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Abstract.  A model of acousto-optic interaction is developed for 
describing two-phonon Bragg diffraction in a gyrotropic single 
TeO2 crystal, which makes allowance for ellipticity of crystal opti-
cal eigenwaves. Formation of a two-dimensional edge of an image 
in the first diffraction order is explained by invoking a three-dimen-
sional description for the wave surfaces of optical eigenwaves.

Keywords: acousto-optic diffraction, Bragg regime, image edge 
enhancement.

1. Introduction

One important problem in optical information processing is 
edge enhancement of an optical image (see, for example, [1]). 
On the one hand, this procedure considerably reduces infor-
mation arrays to be processed and, on the other hand, it pre-
serves such important object characteristics as its shape and 
dimensions.

Acousto-optic (AO) interaction efficiently helps solving 
the problem. AO diffraction is used for enhancing both one-
dimensional [2, 3] and two-dimensional edges of an optical 
image [4 – 6]. The latter case is more attractive because it 
directly solves the problem of obtaining the whole edge.

In [7], we for the first time investigated experimentally 
two-dimensional edge enhancement for an optical image by 
employing two-phonon Bragg diffraction with formation of 
the edge in the first diffraction order. In [7], the effect obtained 
was only qualitatively explained. 

Here, we develop a model, which makes allowance for 
ellipticity of optical eigenwaves propagating along a TeO2 
crystal near its optical axis. This approach along with a three-
dimensional consideration of the wave-vector surfaces explains 
formation of a two-dimensional edge in the first diffraction 
order. 

2. Theory

In some works, the models of AO diffraction were developed 
with allowance made for the ellipticity of eigenwaves propa-
gating in a TeO2 crystal (see, for example, [8 – 10]). However, 
these papers considered one-dimensional light diffraction on 

an ultrasonic wave; in the strict sense, results of such consid-
eration are inapplicable to processing two-dimensional 
images. In our approach, we consider two-dimensional dif-
fraction taking into account a spatial curvature of a wave-
vector surface. This helps explaining the effects observed.

The diffracted fields will be calculated starting from the 
wave equation for a dielectric crystal:
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where E and D  are the vectors of the electric field and induc-
tion in the crystal; c is the speed of light in vacuum. The 
expression for a component of the dielectric tensor eik enter-
ing into the material equation D Ei ik ke= , where Di and Ek are 
the components of vectors D and E, respectively, is written 
in the form (see, for example, [11])

ie G p uik ik ikl l il km lmnj nj
0 0 0e e e e= + - .	 (2)

Here, ik
0e  are the components of unperturbed dielectric func-

tion; Gl are the components of an axial gyration vector; eikl is 
the Levi – Civita symbol; plmnj are the components of a pho-
toelasicity tensor; unj are the components of a crystal strain 
tensor related to the ultrasonic wave (the additives to the 
dielectric function due to gyrotropy and photoelasticity are 
assumed small).

The components of the gyration vector may be expressed 
in terms of components of gyration pseudo-tensor Gij: Gi = 
Gij sj, where sj are the components of a unit vector s of a plane 
wave propagating in parallel with the wave vector k (k = ks). 
Further calculations will refer to a uniaxial crystal of tellu-
rium dioxide (TeO2), which has a point symmetry group 422. 
In the basic system of coordinates of paratellurite we have  
xx yy
0 0

1e e e= = , zz
0

3e e= , G G Gxx yy 11= =  and G Gzz 33= . We 
assume that an electromagnetic wave propagates across the 
crystal at sufficiently small angles with respect to the optical 
axes, in which case the effect of gyrotropy is important.

Calculation of AO interaction [solving wave equation (1)] 
is simpler if one uses the coupled-mode approach with slowly 
varying wave amplitudes. Without an ultrasonic wave, a solu-
tion for the electric induction vector D(r) for every propaga-
tion direction s is given by a linear combination of two ortho-
normal elliptically polarised eigenmodes:

( ) ( ) ( )exp expi iB k B kD r b sr b sr1 1 1 2 2 2= + ,	 (3)

where B1 and B2 are the constants responsible for the contri-
butions of each mode into the induction:

Two-dimensional image edge enhancement 						    
by two-phonon Bragg diffraction

