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Abstract.  We consider the theoretical principles of the original inves-
tigation of irregular optical waveguides in the form of a dynamic dis-
sipative system. The scattering of guided modes in an irregular optical 
waveguide is considered as a process of gradual transition of a dynamic 
dissipative system from an ‘ordered’ state into ‘chaos.’ The growth of 
scattering losses in an irregular optical waveguide is represented as an 
increase in chaos in the system under analysis. The phase retardation 
factor of a multimode waveguide is used as a control parameter of the 
process. The use of the methods of catastrophe theory can explain the 
behaviour of the dissipative system under study in the process of chang-
ing the control parameter. It is found that an increase in chaos in the 
system (an increase in losses due to scattering in an irregular wave-
guide under excitation of modes of increasingly higher order) can be 
explained by a sequence of direct bifurcations, i.e., the existence of 
stable cycles in the system. As a result, the irregular optical waveguide 
can be regarded as a system in which the energy of a regular process 
(the process of propagation of a guided mode) passes into the energy 
of a ‘disordered’ process, i.e., the energy of radiation modes. 

Keywords: optical waveguide, statistical irregularities, waveguide 
scattering, dispersion relation, nonlinear equation, bifurcation phe-
nomena, nonlinear dynamic system, one-dimensional mapping, 
numerical simulation, coupled modes, second harmonic generation, 
birefringence, dissipative system, bistability, noise. 

1. Introduction 

Scattering of a guided mode in an irregular optical waveguide 
can be considered as a process of gradual transition of a 
dynamic dissipative (open) system from the ‘ordered’ state 
into ‘chaos.’ As a control parameter of the problem, use can 
be made of the natural physical parameter of the system – the 
phase retardation factor g of a multimode waveguide whose 
temporal variation is accompanied by a change in the effective 
thickness of the waveguide. 

The problems of propagation of guided modes in multi­
mode optical waveguides were studied in many papers. For 
those who wish to read more widely in particular subjects, we 
suggest, for example, monographs and papers [1 – 16]. 

By the ordered state of the system is meant a state of an 
irregular optical waveguide*, in which some guided mode (the 

regular component) is maintained, and the contribution of 
radiation modes (the irregular component) to the total field 
distribution of the waveguide is negligible. Chaos, on the con­
trary, is characterised by a significant contribution of the 
radiation modes to the total field distribution. 

The increase in chaos in the system, i.e., the growth of 
losses due to scattering in an irregular waveguide under exci­
tation of modes of increasingly higher order, can be explained 
by a sequence of direct bifurcations. Bifurcation is the emer­
gence of a new quality in the behaviour of a dynamic system 
when its parameters change; in the waveguide under study the 
irregularity does not change over time, i.e., stationary, and so 
instead of ‘bifurcation’ use can be made of the term ‘catastro­
phe’ [17 – 20]. 

The aim of this work is the consistent presentation of the 
theoretical principles of a new method for investigating irreg­
ular optical waveguides as dynamic dissipative systems. At 
present, we are not aware of any scientific publications that 
would use this method for investigating irregular optical wave­
guides. The proposed method can be, for example, promising 
for both qualitative and quantitative study of scattering in 
waveguides with a complex structure and various topology of 
elements, where the application of analytical and computa­
tional methods is impossible or requires significant computa­
tional resources. 

2. Radiation losses in an optical irregular  
waveguide 

Consider, as an example, a three-layer planar optical wave­
guide with an arbitrary deformation, for example, of one of 
the interfaces between the media of the waveguide (Fig. 1) 
[1 – 6]. We will approximate this violation of the regularity of 
the interface by a sequence of small stepwise changes. The 
same approach can be used in the case of an arbitrary change 
in the profile of the dielectric constant, for example, of the 
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* A waveguide with rough interfaces between its constituent media and/
or nonuniform (with respect to the refractive index) the structure of 
these media.

h
X

ZY

1

2

3

4

5

5
5

Figure 1.  Three-layer planar optical waveguides with rough boundaries:	
( 1 ) cladding layer (air; refractive index, nc); ( 2 ) waveguide layer (refrac­
tive index, nf); ( 3 ) substrate (refractive index, ns); ( 4 ) propagation direc­
tion of the optical beam; ( 5 ) scattering of the optical beam at rough 
film/substrate and film/air interfaces; h is the thickness of the waveguide 
layer. 
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waveguide layer of a three-layer waveguide. The validity of 
this approximate approach has been confirmed both theoreti­
cally and experimentally (see, for example, [1]). 

