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Abstract.  We consider the generation of beams of highly ionised 
atoms in solid targets irradiated with CO2-laser pulses. We present 
experimental results on generation of Mg and Pb ions from laser 
plasma at a radiation flux density q »  1014 W cm-2. We have devel-
oped a theoretical model describing the plasma heating by CO2-
laser radiation at a high pulse intensity on the target, taking into 
account the ponderomotive forces affecting the behaviour of the 
interaction of light with the plasma. It is shown that in the case of 
resonance absorption of laser radiation by the plasma, the effi-
ciency of generation of highly ionised atoms of the target substance 
is higher than the efficiency of generation in the case of classical 
absorption. The results of the numerical calculation by the devel-
oped model are in good agreement with the experiment. 

Keywords: CO2 laser, highly ionised atoms, resonance absorption, 
fast electrons, fast ions. 

1. Introduction 

Works, associated with generation of beams of highly charged 
ions, started in the 1960s within the framework of the funda-
mental research of plasma heated by intense laser pulses. In 
Russia, such studies were carried out at leading physics insti-
tutes [P.N. Lebedev Physics Institute (FIAN), A.M. 
Prokhorov General Physics Institute (IOFAN), Russian 
Federal Nuclear Center – The All-Russian Research Institute 
of Experimental Physics (RFNC – VNIIEF), National 
Research Centre ‘Kurchatov Institute’, Federal State Unitary 
Enterprise ‘State Scientific Center of the Russian Federation 
– Institute for Theoretical and Experimental Physics’ (ITEP), 
Federal State Unitary Enterprise ‘State Research Center of 
the Russian Federation – Troitsk Institute for Innovation and 
Fusion Research’ (TRINITI), National Research Nuclear 
University ‘MEPhI’ (MEPhI), etc.] using lasers of various 
types. In practical applications, the best justification was 

given to CO2-based laser-plasma generators (LPGs) due to 
their relatively low cost, ecological compatibility of the tech-
nological scheme, and possible long-term operation in the fre-
quency regime. The latter circumstance made it possible to 
successfully adapt the laser ion sources into injectors for 
charged-particle accelerators. Application of these injectors, 
for example, in the scheme of heavy ion synchrotrons, signifi-
cantly simplifies the accelerator due to single (per pulse) fill-
ing of the ring by particles of the required mass and charge. 
Investigations of generation conditions of ions of different 
elements from the plasma heated by CO2-laser pulses at flux 
densities up to q » 3 ´ 1013 W cm–2 and the development of 
LPGs of highly ionised atoms, intended for injection of 
charged particles in an accelerator, have been carried out at 
the ITEP and TRINITI within the framework of joint 
research programs [1 – 10]. In particular, it has been shown 
that for the efficient generation of many highly charged ions 
it is necessary, in addition to achieving a high density of the 
laser radiation flux, to match the laser pulse duration with the 
rate of plasma expansion – it must be less than the character-
istic time of expansion. Thus, to maximise the number of par-
ticles with a higher degree of ionisation, shorter pulses are 
required. Based, in particular, on these physical studies, a 
high-current LPG of Pb25+ ions was designed and fabricated 
for the CERN accelerator [11]. The introduction of such a 
generator into the Large Hadron Collider (LHC) can signifi-
cantly increase the energy of the accelerated particles used in 
the experiment. 

Currently, further development of LPGs is carried out 
mainly within the framework of the ITEP scientific program 
on fundamental research of physics of high energy density in 
the matter, including joint projects with the FIAN. The prob-
lems formulated require the creation of LPGs of heavy ions 
with a significantly higher value of Z/A (Z is the degree of 
ionisation and A is the mass number of the element) and, 
accordingly, experiments at much higher laser power densities 
(q ≈ 1015 – 1016 W cm–2). In these circumstances, the behaviour 
of interaction of radiation with plasma changes fundamen-
tally. First of all, action of the ponderomotive force is accom-
panied by a change in the profiles of density and velocity of 
the plasma near the critical point. In addition, the size of the 
plasma inhomogeneity is greatly reduced, thereby leading to 
an increase in the range of angles of incidence of laser radia-
tion at which resonant absorption takes place and fast elec-
trons are generated. Indeed, the efficiency of resonance 
absorption is characterised by the function F (t), where t = 
(k0L)1/3sinq0; k0 is the wavenumber; L is the size of the plasma 
inhomogeneity; q0 is the angle of incidence. The range of t 
values that are essential for resonance absorption, is Dt ~ 1, 
and the range of angles of incidence depends on the quantity 
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(k0L)1/3. The smaller the value of L, the larger the range of 
angles of incidence. A decrease in the size of the plasma inho-
mogeneity, on the one hand, increases the efficiency of reso-
nance absorption and, on the other, suppresses the inverse 
bremsstrahlung absorption. In the vicinity of the critical point 
because of the dramatic changes in the plasma density at the 
transition from the supercritical to subcritical region there 
occurs a significant increase in the velocity of the ions due to 
the law of conservation of mass ru = const. We will show 
below that the motion in the subcritical region is supersonic. 
Increasing the fraction of resonance absorption and, conse-
quently, the fraction of energy carried by fast electrons, is 
accompanied by the emergence of the electric field at the 
plasma boundary, which accelerates the group of ions up to 
the velocities that are significantly higher than the character-
istic hydrodynamic expansion velocity. 