V.M. Kotov, G.N. Shkerdin, A.N. Bulyuk

V.M. Kotov, G.N. Shkerdin, A.N. Bulyuk V.A. Kotelnikov Institute of 
Radio Engineering and Electronics, Fryazino Branch, Russian 
Academy of Sciences, pl. Acad. Vvedenskogo 1, 141190 Fryazino, 
Moscow region, Russia; e-mail: vmk277@ire216.msk.su 
	
Received 15 June 2011; revision received 20 September 2011	
Kvantovaya Elektronika  41 (12) 1109 – 1113 (2011)	
Translated by N.A. Raspopov

OPTICAL DATA PROCESSING PACS numbers: 42.25.Fx; 42.30.Wb; 42.79.Jq 
DOI: 10.1070/QE2011v041n12ABEH014673



	 V.M. Kotov, G.N. Shkerdin, A.N. Bulyuk1110

1
1 2

1 2
b

e e

r
=

+

ri+ ;      
1

2 2
2 1

b
e e

r
=

+

r+ i ;

e1 and e2 are the unit vectors directed along main axis of a 
central cross section of the crystal indicatrix by a wave-front 
plane, which is determined by vector s (vector e1 is directed 
along the short axis of the ellips); r is the ellipticity of eigen-
mode polarisation, i.e., the ratio of short to long axis lengths 
for the polarisation ellipse;  k1 and k2  are the absolute values 
of the wave vectors for eigenwaves. Ellipticity r and the abso-
lute values k1 and k2 of the wave vectors are given by known 
relationships [11 – 13]. A similar to (3) expression holds for the 
electric field vector E(r) where the ellipticity of eigenmodes in 
the plane of the wave front coincides with ellipticity r in 
expression (3); however, there is a small longitudinal field 
component.

Assume that the slow transverse sonic wave propagates in 
the [110] direction and causes mechanical deformations of 
matter perpendicular to both the crystal optical axis and 
direction of wave propagation. We may transfer from the 
basic system of coordinates [100], [010], [001] to the system of 
coordinates xyz with the axis x||[ ]110r , y | | [110] and  z | | [001]. 
In this case, AO interaction is described by a single photoelas-
tic constant p66 = (p11 – p22)/2, where p11,  p22 are the compo-
nents of photoelastic tensor in double-index notation. 
Consider double AO interaction describing zero and second 
diffraction orders by the solution branches with the greater 
refraction factor; then, with neglected gyrotropy, the optical 
radiation will be represented by extraordinary rays. The first 
diffraction order we will describe by the solution branch with 
the smaller refraction factor, in which case radiation may be 
presented as ordinary rays. The expressions for the electric 
fields in the diffraction orders Emi (r) are written in the form

( ) ( ) [ ( ) ]exp i i i iV z k k x k mq y tE rmi mi mi mz x y m0 0b w= + + + - ,(4)

where m = 0, 1, 2 is the diffraction order number; i is the mode 
number (i = 1 corresponds to the slower mode, i = 2 corre-
sponds to the faster mode);  k0x and k0y are the wave vector 
projections for the incident electromagnetic wave onto the 
axis x and y; kmz is the z-component of the wave vector for the 
corresponding eigenmode described by the vector bmi; wm = w 
+ mW ; w and W are the angular frequencies for the electro-
magnetic and ultrasonic waves, respectively. 

If there is an ultrasonic wave, the amplitudes of eigen-
modes satisfying Bragg synchronism conditions are slow 
functions of coordinates. By neglecting the longitudinal com-
ponents of the electric field, we may derive a system of reduced 
equations for the amplitudes issuing from the orthogonality 
of eigenmodes in the wave-front plane (see, for example, [12]). 
The resulting system of equations for the slow electric field 
amplitudes in diffraction orders Vmi (z) has the form:
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1 2 1 2 0g eD=  are the coupling constants;  
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2
66e eD =- eA ij- ; 2 1e eD D= *; A and q are the ampli-

tude and absolute value of the ultrasound wave vector; j is 
the phase of the ultrasound wave; ( )f d d bx y1 1 1 1= + u  and 

( )f d d b *x y2 2 2 1= + u  are the coefficients describing influence of 
eigenwave ellipticity on the diffraction process:
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vector e10 denotes vector e1 for the zero diffraction order, e11 
refers to the first order diffraction; vectors e20, e21, etc., are 
similarly defined; e10y is the projection of vector e10 onto the y, 
axes, e10x  – onto the x axes and so on; r0, r1, r2 are the ellip-
ticities of eigenmodes for zero, first, and second orders, 
respectively.