Consider a small (compared with the thickness of the wave­
guide h) solitary jump Dh or smooth narrowing/expansion in 
a certain section of the waveguide under study, which in both 
cases meet the condition Dh/h << 1. To calculate the integral 
power losses DP due to radiation in this section, we can use 
the expression [1 – 4] 

DP = P (1 – |Ct|2 – |Cr|2),	 (1)

where P is the total power of the guided mode incident on the 
waveguide section under consideration; DP/P are the relative 
power losses; a = DP/(Pl) is the attenuation coefficient of the 
guided mode on a section of length l; Ct and Cr are the ampli­
tude (dimensionless) coefficients of transmission and reflec­
tion of the guided mode at the given section of the waveguide. 
It follows from (1) that DP/P, Ct and Cr are dimensionless. 

If the guided mode at the given section of the waveguide 
does not pass, then Ct = 0 and we deal only with its reflection. 
We assume for clarity that reflection is due to the transforma­
tion of the guided mode into the same mode, but travelling 
in another, for example, opposite direction. In this case, the 
analytic form of the coefficient Cr is known (see, for example, 
[1, 14 – 16]). 

For further analysis, it is important that P and Cr pre­
sented in (1) are the functions of the effective thickness of the 
waveguide 

heff = h + (b0
2 – k0

2nc
2)–1/2 + (b0

2 – k0
2ns
2)–1/2,	 (2)

where h is the thickness of the waveguide layer with a refrac­
tive index nf; b0 = k0g is the propagation constant of the guided 
mode along the z axis; k0 = 2p/l0 is the modulus of the wave 
vector k0; l0 is the wavelength of light in vacuum; nc is the 
refractive index of the cladding layer (air); ns is the refractive 
index of the substrate; in a symmetric waveguide, nf > ns = nc, 
and in an asymmetric waveguide, nf > ns > nc. 

When the guided mode is diffracted or scattered at an 
irregular section of the waveguide, Cr = Cr(heff, F ), where F is 
determined by the statistics and the parameters of the corre­
sponding irregularities. In the case of statistical irregularities, 
for example, irregularities (roughness) of the interfaces, it is 
necessary to take into account, at least, the dependence of the 
reflection coefficient of the guided mode on the interval 
(radius) of correlation r of the irregularities Cr = Cr(heff, r ). 

We write formula (2) in the form 

heff = h + k0–1[(g2 – nc2)–1/2 + (g2 – ns2)–1/2] ,	 (3)

which shows that heff is a function of the phase retardation 
factor (the effective refractive index of the waveguide) g. 

Using formula (3) and taking into account that Ct = 0, 
expression (1) can be rewritten in the form, well-known in the 
theory of nonlinear dynamic systems [17, 18] 

DP = P (1 – |Cr|2) ® y = m(heff) x(1 – x) 

	 = m[heff(g)] x(1 – x),	 (4)

or in the form that is nonlinear with respect to the variable x: 

y(x) = mx(1 – x).	 (5)

To obtain expressions (4) and (5) (1) we made the follow­
ing substitutions: y = DP/P0; m(heff) = P (P0|Cr|2)–1 = P(CP0)

–1, 
where CP0 = P0|Cr|2; x = |Cr|2, with the range of changes in 
x and m being limited in a natural way due to the definition of 
the reflection coefficient: 0 G x G 1 and 0 G m < ¥ (P, Pr < P0). 

Equations (4) and (5) were obtained in dimensionless 
quantities. To do this, the powers DP and P were normalised 
to the maximum power P0 of the guided mode incident on an 
irregular section of the waveguide (in principle, it can be the 
unit power: P0 = 1 W). 

We call the parameter m(g) the control parameter of the 
dynamic dissipative system under consideration – irregular 
multimode optical waveguide. Because CP0 G  P and CP0 Î 
[0, P], then m(g) Î [1, ¥). 

Given that m = m(g) and Cr = Cr(g, r) in (5), we write the 
last equation, taking into account the explicit dependence of 
these quantities: 

y(x) = m(g) x(g, r)[1 – x(g, r)].	 (6)

Note that we have yet proceeded from the assumption 
that a solitary jump of the waveguide thickness satisfies the 
condition Dh/h << 1. In fact, fulfilment of this inequality makes 
it possible to meet the first approximation of the perturbation 
theory in the theory of waveguide scattering [1 – 8, 14 – 16], for 
which DP/P << 1. 