To date, interaction of high-power electromagnetic micro-
wave and laser radiation with solid or gaseous targets have 
been studied in many experimental and theoretical works. 
Experiments associated with interaction of high-power micro-
wave radiation with gas and plasma under resonance condi-
tions were performed in 1970 – 1980s. These studies led to 
publication of monographs [12, 13].

2. Measurement technique 
and experimental results 

Experiments on heating materials by CO2-laser radiation and 
measurements of the characteristics of generated ions have 
been performed at the TRINITI using the setup described in 
[14]. The laser optical system made it possible to produce 
~100-J pulses whose duration could be varied in the range 
from 15 to 30 ns. The laser beam with a diameter of 150 mm 
was directed into the vacuum chamber and focused onto the 
flat surface of a solid target with a spherical mirror lens F/3, 
in accordance with the scheme shown in Fig. 1. Time-of-flight 
measurements were performed in the direction of plasma 
expansion through a central opening in the objective of an 
axially symmetric optical axis and along the normal to the 
target. The power density, q » 1014 W cm–2, is estimated by 
measuring directly the size of the plasma glow in the X-ray 
spectral range and using diffraction calculations of the laser 
beam propagation, similar to those described in [11]. In ana-
lysing the charge composition, energy spectra, and partial ion 
currents, we used an electrostatic analyser of charged parti-
cles (spectral resolution dE/E » 10–3) and a current collector, 
mounted at a distance of about 300 cm from the target. Raw 
data from the analyser were processed together with the sig-
nals of the total ion current, allowing the energy spectra of ion 

expansion to be reconstructed more accurately. Measurements 
of the individual signals of the spectrograph and the total cur-
rent collector were fairly accurate, but the restoration of the 
entire spectrum required a series of measurements at different 
voltages of the analyser so that the error was determined by 
the data spread from shot to shot. The statistical spread of the 
data with the rms deviation of the mean was ±10 % and ±25 % 
for the current pulses and signals from the analyser, respec-
tively. A detailed description of the instrumentation and data 
processing technique is given in [10, 15]. Figure 2 shows the 
averaged oscillograms of the ion current density for the Mg 
and Pb targets. This figure also presents the time dependence 
of the average degree of plasma ionisation, recovered from 
the data obtained in the measurements. Attention is drawn 
here to the fact that the value of the total ion current for a 
light element (compared to a heavy element) is much higher. 
Differences in the number of particles are even more signifi-
cant (Fig. 3). Note also the large number of particles with a 
certain degree of ionisation generated in laser-produced plas-
mas. Thus, the percentage composition of He-like Mg10+ ions 
is 55 %, and Pb25+ ions – 12 % of the total number of particles. 
In addition to a highly charged group of ions generated at the 
stage of maximum heating of the plasma, a low charged group 
with significantly different characteristics of ions is subse-
quently produced [8]. This feature of ion generation in laser-
produced plasma ensures the efficiency of the laser ion source 
in the injectors of charged particles. The energy spectra of 
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Figure 1.  The scheme of irradiation of the target and time-of-flight 
measurements: ( 1 ) vacuum chamber; ( 2 ) laser beam; ( 3 ) mirror objec-
tive; ( 4 ) flat target; ( 5 ) drift tube; ( 6 ) current collector or energy analy-
ser. 
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Figure 2.  Oscillograms of signals of ion currents j ( 1 ) and the corre-
sponding time dependences of the mean degrees of ionisation of plasma 
áZñ ( 2 ) for the elements of the targets made of Mg (a) and Pb (b). 
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Figure 3.  Dependence of the density of the number of particles nor-
malised to the drift distance 1 m on the degree of ionisation of the tar-
gets made of Mg (a) and Pb (b).
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expansion of magnesium and lead ions are shown in Figs 4 
and 5. The spectrum of Mg8+ expansion (Fig. 4) is typical for 
the basic observed magnesium ions; it exhibits three groups of 
ions with a different slope of the distribution function: the 
first – in the range from 7 to 25 keV with a ‘temperature’ of 
~3 keV, the second – in the range from 25 to 200 keV with a 
‘temperature’ of ~30 keV, and the third – with energies above 
200 keV and a ‘temperature’ of ~100 keV. The percentage 
content of the particles in these intervals is, respectively 59 %, 
39 %, and 2 % of their total number. The spectra of expansion 
of lead ions are more complex (Fig. 5): the ‘cold’ group of 
ions is observed only for ions with a relatively low charge 
multiplicity, such as Pb5+; for ions with a higher charge mul-
tiplicity (Pb24+) the spectrum exhibits only ions with a ‘tem-
perature’ of several tens of keV and higher; and finally, the 
spectrum of maximally ionised ions (Pb30+) is characterised 
by the ‘temperature’ above 100 keV. 

