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Abstract.  Using the eikonal approximation, we have calculated 
effective collision frequencies in density-matrix kinetic equations 
describing nonlinear effects in the wings of spectral lines. We have 
established the relation between the probabilities of absorption and 
stimulated emission and the characteristics of the radiation and 
elementary scattering event. The example of the power interaction 
potential shows that quantum mechanical calculation of the colli-
sion frequencies in the eikonal approximation and previously known 
spectral line wing theory give similar results for the probability of 
radiation absorption.

Keywords: density matrix, kinetic equations, collisions, spectral 
line wing, Einstein coefficients, population inversion, lasing. 

1. Introduction 

Until recently, because of equal probabilities of absorption 
and stimulated emission, cw laser radiation was thought to be 
only capable of equalising the populations of levels in a two-
level system and not producing population inversion. 
However, as it turned out, under certain conditions this 
ingrained idea is not true. Papers [1 – 10] show that in the pres-
ence of frequent collisions with buffer particles (thermostat), 
the probabilities of absorption and stimulated emission are 
not equal to each other in the wing of the absorption line of 
active gas particles. It was found that spectral densities of the 
Einstein coefficients for absorption [b12(W )] and stimulated 
emission [b21(W )] are related by expression [7, 8] 

b21(W ) = b12(W )exp[–ћW /(kBT )],	 (1)

where W = w – w21 is the detuning of the radiation frequency 
w from the frequency w21 of transition between the levels |2ñ 
and |1ñ; ћ is Planck’s constant; kB is the Boltzmann constant; 
T is the temperature. Equation (1) remains valid at any sign of 
W. When ћ|W | % kBT, canonical equality for the probabilities 
of absorption and stimulated emission follows from (1). 

In accordance with (1), it is possible to establish the popu-
lation inversion in a two-level system with nonresonant 
absorption of cw radiation and, as a result, to obtain lasing at 
the resonant frequency. In [6, 8 – 10], this effect was registered 

experimentally – lasing was observed in the regime of super-
radiance (per single pass of the active medium) at the reso-
nance transition of sodium atoms when pump radiation is 
absorbed in the ‘blue’ wing of the line. Lasing occurs only in 
the presence of a buffer gas at a high enough pressure (above 
200 Torr).

The observed effect cannot be extensively described by the 
presently used quantum kinetic equations for the density 
matrix (see, for example, [11, 12]). These equations yield nei-
ther relation (1) nor suggest the possibility of population 
inversion in a two-level system under nonresonant optical 
excitation. In our recent paper [13] we have derived quantum 
kinetic equations for the density matrix of two-level particles 
with collision integrals describing nonlinear effects in the 
wings of spectral lines. From these equations it transpires that 
spectral densities of the Einstein coefficients are not equal for 
absorption and stimulated emission of radiation by a two-
level quantum system in the far wing of the spectral line under 
conditions of frequent collisions. We have also established the 
relation between the collision frequencies entering into these 
equations and the characteristics of the radiation and elemen-
tary scattering event. In this case, the problem of calculation 
is reduced to the standard problem of calculation of collision 
frequencies at a known interaction potential of colliding par-
ticles. In [13], calculation of collision frequencies was beyond 
the scope of the analysis undertaken and not performed. This 
paper fills this gap and is devoted to calculation of collision 
frequencies in density-matrix kinetic equations obtained in 
[13] and describing nonlinear effects in the wings of spectral 
lines. 

2. Formulation of the problem 

Kinetic equations for the density matrix, defined in the basis 
of unperturbed atomic states, were obtained in [13] in the fol-
lowing formulation of the problem. We considered the gas 
absorbing radiation of two-level particles (with the ground 
level |1ñ and excited level |2ñ), being mixed with the buffer gas. 
Collisions between the absorbing particles were neglected 
because the concentration of the buffer gas, Nb, was assumed 
much higher than the concentration of the absorbing gas, N. 
We believed that in collisions the internal states of two-level 
particles do not change (elastic collisions). Absorbing parti-
cles are affected by a monochromatic field E = ReE exp(–iwt) 
with the frequency w, close to the frequency w21 of the transi-
tion 2ñ  – |1ñ between levels (here, E is the electric field strength). 
We considered the case of homogeneous broadening of the 
absorption line when the Doppler width is small compared 
with the impact width (the case of a sufficiently high buffer 
gas pressure). We assumed that detuning W = w – w21  of the 
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emission frequency from resonance is small compared with 
the transition frequency, |W | %  w21 (resonance approxima-
tion, or rotating-wave approximation), but at the same time is 
large compared with the impact half-width of the absorption 
line G, 

|W | & G.	 (2) 