Accounting for small second-order quantities, which were 
neglected in (1), (4) and (5), allows one to write the nonlinear 
equation (6) in the form: 

y(x) = m1(g) x(g, r)[1 – x(g, r)] + m2(g) [1 – x(g, r)]2,	 (7)

where m1(g) = m(g), and m2(g) is another control parameter of 
the dynamic dissipative system under study (taking into account 
the second order of smallness). 

For concreteness, we consider the multimode optical wave­
guide with statistical irregularities at the interfaces between 
the media forming the waveguide [1, 3, 15, 16]. However, our 
conclusions will be quite valid for a multimode optical wave­
guide with other types of irregularities that meet the above-
mentioned limitations.

3. Study of bifurcation processes in an optical 
multimode waveguide with statistically rough 
boundaries 

3.1. Basic concepts of the theory of nonlinear dynamical 
systems

For those who wish to get acquainted with the theory of 
bifurcation phenomena, we recommend book [17], and for 
those who wish to read more widely in the subject – mono­
graphs [19, 20]. Here we will mention only the basic concepts 
that facilitate the understanding of the material in section 3.2. 

On a discrete set x Î X, where x = x1, x2, ..., xn, we can write 
a simple one-dimensional equation describing some dynamic 
system: 

xn + 1 = axn(1 – xn).	 (8)

The sequence of values of xn is called the orbit of mapping. 
The initial segment of the sequence is the transition regime 
and the rest is the steady state. 
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Equation (8) in the standard form is written as: 

xn + 1 = f (xn),	 (9)

where the function f (xn) is represented in the form 

f (x) = 4mx(1 – x),	 (10)

that is similar to equation (5). We emphasise that we should 
expect some differences between the dependences obtained in 
accordance with equations (6), (7) from the analogous depen­
dences for expression (10) because the variable x depends on 
g and r in (6), (7). 

In analysing equation (10), use is made of the conditions  
0 G  x G  1 и 0 G  m G  1. The first condition makes it possible 
to avoid unphysical situations, when xn > 1, аnd xn + 1 < 0. 

The second condition allows one, in the case of an irregu­
lar optical waveguide, to perform a fortiori the first approxi­
mation of perturbation theory and to neglect the possible 
nonlinearity of the field problem. Indeed, if m ® ¥, then P ® ¥ 
(the case Pr ® 0 is trivial), which means a sharp increase in the 
power of the waveguide mode and the need to consider the 
probable nonlinear optical effects in the waveguide which are 
related already to the field nonlinearity E. For example, for 
the SHG when the input TE mode with a frequency w/2 is 
converted at the output of the waveguide into the TE mode 
with a frequency w, the complex amplitude of the polarisation, 
which describes the polarisation perturbation (in the right-
hand side of the wave equation) in the medium, has the form 
Pi
(w) = dijk

(w)Ej
(w/2)Ek

(w/2), where dijk
(w) is the element of the non­

linear optical tensor. 
The nonlinear frequency conversion is effective under the 

condition that the overlap integral 

d dI E P x y( ) ( )
=

w wy 	 (11)

is large. Integration in (11) is performed over the cross section 
of the waveguide. It is known that for the conditions I ® max 
to be met in (11), the spatial overlap of the field of the TE 
mode, E(w), and the amplitude of the nonlinear polarisation, 
P(w), in the transverse plane xy should be maximal. One can see 
from (11) that it is better to optimise I for weakly oscillating 
profiles of the transverse distribution of the field energy. This 
explains the preference for lower-order modes for the SHG. 

In addition, to ensure effective coupling between the modes 
along the entire length of the interaction, it is necessary to fulfill 
the phase matching condition, i.e., to provide the equality of the 
wave vectors of the nonlinear polarisation and the pump mode: 

bp(w)(h) = 2bm(w/2)(h).	 (12)

In fact, in a planar waveguide the waveguide layer thickness 
h is a variable that plays the same role as the angle between 
the propagation direction of a plane wave and the position of 
the crystal in the bulk case. 

It is important to note that in optical waveguides, due to 
the presence of modes with different polarisations (TE and TM) 
with respect to a given plane, even in an isotropic medium 
there already exists the ‘splitting’ of the curve b(h) [or g(h)] at a 
given frequency w, or of the curve b(w) at a given thickness h. 
However, this does not make it possible to establish phase 
matching for TE0 and TM0 modes at the maximum overlap 
integral, because their dispersion curves do not intersect. In an 

anisotropic waveguide, phase matching of the fundamental 
modes is possible. Here, the birefringence is sufficient to com­
pensate for the dispersion of the modes of the same order at the 
fundamental frequency and second harmonic frequency [21]. 

