A,41).

q
Here, kfl:q2+iqz/cl,l, R(q) and Q(r) are Fourier
amplitudes.

Formulas (4) define a superpositional DD structure
composed of coupled two-dimensional (2D) surface DD
gratings of defect density and surface relief. Each DD
grating with a wave vector ¢ can be thought of as a
quasi-static Lamb wave with a wavelength A = 2n/¢, which
is maintained by a self-consistent point defect distribution.
Each quasi-Lamb wave ¢ is related to a quasi-Rayleigh wave
with the same wave vector ¢ from superposition (5).

Solving the boundary value problem in a Fourier
representation with the constraint /1(] /cl q> <1, we find

o1(q) = {,2q9(Ps — 1)p.ci. Using this relatlon in the equation
for {, taking into account that GZC /at = 0 in the adiabatic
approximation and calculating the integrals, we obtain a
linear relation between the bending coordinate and surface
defect density: {, (1) = >4 n4(q)N,(?), where the DD cou-
pling coefficient is given by

204(1 +v102q2)
o hg?[1 + g% 4+ 2(1 — fy)us/oygh]

na(q) = —

Here, we use the following expression for the shear
modulus: ,us = ps¢; . The characteristic scale parameter is
I = h(pfc /IZO'H) ) ~ h. For simplicity, in what follows we
will take into account the contribution of only one defect
species.

Fourier transforming Eqn (2) and using expressions for
{,4(), we obtain an equation for the Fourier amplitude of
surface defect density, N, = N4(q, f) with allowance for the
DD wave self-action effect:

aN 1
= ;L Ny+ Dgo—
o + Daoy-
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Here, /= L
is given by

= 0 in the nonlinear terms, and the growth rate

Ag = V4 + Dgoq”

(1+vigq*)(1 = ¢ + Lig*)
+1iq* +2(1 = B)us/ohg

where ¢ = Nyqo/ N, Ngg = Nyg(g = 0) is a control param-
eter, with N, = a)kgT/ V03 (critical defect density). Because
(7) contains a @ function [O(g. —q) =0 for ¢ > ¢. and
O(q. — q) = 1 for g < gq.], 4, is zero for the limiting bending
mode with ¢ = g, = n/h. When the defect density exceeds
the critical level (¢ > 1), the growth rate has a maximum at
A= Ay = 21/qy, = 2mh(prc”/120)'*[(Ngo /Nep)' > —1]7"2
in a long-wavelength region (L peak). At high values of the
control parameter ¢, a second, shorter wavelength max-
imum (S peak) emerges at A = A, = 2n/q. = 2h.

Figure 1 shows the bimodal growth rate of a DD
grating, A, = 2,(A4), where 4 = 2Tt/q, calculated by formula
(7) with 5—57 and h—05>< 10 cm, 0P7035, o=
6 x 10° erg cm DdO =10"% em? 57!, prc = 10 erg cm -3,
,uS:8><10'0 erg cm ‘,ﬂS—O.S, yd—DdR ,and R =5x
107% cm. The scale parameters, [/ = 7.489x 1077 cm and

Q(Qz? - Q) -1 ’ (7)
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Figure 1. Bimodal growth rate of a DD grating as a function of its
period. The growth rate was calculated by formula (7) with ¢ = 57 and
the values of the other parameters specified in text. The cutoff grating
period is A = 2h, which corresponds to the limiting bending mode with

q=gq.=mn/h

L =1.885x 107® cm, were calculated with fitting parame-
ters f; = 1 and f> = 3.4. At kg T = 0.05 ¢V and 04 = 10* eV,
the critical defect density is N, = 4 x 10'® cm™.