In deriving kinetic equations for the density matrix [13], 
our main task was to find collision integrals, describing the 
change in density matrix elements due to elastic collisions 
with buffer gas particles in the region of radiation frequency 
detunings, strongly exceeding the impact half-width of the 
absorption lines [see condition (2)] when the radiative transi-
tions occur in the collision event, and not on the free path (the 
so-called optical collisions [14 – 16]). The collision problem 
was solved using representations about ‘interacting atom + 
field’ compound systems (an atom ‘dressed’ by the field) 
[16, 17] as an independent physical object, which can be 
treated in the same way as an ordinary particle. This approach 
naturally takes into account the role of the radiation field in 
the events of collisions of a ‘dressed’ atom with buffer par-
ticles. 

Collisional relaxation considered in [13] allowed us to 
reduce the problem to an effective two-level model of ‘dressed’ 
atoms (with two levels | j1(n)ñ and | j2(n)ñ, Fig. 1). These levels 
are characterised by wave functions [16, 17] 

| j1(n)ñ = b1|1ñ|nñ + b2|2ñ|n – 1ñ,	 (3)

| j2(n)ñ = b*
2  |1ñ|nñ – b1|2ñ|n – 1ñ,

where b1,  b2 are the expansion coefficients of the compound-
system functions in wave functions of an atom (states |1ñ, |2ñ) 
and a field (states |nñ, n is the number of photons in a laser 
field) that do not interact: 

;
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d21 is the matrix element of the dipole moment of transition 
|2ñ - |1ñ. Strictly speaking, the coefficients b1 and b2 depend on 

n. However, we neglected their variation as a function of n, 
assuming that in the quantum-mechanical state of the laser 
field, the uncertainty of the number of photons Dn is much 
smaller than the average number of photons n , which is con-
sidered large: 

, 1.n n n% &D 	 (5) 

Energies Ei (n) (i = 1, 2) related by the expression 

E2(n) = E1(n) + ћWR	 (6)

correspond to states | ji (n)ñ of a ‘dressed’ atom. According to 
(6), the state | j2 (n)ñ of a ‘dressed’ atom is located above the 
state | j1 (n)ñ by the value of generalised Rabi frequency WR (in 
the frequency scale) (Fig. 1). Between levels | j1 (n)ñ and 
| j2 (n)ñ there occur collisional transitions at frequencies v12 
and v21 (these transitions are shown in Fig. 1 by curved 
arrows), and the relaxation of low-frequency coherence 
between states | j2 (n)ñ and | j1 (n)ñ is characterised by the fre-
quency v. Change in frequencies with variation in n, taking 
condition (5) into account, can be neglected. It is the collision 
frequencies (v12, v21, and v) that enter into final density-matrix 
kinetic equations describing nonlinear effects in the wings of 
spectral lines [13]. 

For an effective two-level model of ‘dressed’ atoms 
(Fig. 1), use can be made of known expressions for the colli-
sion integrals [12, 18], obtained under the impact approxima-
tion (this approximation means that the time of collisions is 
much smaller than the time of the free path). Assuming that 
the active and buffer particles have an equilibrium 
(Maxwellian) velocity distribution for the collision frequen-
cies v12, v21, we obtain, from the formulas given in [12, 18], the 
expressions describing them in terms of characteristics of the 
elementary scattering event (through the scattering ampli-
tudes) [13]: 
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where u and u1 are the relative velocities of the colliding par-
ticles before and after collision; m is the reduced mass of the 
colliding particles; d(x) is the delta function; fji (u1| u) is the 
amplitudes of scattering of a ‘dressed’ atom from a structure-
less buffer particle; subscripts i and j (i, j  =  1, 2) denote, 
respectively, the set of quantum numbers of initial and final 
states of a ‘dressed’ atom [1 corresponds to the state | j1 (n)ñ 
with energy E1(n), and 2 – to the state | j2 (n)ñ with energy 
E2(n), see Fig. 1]. 