Expressions for f 1,2 are rather cumbersome even at small 
angles between the radiation propagation direction and crys-
tal optical axes. They are noticeably simpler in the following 
two limiting cases: at k0x = 0, i.e., when the electromagnetic 
wave propagates in the plane x = 0, in which the optical axes 
and the wave vector of the ultrasound wave reside; and when 
we neglect the small incident angles and their influence is only 
taken into account in the calculation of eigenmode ellipticity. 
In the case of k0x = 0 (the interacting optical rays lie in the 
plane x = 0) the expression for f1,2 takes the form
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where b0,1,2 are the angles between the optical axes and the 
rays, diffracted into zero, first, and second orders [9].

By neglecting small incident angles and taking into 
account the fact that the electromagnetic wave may propa-
gate in an arbitrary plane we may write the expression for f1,2 
in the form
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where q0,1,2 are the angles between the vector e1 and x axes for 
the radiation diffracted into zero, first, and second orders. 
Note that these angles, generally speaking, are not negligible 
even at small incident angles. For example, for the first dif-
fraction order, by denoting the angle between the projection 
of vector k0 onto plane y = 0 and z axes as j0, and the angle 
between vector k0 and its projection onto the plane y = 0 as 
j01 we arrive at q0 = – arctan(sinj0 /tanj01), which entails  q0 = 
0 at j0 = 0, at an arbitrary angle j01 (except for j01 = 0). In 
this case, we have k0x = 0. Next, at  j01 = 0 we have q0 = ±p/2 
at arbitrary angle j0 (except for j0 = 0). Here we have k0y = 0. 
From (9) follows
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and in the case where the polarisation of eigenmodes is almost 
circular, we obtain
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Expressions for the coupling constants g1,2 may be written 
in the form g1,2 = [n/(2L)] f1,2, where n is the Raman – Nath 
parameter and L is the length of AO interaction. For linear 
and circular polarisations we obtain f1,2 = 1, and Eqns (5) – (7) 
transfer to well known expressions (see, for example, [10, 14]).

Note that system of equations (5) – (7) describes an exper-
imental situation where the intensities of the radiation dif-
fracted into different orders, determined by the functions 
|Vmi (z)|2 are measured.

Using the expressions obtained we performed numerical 
calculations taking into account the two-dimensional charac-
ter of AO diffraction near the optical axes of a TeO2 crystal. 
Three-dimensional wave surfaces of light waves were 
described by the expressions used in [7]. The parameters for a 
single TeO2 crystal were taken from [15, 16]. By solving 
(5) – (7) in a standard way (see, for example, [17]) we obtain 
normalised electric field amplitudes V01, V12 and V11 for the 
radiation diffracted into zero, first, and second orders, respec-
tively. For f1,2 we used expression (9).

Figure 1 shows a calculated two-dimensional transfer 
function for the first diffraction order under the assumption 
that it coincides with the distribution |V12|. It was assumed 
that optical radiation at the wavelength of 0.63 mm diffracts 
on the slow acoustic wave (which propagates in a TeO2 crystal 
at the velocity of 0.617 ́  105 cm s–1) with the frequency close 
to that of two-phonon resonance. The angular dimensions in 
Fig. 1 correspond to ~2° ́  2°. The Raman – Nath parameter v 
was taken equal to ~4 2 p , which corresponded to the 
acoustic power in our experiment. The length of AO interac-
tion was L = 6 mm. The image in Fig. 1 is a set of elliptical 
fringes, which result from the interference of first order dif-
fraction rays with the rays diffracted to the first order from 
zero and second orders. Domains with substantial anomalies 

are seen in the fringe image. The fringes in the domains are 
strongly distorted and their distribution becomes actually 
two-dimensional. One such domain is marked by a square 
and is separately presented in Fig. 2, its angular dimension is 
~ 0.5° ́  0.5°. If the whole domain is used as a mask for optical 
Fourier processing of images then it will present a two-dimen-
sional spatial low-cut filter.