3. Computational and theoretical model 
of interaction of laser radiation with plasma, 
taking into account the effect of ponderomotive 
force 

Paper [16] deals with a theoretical model of interaction of the 
CO2-laser pulse with plasma at flux densities no higher than 
1012 W cm–2, where the ponderomotive force can be neglected, 
and the relation between the mechanism of resonance absorp-

tion and acceleration of a small group of ions is considered. It 
was shown that fast electrons produced by resonance absorp-
tion, create an electric field that accelerates the group of ions 
to velocities significantly exceeding the velocity of hydrody-
namic expansion. The efficiency of resonance absorption and 
energy of fast electrons depends on the size of the plasma 
inhomogeneity in the vicinity of the critical density L = 
rc(¶r/¶z) c –         1, where r is the plasma density, rc is the critical 
density, and the z axis is directed along the density gradient. 
The amplitude of the longitudinal electric field at the critical 
point is found from the expression [17]: 

| |
| |

E
k L
H
2 /cz

0
1 2

2

0

p e
tF

=
^

^
h

h
,	 (1)

where |H0| is the field amplitude of the incident wave (in the 
incident wave the amplitudes of the electric and magnetic 
fields are equal); F (t) = 4tV(t2)[V(t2)/(–V ¢(t2))] (see, e.g., 
[17]); V and V ¢ are the Airy function and its derivative; t = 
(k0L)1/3sinq0; q0 is the angle of incidence;  e2 is the imaginary 
part of the plasma permettivity at the critical point. The func-
tion F (t) with good accuracy (the maximum error does not 
exceed 10 %) can be written in the form 
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The contribution of electron – ion collisions into e2 in for-
mula (1) in our case is negligible due to the low critical plasma 
density. The longitudinal field under the resonance absorp-
tion is limited either due to the energy ejection by the plasma 
waves if the amplitude of the electron oscillations aos = e|Ezc| 
´ (mew2)–1 in this field is smaller than the resonance width e2L, 
or due to the energy ejection by fast electrons if aos exceeds the 
width of the resonance. In the case of limitation by the plasma 
waves [17] 
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where bT = [Te/(mec2)]1/2, Te is the electron temperature. In the 
case of limitation by the current of fast electrons [16] 
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where a0|Hyc| = |H0|F(t)/(2pk0L)1/2, |Hyc| is the magnetic field 
amplitude at the critical point. 

The energy of fast electrons can be estimated as the energy 
of the electron oscillations in a resonant field E h = e2|Ezc|2 
´ (mew2)–1. As will be shown below, this energy for the consid-
ered conditions far exceeds Te. In this case, the electron distri-
bution function describes the electron beam in plasma, which 
relaxes in a collisionless manner due to generation of plasma 
waves. In the opposite case, when the oscillation energy is less 
than Te, we deal with the diffusion of the electron distribution 
function to higher energies due to collisionless damping of 
plasma waves by the electrons. In this case, the energy of fast 
electrons can considerably exceed the energy of oscillations. 

The efficiency of resonance absorption is dar  ~ F 2(t). The 
maximum value is dar  » 0.5 at t » 0.7 [18]. With increasing the 
laser radiation flux density, the density gradient at the critical 
point will be determined by the ponderomotive force (e1 – 
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Figure 4.  Energy spectrum of Mg8+ ions. 
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1)∇|E|2/(16p), where e1 = 1 – r/rc is the real part of the permet-
tivity of plasma. The ponderomotive force can be expressed 
as the gradient of the ponderomotive potential pr, which in 
the hydrodynamic equation of motion is added to the thermal 
plasma pressure. To this end, we consider Maxwell’s equa-
tions in the case of a p-polarised wave having a frequency w 
[time dependence ~exp(–iwt)]. Let the z axis be directed along 
the density gradient, and the (y, z) plane be the plane of inci-
dence. Then the field components Ey, Ez and Hx are nonzero. 
Maxwell’s equations can be written in the form 
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Here a0 = sinq0, e = e1 + ie2 is the complex permettivity. The 
field structure is determined mainly by the real part e1. The 
imaginary part describes the weak (within one wavelength) 
amplitude damping due to absorption of radiation, and also 
eliminates the singularity at the critical point in (7) for the 
longitudinal field. In the case of weak absorption (within one 
wavelength), the imaginary part e can be neglected and 
expressions (5) – (6) yield the relation 
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To do this, we multiply (5) by Ey
* , and the equation, that is 

complex conjugate of (5), by Ey, and then add up the obtained 
equations. Proceeding in a similar manner with equation (6), 
which we first multiply by Hx