To calculate scattering amplitudes in formula (7), we need 
to know the matrix elements Wij of the interaction operator of 
colliding particles Ut  in the basis of ‘dressed’ states: 

Wij =  á ji (n) |Ut | jj (n)ñ,    i, j = 1, 2.	 (8) 

|j2(n)ñ

|j1(n)ñ

v12 v21WR

Figure 1.  Effective two-level model of ‘dressed’ atoms for a collisional 
problem. Collisional transitions with frequencies v12 and v21 occur be-
tween the levels | j1(n)ñ and |j2(n)ñ. 
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The matrix elements W11 and W22  of the interaction oper-
ator Ut  characterise the collisional shifts of levels | j1 (n)ñ and 
| j2 (n)ñ of the compound system and the matrix elements W12 
and W21 characterise the collisional transitions between levels 
| j1 (n)ñ and | j2 (n)ñ of the system. 

Taking into account relations (3), we obtain for the matrix 
elements Wij the expressions describing them in terms of 
matrix elements Uii of the interaction operator in the basis of 
the unperturbed states of the atom (we assume that there are 
no collisional transitions between the levels of active particle 
and so U12 = U21 = 0) [6, 14, 16]: 
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The matrix elements Uii characterise the shifts of levels | i ñ of 
the active particles due to collisions. Note that the matrix ele-
ments Wij contain both the parameters of the initial interac-
tion potential of the colliding particles and the parameters of 
radiation. This means that radiation quantum participates in 
the collision event. In the basis of the unperturbed states of 
the atom, collisions do not lead to transitions between states 
|1ñ and |2ñ (U12 = 0) and, in this sense, they are ‘elastic’. The 
nonzero intensity (G ¹ 0) gives rise to collisional transitions 
between levels | j1 (n)ñ and | j2 (n)ñ of a ‘dressed’ atom (W12 ¹ 0), 
i.e., the collisions are accompanied by the emergence of an 
inelastic channel with energy gap ћWR. There also occurs a 
change in the elastic scattering channel. 

For the collisional transition frequencies v12 and v21, using 
the reciprocity theorem for the amplitudes of the forward and 
reverse processes [12, 19] we easily obtain from expressions 
(7) the relation 

v
expv k TB

R

21

12 'W
= -c m,	 (10)

reflecting the principle of detailed equilibrium (see, for exam-
ple, [20]).

The resulting kinetic equations for the density matrix in 
the unperturbed atomic basis, which describe nonlinear 
effects in the wings of the spectral lines, are rather compli-
cated [13] and we do not present them here. For a not-too-
high intensity, such that 

|G| %   |W |,	 (11) 

kinetic equations for the density matrix are simplified and 
reduced to the balance equations for level populations [13]: 
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Here,  rii is the population of level |iñ (i = 1, 2); A is the rate of 
spontaneous decay of excited level |2ñ. Populations of the lev-
els are related with the concentration N of absorbing particles 
by the expression (normalisation condition) 

r11 + r22 = N.	 (13) 

When the intensity (11) is not too high, for the collision 
frequencies v12 and v21 we can set 

WR = |W |	 (14) 

in relation (10). Then, balanced equation (12) takes  the form 

d
d
t

A 22r+c m

	
[ | | / ] , ,

[ | | / ] , .
exp

exp
v k T
v k T

0
0

>

<
B

B

21 11 22

21 11 22

'

'

r r
r r

W W
W W

=
- -

- -

^
^

h
h

"
") ,

, 	 (15)

In this equation the unknown quantity is the collision fre-
quency v21.The remaining quantities are either well known 
(rate A of spontaneous decay of the excited level), or given by 
experimental conditions (frequency detuning W, temperature 
T ). We will calculate below the collision frequency v21 enter-
ing into equation (15). 