Note that the elliptical character of optical rays taken into 
account substantially affects the characteristics of the transfer 
functions. For comparison, in Fig. 3 the same transfer func-
tion is shown as in Fig. 2; however, in the approximation of 
strongly circular polarisations of optical rays. One can see 
that the two-dimensional character of the transfer function 
vanishes, the curves become straighten, which prevents 
obtaining a two-dimensional edge of the image. In other lim-

Figure 1.  Transfer function for the first diffraction order |V12| formed 
as the result of two-phonon Bragg diffraction. Dark regions correspond 
to minimum field distribution and light regions correspond to maxi-
mum distribution.

Figure 2.  Domain of transfer function selected in Fig. 1.

Figure 3.  Transfer function formed by rays with circular polarisations.
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iting case with linear polarisations of the optical rays, the 
transfer function is a set of weakly bent curves (Fig. 4). In the 
middle of Fig. 4, one can see anomalies in the curve behavior; 
however, the two-dimensional character is not observed. We 
also failed to obtain a two-dimensional edge. In Fig. 5, 
numerical results of Fourier processing are presented for 
images of a rectangular and circle with employment of the 
transfer function |V12| (see Fig. 2). One can see that in the both 
cases sufficiently clear two-dimensional edges are formed. 
Hence, generally, the mask presented by the distribution 
from Fig. 2 can be used as a two-dimensional spatial low-cut 
filter despite its sufficiently large inhomogeneity. As was men-
tioned, the masks obtained with neglected ellipticity of light 
wave polarisation (see Figs 3 and 4) cannot enhance a two-
dimensional edge. 

3. Experiment and discussion of results

Some experiments concerning formation of a two-dimen-
sional edge for an optical image were described in [7]. In the 
present work, some additional experiments have been per-
formed. Edge enhancement by two-phonon Bragg diffraction 
is specific in that it is necessary to choose the mask position in 
the angular space. Indeed, one can see in Fig. 1 that the mask 
domain shifts from the position of exact Bragg synchronism 

(image centre) in both horizontal and vertical angular direc-
tions. Actually, it is necessary to detune from the exact Bragg 
synchronism angle in both the diffraction plane and orthogo-
nal plane. The experimental setup sufficiently well described 
in [7] was taken as a basis. The initial image was either a rect-
angular hole of the size 1´1.5 mm or a circular hole 1.0 mm in 
diameter. The holes were illuminated from one side by wide 
radiation of a He – Ne laser (l = 0.63 mm), which then passed 
to an input lens. Behind the lens, an AO cell made of TeO2 
was placed and then there was a second lens. The focal dis-
tances of both the lenses were 16 cm. Results of optical 
Fourier processing were observed on a screen placed behind 
the second lens. The voltage applied to a piezoelectric trans-
ducer was 5.0 V, and the frequency of an ultrasound wave was 
35.5 MHz. By angular adjustment in the diffraction plane and 
in the orthogonal plane we obtained a two-dimensional edge 
of the image in the first order.

Figure 6 shows photographs of screen images. One can see 
that a clear two-dimensional edge is formed in the first dif-
fraction order. In other words, the experiment confirms that 
two-phonon AO diffraction makes it possible to enhance a 
two-dimensional edge of an image in the first diffraction 
order in accordance with the theoretical conclusions.

4. Conclusions

From the above consideration we may conclude:
(i) The theory of two-phonon Bragg AO diffraction is 

developed, which takes into account both the surface curva-
ture of eigenwaves and ellipticity of polarisation for propa-
gating rays.

(ii) It is shown that the theory developed is capable of 
explaining formation of two-dimensional edge for an optical 
image in the first diffraction order in the course of two-pho-
non diffraction in TeO2, whereas a model neglecting ellipticity 
of eigenwaves cannot explain the effect.

(iii) Experiments on forming image edges for rectangular 
and circular holes well agree with the numerical results 
obtained by Fourier processing of those images.
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Figure 4.  Transfer function formed by rays with linear polarisations.
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Figure 5.  Results of computer Fourier processing for rectangular and 
circular hole images with the transfer function shown in Fig. 2.
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mental Fourier processing. Right images correspond to the zero diffrac-
tion order and left images correspond to the first diffraction order.
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