Note an important advantage of the wave interactions in 
the case of the SHG in waveguide structures, compared with 
the classical bulk nonlinear media – the possibility of a sig­
nificant (up to several orders of magnitude) increase in the 
frequency conversion efficiency. 

If the phase-matching condition (12) is not satisfied or  
I ® min in (11), we can neglect the possible field nonlinearity 
in a birefringent medium. 

Let us return to equation (10). The function f(x) trans­
forms any point in the interval [0, 1] to some other point of the 
same interval, and, therefore, f(x) is called one-dimensional 
mapping. Equation (9) is called standard mapping. The main 
properties of this mapping were studied by Feigenbaum (1978) 
and the detailed description can be found in the literature. We 
only mention some important properties. 

With the growth of m, the system gradually shifts from the 
periodic ‘motion’ (behaviour) to chaotic ( mch » 0.892486). At 
the same time, within the regions of chaos narrow windows of 
periodic ‘motion’ are observed. It is important to note that at 
m slightly larger than 0.75, the only immobile point x* (here, 
there is a cycle S1, i.e., a cycle with a stable point) splits, i.e., 
there occurs bifurcation into two oscillating values – x1* and 
x2* (there appears a cycle S2, i.e., a cycle with two stable points). 
A pair of these points forms a stable attractor. In the region 
of chaos (m > mch) two nearby initial points diverge along dif­
ferent trajectories after several iterations. 

To study the dynamic behaviour of such systems on a 
parameter m, use is made of the graphical method of iteration 
f(x). It consists of the following: we choose a point x0, which 
is not fixed (for example, x0 ¹ 0), draw a vertical line from the 
point (x = x0, y = 0) to its intersection with the curve y = f (x) 
at the point {x0, y0 = f (x0)}. Then, a horizontal line is drawn 
from the point (x0, y0) to its intersection with inclined line 
y = x at the point (y0, y0). The value of x at the point of intersec­
tion is the first iteration x1 = y0. Similarly, we can find other 
iterations. The iterative process converges to the fixed point, 
which is called stable (stable attractor). To explain the stabil­
ity, use is made of the stability criterion of the fixed point: the 
slope of the curve at this point should be less than unity (see 
below). 

3.2. Stationary order and chaos in a multimode optical 
waveguide 

We will illustrate the dynamics of transition of an irregular 
optical waveguide from the ordered state into chaos with the 
help of a wavenumber diagram, combined with the depen­
dence of the attenuation coefficient of the guided modes a on 
the factor g (Fig. 2). The relative power loss of the guided 
mode due to scattering in the irregular-waveguide section of 
unit length is related to the attenuation coefficient by a simple 
expression: DP/P = 2a. 

We will show that the growth of chaos in the system (an 
increase in losses due to scattering in an irregular waveguide 
under excitation of modes of increasingly higher order) can be 
explained by a sequence of direct bifurcations, for example, 
by the presence of stable cycles S1, S2, S3, S4, etc., in the sys­
tem. 

In our case, the variable x, i.e., the attenuation coefficient 
a, depends both on the phase retardation factor g and on the 
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correlation interval r of the waveguide irregularities. In the 
numerical simulation, we fix one parameter, for example g, and 
consider the dependence of the function y [see equations (6), (7)] 
on the second parameter, i.e., on r.

It is found in computer simulations that in the cases 
described by nonlinear equations (6) and (7) it is possible to 
realise cycles S1, S2 and higher-order cycles by choosing appro­
priate control parameters. In the case of cycle S2, the period-
doubling bifurcation is observed: the scattering diagram exhibits 
the elements b(a) (here a = 1, 2, 3, ...), which are ‘subharmonics’ 
with respect to the propagation constant of the guided mode 
bguid = Kinc: b(1) = bguid/2, b(2) = bguid/4, etc. [e.g., b(1) = bguid – K(1)

lat, 
where K(1)

lat = 2p/L(1)
lat and L(1)

lat is a period of some lattice in the 
spectrum of the waveguide irregularities].