3. Calculation of the collision frequency v21
in the eikonal approximation 

Calculation of the collision frequency v21 by (7) is actually 
reduced to calculation of scattering amplitude f12(u1| u). Its 
calculation is in general a complicated problem and time con-
suming computations require the use of various approximate 
methods. In the case of scattering of fast particles, the eikonal 
approximation is applicable [12, 19]. In this approximation,  
the expression [12, 18] 
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is valid for the scattering amplitude f12(u1| u) where the func-
tion S12( r) (the vector  r is the projection of the radius vector 
r, connecting the colliding particles, onto the plane that is per-
pendicular to the velocity u; r is usually interpreted as the vec-
tor of the impact parameter) is determined from the system of 
equations 
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As noted above, the eikonal approximation [formulas 
(16), (17)] is applicable in the case of scattering of fast parti-
cles when the de Broglie wavelength of the colliding particles 
is much shorter than the characteristic radius of interaction 
rW and the matrix elements of the interaction operator Wij are 
considerably smaller than the kinetic energies of the colliding 
particles [12, 19]: 

, | |u W
u
2W ij

2
' % %m r

m
.	 (18)

In addition, the energy transmitted in collisions should be 
relatively small [19], which means the fulfilment of the con
dition 
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u
2R

2
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m
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For further calculations, equations (17) can be conve-
niently considered in the coordinate system with the axis z, 
which coincides with the direction of free motion (along the 
vector ut ); in this case, the vector r lies in the xy plane and the 
vector r is represented as two components: r = r + utz. 
Interaction between the particles is assumed central, and the 
matrix elements Wij in this case depend only on the distance 
r = ( r2 +z2)1/2  between the colliding particles. In this coordi-
nate system, equations (17) take the form: 
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One can see from expressions (9) that for a not-too-high 
intensity (11), we can set 
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so that the condition 

|W12|, |W21| %  |W11|, |W22|	 (22) 

is fulfilled. 
This allows one to search for the solution of equations 

(20) in the form 

,S S S( ) ( )
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0 1
= + 	 (23) 

where S ( )ij
0  is the solution of equations (20) at W12 = W21 = 0, 

and the small corrections S ( )ij
1  are caused by the matrix ele-

ments W12 and W21. Due to the fact that W12 = 0, collisional 
transitions between levels of a ‘dressed’ atom are absent, we 
should assume S ( )

12
0   = 0. Therefore, S12 = S
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1 . From (20) with 

(22) and (23) taken into account, for the quantity S ( )
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1  we have 
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Solving this linear inhomogeneous differential equation, for 
S12 = S12(1) we obtain the expression: 
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We calculate the integral in (25) by the method of station-
ary phase. Contribution into the integral is made by the vicin-
ity of points at which the function g( r, z) is stationary, i.e., 

where the derivative ¶g/ ¶z = 0. Phase g( r, z) is stationary at 
two points: z r,1 2 0

2 2! r= -  to which the distance r0 between 
the colliding particles corresponds. The value of r0 corre-
sponds to the point of intersection of the compound-system 
terms and is determined from the equation 

W11(r0) – W22(r0) = ћWR,	 (27) 

which follows from the equation ¶g/ ¶z = 0 under conditions 
(11), (18), (19) and an additional condition 
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which denotes not very close coincidence between the interac-
tion potentials of buffer particles and atoms in the ground 
and excited states. Calculation of the integral in (25) by the 
method of stationary phase gives 
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where the quantity 
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characterises the difference between the slopes of the com-
pound-system terms at the point of intersection; functions  
d1,2( r) are determined by the expression [upper and lower 
signs refer to the d1( r) and d2( r), respectively] 
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a1,2 = ±p/4 at ¶ ¶/ 0.g z z,
2

1 2
2 U^ h  Hereafter, in calculations in 

view of conditions (11), (19), we set u1 = u andWR = |W |.
Consider now formula (16) for the scattering amplitude 
f12(u1| u). In the same coordinate system where equations (20) 
are written, it takes the form (we assume that the vector u1t  lies 
in the xz plane and u1 = u): 
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where q is the scattering angle (cos q = u1t ut ). Using the inte-
gral representation for the zero-order Bessel functions of the 
first kind J0(x) (see, for example, [21]), we find that in (32) the 
integral over j is equal to 2pJ0(qr). In the case of scattering at 
angles corresponding to the laws of classical mechanics (with 
q &   qd, where qd ~ ћ/(murW) is the angle of quantum mechani-
cal diffraction), we can assume qr &   1. This condition makes 
it possible to use the asymptotic expansion [21] 