*  and Hx and then add up the 
obtained results, we obtain expression (8). Using (8) we can 
derive 
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Consequently, in the case of p-polarisation, the pondero-
motive pressure is written as 
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At angles of incidence that are not close to zero, the longi-
tudinal field |Ez| near the critical point according to (7) is sig-
nificantly higher than the other terms in (10): 
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where e2 = v/w (in the expression for e2 we assume that w is 
equal to the plasma frequency wp); v is the effective frequency 
of the field energy dissipation in the resonance region related 
either to generation of plasma wave (3), or to generation of 
fast electrons (4). The maximal |Ez|2 is achieved at the critical 
point. According to (10), if we take into account only the term 
with |Ez|2, the maximum pr occurs at a density that is slightly 
different from the critical point. This difference is insignifi-
cant (Dr/rc » v/w) and due to the fact that in deriving (10), we 
considered a real e. However, the singularity in (7) is elimi-

nated by the imaginary part. Because of the small differences 
between the densities at which the maximal Ez|2 and pr  are 
achieved, this issue is not important for further conclusions. 

Because the spatial scale of variation in the density pro-
file, caused by the ponderomotive force in the field of the 
critical density, is very small (of the order of the laser radia-
tion wavelength), the motion of the plasma in this narrow 
region can be described using the stationary equations of con-
tinuity and motion under the assumption of constant electron 
and ion temperatures: 

ru = rcuc,	 (12)
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where u is the velocity of plasma with respect to the critical 
surface;  pT = rcs2  is the thermal pressure; cs = [(ZTe + Ti)´ 
mi

– 1]1/2 is the isothermal velocity of ion sound (mi is the ion 
mass); the right-hand side of (12) contains the quantities 
taken at the critical point. By using (12), equation (13) trans-
forms as 
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This equation implies that the critical point is sonic (uc = cs), 
because  |E|2 has a maximum at the critical point, and (dr/dz)c 
is nonzero. According to (14) the subcritical plasma is super-
sonic, and the motion at r > rcis subsonic. Using expression 
(10) for the ponderomotive pressure, instead of equation (13) 
we can write the law of conservation of momentum: 

pT + pr + ru2 = 2rcc s2  + prc.	 (15)

Let  r1 be the density of the supercritical plasma, where pr®0. 
For the ratio r1/rc we can obtain from (12) and (15) 

1
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where d = prc/( rcc s2  ) is the ratio of the ponderomotive pres-
sure at the critical point to the heat pressure. If in the critical 
point |Ez|2 is considerably higher than other terms in (10) (in 
this case, the angle of incidence should not be very close to 
zero), then in the subcritical region we can also set pr = 0. 
Then, similarly to expression (16), for the subcritical density 
r0 we have 

1
2 4c
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If d >>  1, then r1/rc » d and r0/ rc » 1/d. Accordingly, the 
supercritical plasma velocity is |u1| » cs /d, and the velocity in 
the subcritical region is |u0| » dcs (the sign of the velocity is 
negative because the motion occurs in the opposite direction 
to the z axis). 