According to numerical simulations of the nonlinear
regime of the DD surface instability [3], three-wave inter-
actions of DD waves on an isotropic surface lead to the
formation and angular ordering of equilateral triangles
(triads) of DD grating wave vectors. The triads are formed
by wave vectors related to both the longer (L) and shorter
(S) wavelength peaks (Fig. 1). Similar triads are formed on a
(111) crystalline surface (see Ref. [1]). Each DD triad from
superposition (4) with a period A = 2rn/g and wave number
g within the S or L peak will be thought of as a 2D
hexagonal supercrystal whose regular sites are occupied by
nanoparticle nuclei (accumulations of interstitials), by
analogy with atoms that occupy regular lattice sites in a
crystal (Fig. 2). The surface concentration of ’supervacan-
cies’ (vacant sites), ng,, in a hexagonal supercrystal with a
lattice parameter A is given by a standard thermodynamic
formula. Therefore, the nanoparticle (nanodot) size distri-
bution function can be written in the form

ndot(/l) = o‘A_z - nsv(/l) = O‘A_z

X [1 - exp(_Esv(A)/kBT)] ~ OCA?Z(ESV(A)/]CBTL (8)
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Figure 2. (a) Spatial match between three DD gratings with wave vectors
91, 42 and g3 (Iq1| = |42 = g3/ = ¢) (triad) and (b) superpositional
hexagonal DD structure defined by cos g r + cosq,r + cosqsr: a 2D
supercrystal corresponding to a triad with a wave number ¢. The dark
areas are zones where interstitials (nanoparticle nuclei) are concentrated.

where Eg, is the binding energy of a nucleus in a regular
superlattice site (energy of supervacancy formation); oA ™2
is the surface density of cells in the superlattice; and « is a
proportionality coefficient which takes into account the
shape of a regular hexagonal cell. To find E,,, we use the
following expression for the DD interaction energy in a
bent layer of thickness /:

h
W= —J drj dz Ogng; (r,z)E(r, 2)
s o

h
~ s j Az Y 0ang, (2)E, (2),

0

where S is the surface area of the layer. The energy of
supervacancy formation on a regular site of a hexagonal
supercrystal (Fig. 2) with a period A4 = 2n/q then takes the
form

A2 A% v
Esv(‘]) = _3§SJ0 dz@dnd(q,z)ffq(z) = 7 o
1+ vigq?
.y No(q)I*-

T 127+ 201 - fo)pf (o, ah)]

Using this relation and (8), we find the size distribution
of nanoparticle nuclei:

h
ndot(q) T

NCr
1+vi3q?
L+ 1767 +2(1 = By)us/ (o)qh)]

where the spectral function of defect density fluctuations,
\Nd(q)|2, can be found by solving the steady-state
(ON,/0t = 0) equation (6) with the quadratic term (which
maintains a constant number of defects in the triad)
neglected:

X INa(g)|%, ©)

2yt O

N,
| “ Daoq? s

q

2
(1+vi2¢2)°

The nucleus size, A =2n/q, determines the nanoparticle

size in the laser-induced ensemble. Substituting (10) into (9),

we obtain the steady-state nanoparticle size distribution

function in the form

Ndot (q) =

[1+10q% +2(1 = B/ (o hg)\ [ 2,
C{ (1+vigq?) }<Dd0q2>, (n

where C = N/h04/20,4 and the growth rate Z, is given by
(7). The wave number ¢ is related to the nanoparticle size A
by ¢ =2n/A. Since 1, is bimodal at sufficiently high ¢
values (Fig. 1), the size distribution function (11) is also
bimodal at such ¢ values (Fig. 3). As shown by Antipov et
al. [1], the distribution function (11), shown in Fig. 3,
adequately represents the experimentally determined bimo-
dal size distribution for a nanoparticle ensemble produced
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Figure 3. Normalised bimodal nanoparticle size distribution function
calculated with the parameters used in growth rate calculation (Fig. 1).
For comparison with the experimentally determined normalised size
distribution in Ref. [1], C in (11) is treated as a normalisation factor and
is taken to be 5.

by cw laser irradiation of a PbTe semiconductor film
[1, Fig. 5].

In conclusion, note that this work is the first to examine
a bimodal growth rate of DD instability (Fig. 1), which
results in a bimodal nanoparticle size distribution function
(Fig. 3). This is due to the fact that the present layer bending
strain calculation &; [Eqn (1)] has gone beyond the com-
monly used Kirchhoff approximation [2]. In the Kirchhoff
approximation, only the first term on the right-hand side of
(1) is retained (! = L = 0). As a result, both the growth rate
(Fig. 1) and nanoparticle size distribution function (Fig. 3)
have only one, longer wavelength (L) maximum.
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