2
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In view of (29) and (33), formula (32) takes the form 
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Calculating the integral J ( )k
!  in expression (34) by the method 

of stationary phase [expansion of phase ( )
kj
! (r) to the qua-

dratic term], we obtain 
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stationary phase are found from the equation 
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To calculate the collision frequency v21 from (7), this 
expression should include the scattering amplitude (34) with 
the quantities J ( )k

!  from (35). At the same time, because of the 
phase difference of the quantities J ( )k

!  in the integrand for v21, 
we can neglect oscillating cross-terms appearing in the square 
of modulus of the sum of the quantities J ( )k

! . With this in 
mind, for the collision frequency v21 we obtain the expression: 
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Equation (37) allows a simplification and for the further 
calculations it is convenient to represent it in the form 

v21 = QKoc ,	 (39) 

where 
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has the dimension of the collision frequency, and Q is a 
dimensionless quantity defined by the expression 
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The value of Koc  was introduced in [16] (we preserve the nota-
tion used in [16]) and is defined as ‘the number of optical col-
lisional transitions per unit volume and time,’ calculated in 
the quasi-classical approximation. In fact, it is analogous to 
the collision frequency v21, calculated in the quasi-classical 
approximation. Thus, the dimensionless parameter Q charac-
terises the degree of coincidence of quantum mechanical (v21) 
and quasi-classical (Koc) calculations of the frequency of opti-
cal collisions (calculations coincide at Q = 1). 

For further calculations, it is necessary to set the specific 
form of matrix elements Uii (r). Below, we consider the case of 
the power potential of interaction of the colliding particles.

4. Power potential of interaction 

In the case of a power potential of interaction, the matrix ele-
ments Uii (r) have the form 

r
, 1,2.U r c iii l
i= =^ h 	 (42)

We believe that for the atoms in the ground (i = 1) and excited 
(i = 2) states, the exponent l is the same, and the coupling 
constants c1 and c2 are different. For definiteness, we assume 
in calculations below that l is an even number, and c2  > c1. 

Calculation of the dimensionless quantity Q by formula 
(41) with account for (42) leads to the expression: 
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Here, the dimensionless points of stationary phase xk
!^ h  are 

found from equation (36), which, for the power potential of 
interaction (42), takes the form 
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where G (x) is the gamma function. In this equation, signs ‘+’ 
and ‘–’ before the parameter a correspond to points  x1

!^ h  and 
x2

!^ h  , the sign ‘±’ before the parameter e0 corresponds to the 
sign ‘±’ in x1

!^ h  [+a, ± e0 correspond to point x2
!^ h  and -a, ± e0 
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– to point x2
!^ h]. It follows from the analysis of (44) that when 

c2 > c1 > 0, there are only two points of stationary phase –  
x1

-^ h  and x2
-^ h. In this case, formula (43) has only two integrals 

– Q1
-^ h  and Q2

-^ h, because the integrals Q1
+^ h  and Q2

+^ h  are 
absent. 

The integral Q2
-^ h, when calculated by formula (43), 

diverges because the denominator of g2
-^ h  vanishes for some 

values of the scattering angle q and the dimensionless velocity 
x. This feature is due the fact that in (35) for J2

-^ h  at these 
points, the value of /d d2

2 2
2d r r-^ ^ hh  vanishes. This means that 

the integral J2
-^ h) (34) at these points should be calculated 

using the equation that is different from (35). Namely, in cal-
culating the integral J2

-^ h  by the method of stationary phase, 
the phase itself in the vicinity of a stationary point should be 
expanded in a Taylor series up to cubic term [as opposed to 
the quadratic term when formula (35) is derived). By calculat-
ing the integral J2

-^ h in (34) by the method of stationary phase, 
expanding phase 2j r- ^^ hh  up to cubic term (the quadratic term 
in this expansion is neglected because of its smallness near the 
critical points), we obtain 
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where the point 2r
-^ h  of the stationary phase is still given by 

(36). Substitution of (35) by (45) means that at critical points  
q, x, the function g2

-^ h (43) should be replaced by the function  
g N2

-^ h, determined from the expression 
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In the numerical calculation of the integral Q2
-^ h, we replace 

the function g2
-^ h  by the function g N2

-^ honly if the condition  
g2

-^ h  > g N2
-^ h  is met. 