Expressions (16), (17) determine the magnitude of the 
density jump in the critical region in the absence of viscous 
pressure of the ions. To determine the scales of the plasma 
inhomogeneity at the critical point, it is necessary to consider 
the equation that defines the structure of the jump. To do this, 
the equation of motion should take into account the ion vis-
cosity pv = – m¶u/¶z. Then, instead of (15) we have 
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The critical point is sonic in this case, because the deriva-
tive du/dz has a maximum at the critical point, and, therefore, 
(d2u/dz2)c = 0. As a result, we arrive at (14). With the help of 
(12), equation (18) can be written in the form 
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where a = m/(rccs), x = r/rc, b(x) = [pr(x) – prc – pvc]/(rccs2). The 
right-hand side of (19) determines the sign of the derivative of 
the density x, which should not be negative. The function 
F (x) = 1/x + x – 2 has a minimum, equal to zero, at x =1. The 
function b(x) at the critical point is positive and determined 
by the constant (– pvc) (pvc  is negative because u < 0 and du/dz 
> 0). The sum F (x) + b(x) has a minimum at x > 1. It is essen-
tial that in the minimum this sum vanishes, which yields the 
asymptote for the solution x(z). If the sum F (x) + b(x) in the 
minimum is negative, then we obtain two values x1 and x2, for 
which this sum is zero. Let x2 > x1, then the transition from 
the density x1 to x2 should occur abruptly, which is unaccept-
able in the presence of viscosity (viscous pressure tends to 
infinity). Since the function b(x) is narrow compared to F (x) 
(changes more rapidly along the x axis), the condition for the 
nonnegativity of the right-hand side of (19) can be approxi-
mately written as –pvc » prc , or 
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Consider the possible mechanisms of dissipation of ion 
perturbations that determine the viscosity coefficient m. There 
is an expression for the coefficient of the ion viscosity due to 
ion – ion collisions [19]: m = 0.48rvTi / vii,where vTi is the ther-
mal velocity of ions, and vii  is the Coulomb frequency of 
ion – ion collisions. The expression for the collisionless damp-
ing decrement of ion perturbation on the electrons in a non-
isothermal plasma is also known at Te >>  Ti [20]. As will be 
shown below, in a plasma moving under a significant pon-
deromotive force there arises another case of nonisother-
malily, where Ti >>  Te [21]. Such a state is perhaps due to the 
fact that the coefficients of the ion and electron thermal con-
ductivities differ significantly (the coefficient of the ion ther-
mal conductivity is smaller), and a higher ion temperature is 
required to transfer the energy by the ions into a dense part of 
the target. In this case, the ion heating is due to the dissipation 
of ion perturbances caused by the ponderomotive force. 
Therefore, the expression for the collisional viscosity is usu-
ally not applicable due to the fact that the mean free path of 
an ion becomes larger than the ion plasma inhomogeneity. 
However, when Ti >>  Te, there appears an effective mecha-
nism of collisionless damping on the ions. When Te >>  Ti, 
damping on the ions can be neglected, because the number of 
ions involved in damping is exponentially small (these ions 
are located in the tail of the Maxwellian distribution func-
tion); ion perturbations damp on the electrons, despite the 
fact that the ion pre-exponential factor of the imaginary part 
of the permettivity is (mi /me)1/2 times greater than the electron 
factor. A different situation arises when Ti >>  Te. In this case, 
the ion exponential factor in the imaginary part of the per-
mettivity is not small, and there arises strong damping of per-
turbations on the ions. Note that in the case of weak damping 

of perturbations (when Te >>  Ti) the scales of the plasma inho-
mogeneity can be determined by taking into account the dis-
persion, described by the Korteweg – de Vries equation. In 
this case, equation (18) should contain the term with the sec-
ond derivative of the velocity in z, and the left-hand side of 
equation (19) – the term (r 2D/ 2)d2(1/x)/dz2 [20] (rD is the Debye 
radius), because according to (12), the velocity is proportional 
to 1/x. As will shown below, when Ti  >>   Te, dissipation leads 
to the inhomogeneity size L, which is significantly greater 
than the Debye radius; therefore, the dispersion term is only a 
small addition of the order (rD/L)2 to the dissipative one. 
Unlike the dispersion structure of the plasma motion 
described by the Korteweg – de Vries equation, the case con-
sidered here is naturally called the dissipative structure of the 
plasma motion. 

Collisionless dissipation on the ions occurs in a slow (lon-
gitudinal) field Es, which is produced by the ponderomotive 
force in the plasma. In the more general case, the slow field is 
also determined by the thermal pressure of electrons accord-
ing to the equation 
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However, we assume here that the energy of electron oscilla-
tions in the high-frequency resonance field is greater than the 
thermal energy Te, and in (21) we omit the term with the ther-
mal pressure. Using expression (11) for |Ez|2, we can find the 
maximum value of the derivative d|Ez|2/dz and express it 
through the value of the field |Ez|c at the critical point: 
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Then, for the slow field maximum, we obtain from (21) 
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To determine the effective viscosity m, we will equate two 
expressions for the rate of dissipation of kinetic energies of 
the ions: 
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Here ss = wses2 /(4p) is the ion conductivity in a slow field;  ws 

= kscs, es2 is the imaginary part of the permettivity caused by 
the ions. Strictly speaking, the transition layer is a wave 
packet with different ws and ks. At this stage, we will restrict 
or consideration to the assessment that takes into account 
only one characteristic harmonic with ks » 1/Dr, where Dr = 
Le2 is the width of the resonance. From (23) we obtain 
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where  prc = |Ez|  c2  /(16p). The expression for wses2 has the form 
[20] 
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Here, wi = (4pZ2e2ni/mi)1/2 is the ion plasma frequency. Given 
the condition (20), i.e., the equality | pvc| = prc, as well as writ-
ing the viscous pressure in the form pvc = – mcs/L, we can 
obtain from (24) another expression for the viscosity coeffi-
cient: 
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Comparing this expression with the expression for the col-
lisional viscosity, we may note that in the collisionless case 
quantities wiDr and  wses2 play the roles of the thermal velocity 
of ions and the frequency of collisions, respectively. 