As an example, Fig. 3 (an asymmetric waveguide) and 
Fig. 4 (a symmetric waveguide) show cycles S1, possible in 
these cases. In calculating the dependences in Figs 3 and 4, we 
used the formulas for the relative power loss due to the inte­
gral scattering in a statistically irregular symmetric or asym­

metric optical waveguide (see, for example, [1, 3, 15, 16]). 
Figure 3 shows the dependence of the relative power loss 
caused by radiation on the correlation interval rrel at a fixed g, 
and Fig. 4 shows the dependence of the relative power loss 
caused by radiation on grel at r = 0.1 mm. 

In both cases, we can observe the convergence of the pro­
cess from some arbitrary initial point to some constant values 
of independent variables (stable immobile points). In the first 
case, we deal with convergence to the points r1* or r2*, which are 
some characteristic parameters of the statistical irregularity of 
the dynamical system under study at given values of g. Thus, if 
we assume independence of the random components of the 
irregularity, the result obtained here is consistent with the known 
conclusion that the sum of a large number of these terms, in 
accordance with the central limit theorem, has a Gaussian 
distribution with the correlation radius and the rms height of 
the profile, defined as ensemble-averaged values (and typical 
of the laser radiation wavelength) that are close to r*. 

In the second case (Fig. 4), we deal with the convergence 
to one characteristic value of the control parameter (in the 
terminology of catastrophe theory) g2* » 1.532 (grel 2 = 0.977) 
that is close to the inflection point on the dispersion curve, 
and to gopt » 1.54, in the vicinity of which the maximum radi­
ation loss of the guided mode is observed. In the vicinity of 
the point g2* » gopt, the system is most informative: here the 
signal-to-noise ratio (radiation scattered into the surrounding 
3D space) reaches a maximum. 

Numerical modelling in accordance with (6), (7) showed 
that in a multimode planar symmetric waveguide with statis­
tical irregularities (roughness) at the interface, expression (6) 
more accurately describes the dependence of the attenuation 
coefficient a on g (r is assumed fixed) if the correlation interval 
of the roughness is r G  l/10, and the expression (7) – if r H  l. 

Using the methods of catastrophe theory [17 – 20], we can 
explain the behaviour of the dissipative systems under study 
as a function of the control parameter g. To this end, we should 
investigate the first derivative of unsmoothed dependence of 
the relative power loss caused by radiation. This function, by 
analogy with catastrophe theory, can be regarded as a potential 
function of the system, which has minima (local and global). 
To determine the interval of values of the function where the 
modulus of first derivative does not exceed unity, horizontal 
lines +1 and –1 are drawn. In this interval, we observe the 
condition for the stability of the singular point g*rel 2 » 0.978: 
|dáDP/Pñ/dg| G  1. 
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knc–kns –knc kns
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(1)Klat

Klat
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Figure 2.  Wavenumber diagram combined with the dependence of the 
attenuation coefficient of the waveguide modes a on the phase retarda­
tion factor gm (m = 0, 1, …). 
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Figure 3.  Dependences of the relative power loss caused by radiation 
on the correlation radius normalised by rmax = 10, which characterise 
the bifurcation process (cycles S1) in the asymmetric planar optical 
waveguide (nc = 1.000, nf = 1.590, ns = 1.460). The phase retardation 
factor is g = 1.570 ( 1 ), 1.500 ( 2 ) and 1.470 ( 3 ). 
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Figure 4.  Dependence of the relative power loss caused by radiation on 
grel = g/1.567, which characterises the bifurcation process (cycles S1) in 
the symmetric planar optical waveguide (nc = ns = 1.460, nf = 1.590). 
The correlation radius r of the substrate roughness is equal to 0.1 mm.
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The resulting dependence of the first derivative corre­
sponds to the well-known case of bifurcation of the equilib­
rium state (a particle in a potential well with a barrier or 
shelf). At a high signal-to-noise ratio only one equilibrium 
state of the system is possible – when g » g*rel 2 » 0.978. We 
can use here the concept of a phase transition at which the 
system changes qualitatively. For example, when g < g*rel 2 or 
g > g*rel 2, the system exhibits minimal losses and the wave­
guide does not virtually radiate (closed system), i.e., radiation 
is absent in the medium surrounding the waveguide (the track 
of the waveguide mode is not visible), and when g » g*rel 2, the 
system transforms into a qualitatively new state: the wave­
guide radiates (open system) and the track of the mode can be 
observed. 

Thus, the irregular optical waveguide [1 – 6, 14 – 16, 23, 24] 
can be considered as a dissipative system, where the energy 
of  the ordered process (propagation of the guided mode) 
transforms into the energy of the disordered process (scatter­
ing), i.e., in the energy of radiation modes, and, finally, into 
the heat. 