Figure 2 shows the results of numerical calculations of 
Q = v21/Koc  by (43) (44), (46), depending on the ratio of the 
coupling constants of interaction c1/c2 at different l for the 
power potential of interaction and at different e0, which is 
equal to the ratio of thermal energy of the colliding particles 
to the characteristic value of the interaction potential. 
Numerical analysis shows that the ratio v21/Koc is insensitive 
to the value of the parameter k0, and, therefore, the calcula-
tions were performed for only one value k0 = 45, characteris-
tic of, for example, the Na + He system at T = 580 K and r0 = 
5 ´ 10–8 cm. The values of e0 were chosen big enough in order 
to satisfy the condition of applicability of the eikonal approx-
imation |U11|, |U22| % mu2/2 at velocities that are much lower 
than the thermal velocity [this condition is necessary for the 
correctness of the integrand in formula (43) for Q at u %  u– ]. 
One can see from Fig. 2 that the ratio v21/Koc is close to unity 
and increases slowly with increasing ratio c1/c2. For power 
potentials with l = 6, 12 and 18, the difference of the ratio 
v21/Koc from unity decreases with increasing parameter e0 and 
at e0 = 2000 is about 10 %. 

Thus, the quantum-mechanical (v21) and quasi-classical 
(Koc) calculations of the optical collision frequency give simi-
lar results: the ratio v21/Koc is close to unity when the condi-

tion of applicability of the eikonal approximation is met (for 
sufficiently large parameters of e0). 

5. Results and conclusions 

Thus, we have performed the quantum-mechanical calcula-
tion of the collision frequency v21, which is part of the density-
matrix kinetic equation describing nonlinear effects in the 
wings of spectral lines. The collision frequency depends in a 
complex manner on the interaction potential of the colliding 
particles and on the radiation parameters (intensity and fre-
quency detuning). Numerical analysis has shown that the 
quantum-mechanical calculation of the collision frequency in 
the eikonal approximation gives a result, similar to that which 
is already known from the quasi-classical theory of spectral 
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Figure 2.  Dependence of Q = v21/Koc on the ratio of coupling constants 
c1/c2 at different l for the power potential of interaction and at k0 = 45, 
e0 = 500 (a), 1000 (b) and 2000 (c). 
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line wing [16]. Namely, the collision frequency v21 is close to 
Koс (introduced in [16]) and defined as ‘the number of optical 
collisional transitions per unit volume and time’ (Fig. 2c). 

Our analysis suggests that under these conditions, for the 
collision frequency v21 in the kinetic equations for the density 
matrix, obtained in [13] and describing nonlinear effects in the 
wings of spectral lines, we can set with a small error 

v21 = Koc .	 (47)

This relationship allows us to write the collision frequency v21 
in the same form in which the frequency Koс is represented in 
papers [14 – 16]: 

v
G2

oc21 2

2

W
G W= ^ h.	 (48) 

The value of Goc(W ) enters into the modified Lorentz equa-
tion [15, 16], which describes the entire contour of the spectral 
lines, including the far wings. In general, Goc(W ) depends on 
the frequency detuning W and the radiation intensity (on the 
parameter |G |). In the case of a not-too-strong field (11), the 
dependence Goc(W ) on the radiation intensity disappears, and 
we deal only with the dependence on the detuning frequency 
[16]. For a small detuning of the radiation (|W | %  WW, where 
WW is the Weisskopf frequency [16]), the value of Goc(W ) is 
equal to impact half-width of the absorption line G [16], and 
for a large detuning (|W | & WW), it can be both much higher or 
much smaller than G [16]. The collision frequency v21 decreases 
with increasing detuning modulus |W | [16]. 

Under stationary conditions, from (15) with account for 
(48) and normalisation condition (13) we obtain the known 
expression [10, 22] for the population difference of the excited 
(|2ñ) and ground (|1ñ) levels: 
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The value of Z has the meaning of the saturation parameter 
for the transition |2ñ - |1ñ (at |W | & G). It follows from (49) that 
at a sufficiently high intensity of the exciting radiation (Z > 1) 
and at a positive detuning of the radiation (W > 0) there is a 
population inversion at the transition ||2ñ - |1ñ. As mentioned 
in Introduction, this effect is experimentally recorded in the 
form of generation of coherent radiation at the resonance 
transition of sodium atoms when pump radiation affects the 
‘blue’ wing of the absorption line [6, 8 – 10].
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