The equation for determining the inhomogeneity size L is 
derived from equation (20), when writing the viscous pressure 
in the form mcs/L. Next, we consider the case when the field in 
the resonance is limited by plasma waves, i.e., e2 = e2p accord-
ing to (3). Then, to determine the k0L, we have the equation 
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In (27), the functions m and F also depend on k0L. The func-
tion F (t) for t < 0.7 can be approximately written as F » 
2.95t = 2.95a0(k0L)1/3. Using also expression (26) for m, we 
can derive a formula for calculating k0L: 
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In addition to the inhomogeneity size at the critical point, 
it is important to know the values of the plasma density at the 
boundaries of the transition layer: x0 = r0/rc is the dimension-
less density in the subcritical region, and x1 = r1/rc – in the 
supercritical region. The densities x0 and x1 can be found 
from the condition of minimum of the right-hand side of (19), 
i.e., the minimum of the sum F (x) + b(x). Equating the deriva-
tive F ¢ (x) + b¢(x) to zero and neglecting the quantity e 22    in 
comparison with (1 – x)2, we obtain the equation 

(x + 1)(x – 1)4 = 2bx2,	 (29)

where  b = pr0F2/(4prccs2 k0L), pr0 = |H0|2/(8p) is the light pres-
sure in the incident wave. An approximate solution of equa-
tion (29) for x >> 1 is found by writing it in the form (x – 1)3 = 
2bx2/(x2 – 1)  and setting x2/(x2 – 1) » 1. Then, in the super-
critical region we have the solution x1 » 1 + (2b)1/3. If x is 
small, we can use the method of successive approximations, 
calculating new values of x2/(x2 – 1). When x << 1, the solu-
tion is obtained by setting (x + 1) » 1 in (29). The solution has 
the form x0 = (1 + c/2) – [(1 + c/2)2 – 1]1/2, where c = (2b)1/2. In 
this case, we can also use the method of successive approxi-
mations, calculating new values of (x + 1). The values of x0 
and x1 depend on the parameter b, which is proportional to 
the ratio of light pressure in the incident wave to the thermal 
pressure of plasma at the critical point. The above approxi-
mate solutions for x0 and x1 are valid for large b. At small 
light pressures (b << 1), when x » 1, but nevertheless (x – 1)2 
> e22 , we can set (x + 1) » 2 in (29). Then, for x0 and x1 we 
obtain 

x c c1
2

1
2

1,1 0
1 1 2!= + + -` `j j ,	 (30)

where c1 = b1/2.

Consider the problem of interaction of the CO2-laser 
pulse with a titanium target at a laser radiation flux density of 
1014 W cm–2 and a FWHM pulse duration of 20 ns (the diam-
eter of the focal spot is 65 mm). The focusing system ensures 
the maximum angle of incidence, 9°. In general, even in the 
case of an axially symmetric laser beam, the problem on its 
interaction with the target is three dimensional, because the 
polarisation in the beam is linear, and the component of the 
electric field along the density gradient depends on the azi-
muthal angle j as cos j. Because the square of the field 
depends on the angle j as cos 2j, in calculating the fraction of 
resonance absorption we should take into account the fact 
that only half of the incident flux is p-polarised (the average 
value of cos 2j). As was already mentioned above, the region 
of a sharp change in the density profile in the vicinity of the 
critical density is narrow, and we can reduce the general prob-
lem to a simpler problem of plane motion of the plasma under 
oblique incidence of p-polarised radiation. For this purpose, 
we performed numerical calculations using a one-dimensional 
hydrodynamic RAPID-SP code [21], in which laser radiation 
is considered in the framework of Maxwell’s equations. This 
code takes into account the ponderomotive force and oblique 
incidence of electromagnetic waves of any polarisation on the 
plane-layered plasma, uses an analytical model for generation 
of fast electrons under resonance absorption, and considers 
the energy transfer by fast electrons, while the equation of 
state takes into account the energy loss due to plasma ionisa-
tion. Because we studied the small-scale motion of the plasma, 
the laser flux density of 1014 W cm–2 can be assumed constant 
in time. Radiation was p-polarised, and the angle of incidence 
was varied. Figure 6 presents the calculated profiles of den-
sity, temperature and plasma velocity, as well as the square of 
the electric field amplitude at the instant 0.2 ns after the pulse 
onset. The angle of incidence was 30°. The figure also shows a 
sharp transition from the supercritical density region to the 
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Te and Ti, and the square of the electric field amplitude |E |2 at an instant 
0.2 ns after the pulse onset. Laser radiation at a wavelength of 10.6 mm 
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subcritical one (for titanium rc = 4.09 ´ 10–5 g cm–3). 
Accordingly, the plasma velocity increases in the subcritical 
region. The ion temperature is much higher than the electron 
temperature due to the viscous heating of ions and the large 
difference in coefficients of thermal conductivity of electrons 
and ions (the electron coefficient is higher). Table 1 shows the 
values of the fraction of total absorption da (inverse brems-
strahlung and resonance mechanisms) and the fraction of 
resonance absorption dar as a function of the angle of inci-
dence. The values of daand dar are given for a 0.5-ns pulse. It 
follows from Table 1 that absorption mainly arises due to the 
resonance mechanism. The ponderomotive force leads to a 
decrease in the efficiency of inverse bremsstrahlung absorp-
tion and to an increase in the fraction of resonance absorp-
tion. Using the hydrodynamic ATLANT-HE code [22] we 
also carried out a two-dimensional calculation of interaction 
of a 20-ns pulse with a titanium target at the flux density of 
1014 W cm–2. This calculation allowed us to determine the 
fraction of resonance absorption for a real focusing system 
after the laser pulse terminates. 