4. ‘Bistability’ properties of an optical irregular 
waveguide 

The behaviour of the system, when the control parameter g 
changes with time, can be conventionally represented as a 
work of a bistable element having two stable states (especially 
in case of such an irregularity as a diffraction grating): radia­
tion is absent or present. The first variant: grating is absent – 
radiation is off, grating is present – radiation is on; the second 
variant: the grating is always present, but the angle of the 
mode incidence on the grating changes. When ‘switching’, the 
power cost per information bit can be equal to approximately 
10–9 W bit–1 for a symmetric silica fibre at SNR » 10 and 
10 % – 15 % efficiency of He – Ne-laser radiation coupling into 
the waveguide.

Evaluation of the information volume, IS, in the scatter­
ing diagram can be obtained using the formula from [22]:  
IS = N log2J = (2b3L + 1) log2 ( ) /P P PS N N+ , where N is the 
total number of symbols in a message (a continuous signal is 
replaced by a discrete sequence of counts); J is the number of 
different letters in the alphabet, which is, at the average power 
of the noise PN and signal PS, is equal to ( ) /P P PS N N+ . When 
SNR » 1, the power cost per information bit is approximately 
3.3 ́  10–9 W bit–1. In the first and second variants, J » 3 and 1, 
respectively. These estimates are valid in the case of lack of cor­
relation between the signal samples (i.e., their mutual inde­
pendence) and additivity of signal and noise. 

Comparison of IS, obtained for the system with a ‘bistable’ 
element and for other systems with well-known switching ele­
ments, shows that this system is superior to many electronic 
and optical devices and can be compared with a neuron in the 
power cost per information bit [18]. 

Note also that the problem of influence of periodic irregu­
larities on propagation of guided modes was addressed in many 
papers (see, for example, [1, 2, 4, 5, 8, 9]), which considered such 
important issues as transformation of the fields of the modes, 
mode coupling and synchronisation, change in the mode spec­
trum, etc. The use of optical fibres in a fibre-optic communi­
cation lines, fibre lasers and fibre sensors was studied in par­
ticular in [4, 8, 9, 11, 12]. Within the framework of our new 
theoretical method, analysis of such aspects of application of 
optical waveguides is possible in principle, but lies beyond the 
scope of this publication. 

5. Conclusions 

Transition from the integrated optical waveguide with such an 
irregularity as harmonic ripple to the waveguide with statisti­
cal irregularities (i.e., transition from a system with long-
range order to a system with short-range order) can be illus­
trated in the phase plane as a transition from a system charac­
terised by the usual attractor (stable focus in a system with 
losses) to a system characterised by the stochastic (strange) 
attractor (an attracting set of unstable trajectories in the space 
of states of a dissipative system). This transition is similar to 
the transition from an ordered phase state to the disordered 
state. Here, we can speak of a certain analogy with the loss of 
stability in the crystal when the restoring force, removing distor­
tions of the crystal lattice, disappears at the phase transition 
temperature. A similar phenomenon takes place during heat­
ing of the waveguide film made of crystalline (polycrystalline) 
material.

The problems of transition of systems from an ordered 
state to the disordered state are encountered in different fields 
of physics, biology, chemistry, economics, politics, sociology, 
etc. Using a sequence of cycles S1, S2, S4, ..., we can show that 
the random process arises as the limiting one for more complex 
structures (cycles S2p). The emergence of a strange attractor 
can be explained with the help of cycle S¥. Here, with the 
course of ‘time’ the paths of two close points diverge rapidly, 
and the behaviour of the system cannot be predicted (chaos 
becomes more random). 

This paper presents the theoretical principles of a new 
method for investigating irregular optical waveguides as dynamic 
dissipative systems, which may be particularly promising for 
the qualitative analysis of scattering in a waveguide with a 
complex chemical structure and three-dimensional topology 
of elements, where the application of analytical and computa­
tional methods is impossible or requires substantial computa­
tional resources. Of fundamental and applied interest is the 
application of this method in studying the phenomenon of 
anomalous light scattering near phase transitions in liquid-crys­
tal and polycrystalline waveguide layers. Of particular interest 
are studies in the field of the waveguide rainbow, where the 
fine structure of the spectrum of the light scattered in the wave­
guide can be observed with high resolution. Obviously, such 
research will open new opportunities for specialists in the 
field of materials science, as well as for biologists, physicians, 
and chemists. 
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