To estimate the field in the resonant absorption region 
and the energy of fast electrons, we set Te = 0.55 keV and Ti = 
20 keV (these values were obtained in a one-dimensional cal-
culation at an angle of incidence q0 = 9°). With the help of 
(28), we have k0L = 5.95, L = 9.92 mm, a0|Hc| = F |H0|/ 2 k L0p  
= 1.25 ´ 105 CGS units,  |H0| = 9.15 ´ 105 CGS units. The 
imaginary part of the permettivity e2p = 0.0312, the square of 
the field amplitude |Ezc|2 = 1.61 ´ 1013 CGS units, the energy 
of fast electrons E h = 78.5 keV. The solution of equation (29) 
by the method of successive approximations yields x0 = 0.72, 
x1 = 1.36. Hence, due to ponderomotive acceleration, ions 
acquire a velocity relative to the critical surface, cs/x0 = 3.45 ́  
107 cm s–1.The numerical calculation also allowed us to deter-
mine the velocity of the critical surface motion towards the 
incident laser pulse, which during the time 0.4 – 1.0 ns increases 
from 3.11 ´ 107 to 4.82 ´ 107 cm s–1. Consequently, in the 
laboratory coordinates the ion velocity reaches 8.27 ´ 107 cm 
s–1 (E i = 170 keV). 

Consider the conditions for emergence of the isothermal 
plasma with Ti >>  Te. To this end, we use the energy equation 
of electrons and ions in the Lagrangian variables (m, t): 
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where E e,i are the specific internal energies; qTe,Ti are the ther-
mal electron and ion fluxes; pTe is thermal pressure of elec-
trons; pi = pTi + pv   is the sum of the thermal and viscous 
pressure of the ions; the coefficient Qei determines the rate of 
energy exchange between electrons and ions. Because the 
characteristic time of electron – ion energy exchange is much 
greater than the pass time of plasma through the transition 
layer, the electron – ion relaxation can be neglected in the 

problem of the transition layer structure. Multiplying the 
equation of motion ¶u/¶t = – ¶( pTe + pi + pr)/¶m by the veloc-
ity u, and adding up the resulting equation for the kinetic 
energy and equations (31) and (32), we obtain an equation for 
the total (internal and kinetic) energy of the plasma: 
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where p = pTe + pi, and the equation for the total energy of the 
ions 
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In the case of stationary motion, all quantities depend on 
the variables (m, t) as a combination of x = m – Dt, where D = 
rccs is the mass velocity of the wave. Assuming also that the 
temperatures Te and Ti are constant in the transition layer, we 
write equation (34) in the form 
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Integrating (35) in the transition layer from x0 to x1 (x0 corre-
sponds to the density x0, x1 – to the density x1) and neglecting 
the values of |E |2 and pv at point x0 in comparison with their 
maximum values, we have 
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where    c   s    e    2   = ZTe /mi. We estimate the difference qTi0 – qTi1 as 
fni0TivTi = fr0(Ti /mi)3/2. Then, substituting this expression into 
(36), we obtain an equation for determining the ratio between 
the electron and ion temperatures. This value of the ion tem-
perature should ensure the existence of a stationary transition 
layer. The solution of equation (36) depends on the density 
jump in the transition layer, which is determined by the 
parameter b in equation (29). For large values of the param-
eter b we can neglect in (36) the logarithmic term, as well as a 
term 1/x 12  as compared to 1/x 02 . Then the expression for the ion 
temperature takes the form 
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In this limiting case, the ion temperature is independent of 
the electron temperature and determined by the light pressure 
of the incident radiation. For small values of the parameter b 
in (29), when x0 » 1 – b1/4, x1 » 1 + b1/4, we can expand the 
quadratic and logarithmic terms in (36) in the small parame-
ter b1/4: ln(x1/x0) » 2b1/4, (1/ x 02  – 1/ x 12 ) » 4b1/4. As a result, 
from (36) we obtain the equation for the ratio y = Ti /(ZTe) 

y2 = h(1 + y),	 (38)

Table 1. 

q0 /deg	 da	 da  r

15	 0.268	 0.254 
30	 0.508	 0.491
45	 0.502	 0.482
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where h = (2/f )4T */(ZTe), T * = mi pr0F 2/(4pk0Lrc). Solution 
(38) has the form y = (h/2)[1 + (1 + 4/h)1/2]. As an example, 
consider the values of Te = 0.55 keV and Ti = 20 keV obtained 
in the numerical calculation; then, y = 1.82. This nonisother-
mality corresponds, according to the solution of equation 
(38), to the factor f = 0.79. It should be noted that in the 
numerical calculation the ions are heated not only in the tran-
sition layer, but also in the subcritical region when the plasma 
moves in a spatially oscillating ponderomotive potential, 
which modulates the plasma density and velocity profiles. 

Knowing the energy of fast electrons, we can estimate the 
ion acceleration by the field generated by these electrons at 
the plasma boundary. Following [16], we define the accelerat-
ing field as 

E = 4penhDz,	 (39)

where nh is the density of fast electrons; Dz is the distance over 
which electrons are emitted from the plasma. During the time 
t = mevh/(eE), the electron velocity vanishes, while the electron 
traverses a path Dz = eEt2/(2me) = mevh2  /(2 eE). Substituting 
this expression for Dz in (39), we obtain 

E = (4pnhE h)1/2.	 (40) 

The expression for the flux density of fast electrons has the 
form 
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Determining nh from (41) and substituting it into (40), we 
transform the field expression to the form 
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For the ion velocity ui = (Ze/mi)EtL with account for uitL >>     
RL, we have 
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We estimate the number of fast ions Nih from the condi-
tion that the accelerating field generated by a negative charge 
of fast electrons is screened by a positive charge of ions with 
the same absolute value, ZNih = Neh = nhp(RL + uitL)2Dz. As 
a result, we obtain 
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Let us estimate the velocity ui for the case of a titanium 
target and qL = 1014 W cm–2, tL = 20 ns. The fraction of the 
resonant absorption dar    = 0.16 (calculated using the two-
dimensional code for tL = 20 ns), RL = 32.5 mm, E h = 78.5 
keV. For these values, we obtain from (43) ui = 3.68 ´ 108 cm 
s–1 (E i = 3.39 MeV). 

Thus, there exist two mechanisms of ion acceleration: 
acceleration by the ponderomotive force and acceleration by 
an electric field generated by fast electrons at the plasma 
boundary. Acceleration by fast electrons produces a small 

group of high-energy ions whose energy is higher than that in 
the case of the ponderomotive acceleration. When the pon-
deromotive mechanism is used, all ions residing in the sub-
critical region are accelerated. Their number can be estimated 
as Nip = (1/mi)rccstLpR L2 . Finally, most ions located between 
the critical point and the front of the heat wave propagate at 
the hydrodynamic velocity. The maximum velocity is given by 
the expression [2/(g – 1)]cs (where g is the adiabatic expo-
nents), and at g = 5/3 we have 3cs. 

4. Conclusions 

Using the methods of time-of-flight diagnostics, we have mea-
sured the parameters of the ion component of plasma, recov-
ered the function of the energy distribution of ions produced 
under irradiation of Mg and Pb targets by CO2-laser pulses 
with a flux density of 1014 W cm–2. We have also found groups 
of ions with a different effective temperature and estimated 
their number in the total ion flux. 

We have developed an approximate analytical model of 
ion acceleration, which, in combination with numerical calcu-
lations by the hydrodynamic codes, makes it possible to eval-
uate the energy and the number of fast ions in different energy 
intervals. According to the model, there are different mecha-
nisms of ion acceleration. The highest-energy and small group 
of the ions is accelerated by an electric field generated by fast 
electrons produced by resonant absorption. The group of 
ions that is average in number and energy is accelerated due 
to deformation of the density and velocity profiles under the 
action of the ponderomotive force in the vicinity of the critical 
density. The model shows that in the case of resonant absorp-
tion, the critical point is sonic; therefore, when the pondero-
motive pressure greatly exceeds the thermal pressure, the sub-
critical plasma velocity is much higher than the sonic velocity. 
The largest group of ions consists of the ions accelerated by 
hydrodynamic expansion after the end of the laser pulse. The 
range of velocities of these ions varies from zero to the maxi-
mum velocity, which is several times higher than the speed of 
sound. The same behaviour of the energy distribution func-
tion of ions is observed in the experiment. Both in the compu-
tational model and the experimental data, there are three 
energy regions, where the distribution function is character-
ised by its own temperature. The number of ions in each 
group (in the experiment and model) decreases with increas-
ing energy. 
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