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Abstract.  A highly efficient (73 %) second-harmonic generation of 
femtosecond pulses in a 1-mm-thick KDP crystal at a fundamental-
harmonic peak intensity of 2 TW cm–2 has been demonstrated experi
mentally. In a 0.5-mm-thick KDP crystal, a 50 % efficiency has 
been reached at a peak intensity of 3.5 TW cm–2. We examine the 
key factors that limit the conversion efficiency and present numerical 
simulation results on further temporal compression of second-har-
monic pulses. 

Keywords: intense femtosecond pulses, second-harmonic generation, 
cubic nonlinearity.

1. Introduction

Second-harmonic generation (SHG) finds wide application in 
petawatt laser systems [1 – 3]. Frequency-doubled laser radia-
tion is used primarily to pump Ti-sapphire lasers and para-
metric amplifiers. Frequency conversion is also important for 
raising the peak intensity of focused light because it enables a 
twofold decrease in beam waist diameter. SHG can also be 
used to improve the temporal characteristics of ultra-high 
power femtosecond laser pulses. Of particular interest is the 
ability to reduce the pulse duration and increase the temporal 
pulse contrast [4]. Contrast enhancement is due to the fact 
that the second-harmonic generation efficiency is an essentially 
nonlinear function of light intensity. The second-harmonic 
pulse duration can also be reduced owing to the broadening 
of the spectrum (as a result of self- and cross-action effects) 
and subsequent phase correction using dispersion devices.

Optical frequency doubling is due to quadratic nonlinearity 
in crystals having no centre of inversion. An optical pulse 
propagating in a medium excites polarisation waves at fre-
quencies that are multiples of the drive frequency. In classical 
nonlinear optics, efficient conversion requires phase match-
ing between the generated second-harmonic wave and polari-
sation wave [5]. Phase matching occurs when the waves have 
equal phase velocities, which is possible at identical undisturbed 
refractive indices of the fundamental and second harmonics. 
Without phase matching, conversion efficiency is insignificant.

When petawatt radiation is frequency-doubled, an optical 
pulse generates not only waves with quadratic polarisation but 

also waves with cubic polarisation. Being in resonance with 
the fundamental and second harmonics, the latter waves give 
rise to an extra phase shift, known as the B integral [6, 7]. The 
high intensity induced refractive index modulation leads to a 
phase mismatch between the fundamental and second-harmonic 
waves [8 – 10]. Energy exchange can then be increased by cor-
recting the light propagation angle in a nonlinear element by 
a value proportional to the incident intensity of the funda-
mental harmonic [4, 9, 11]. The resultant phase-velocity mis-
match enables partial compensation for the cubic polarisation 
induced phase shift.

The effect of incident intensity on the optimal interaction 
angle was studied in Ref. [11]. The importance of taking into 
account the influence of cubic polarisation on the frequency 
doubling process was discussed in several reports [4, 8 – 10, 12, 
13], but highly efficient (above 50 %) SHG with a significant 
effect of cubic nonlinearity (at a B integral above unity) has 
not been reported to date.

This paper addresses the SHG of intense femtosecond 
pulses: the main factors that limit the conversion efficiency 
and experimental data on frequency conversion at peak inten-
sities of up to 3.5 TW cm–2 in KDP nonlinear crystals. We 
present a comparative analysis of the experimental data and 
three-dimensional (3D) modelling results on frequency con-
version. Numerical simulation is used to demonstrate that the 
pulse duration has a nonuniform distribution across the sec-
ond-harmonic beam. We examine the possibility of second-
harmonic phase correction with the aim of reducing the pulse 
duration and increasing the temporal pulse contrast for experi-
mentally realisable laser beams.

2. Theoretical model for SHG  
in a very strong laser field

The frequency doubling of intense ultrashort pulses in the case 
of oo – e interaction can be described by the following system 
of differential equations [8, 14, 15]:
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where A1 and A2 are the complex field amplitudes of the fun-
damental and second harmonics; z is a coordinate along the 
wave propagation direction; Dk = k2 – 2k1 is the wave vector 
mismatch; b and gij (i, j = 1, 2) are the second- and third-order 
nonlinear coupling coefficients [8]; r is the walk-off angle of 
the extraordinary wave; and k2

(i) = ¶2ki /¶2w2|w = wi
. The terms 

containing g11 and g22 represent the self-action of the funda-
mental and second harmonics, and the terms containing g12 
and g21 represent cross-action effects. The system of equa-
tions  (1) takes into account the difference in group velocity 
between fundamental (u1) and second-harmonic (u2) pulses, 
dispersion-induced pulse broadening, laser beam diffraction 
and the angular walk-off of the second-harmonic extraordinary 
wave. In the case of Gaussian pulses, the boundary conditions 
for system (1) have the form

A1(r̂ , z = 0) = A10(r̂ ) exp[–2 ln 2(t2/T 2)],	
(2)

A2(r̂ , z = 0) = 0,

where T is the pulse duration and A10(r̂ ) is the spatial distri-
bution of the pulse amplitude.

Cubic nonlinearity results in detuning from the phase 
matching condition. The extra, nonlinear phase shift can be 
compensated for by changing the angle between the funda-
mental wave vector and the optic axis of the crystal by Dq. As 
shown previously [4], the angle detuning, Dq, that ensures 
optimal conversion for oo – e interaction in a plane mono-
chromatic wave model is given by
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Here Dn = l1A
2
10(2g11 + 2g12 – g21 – g22)/(8p); n1 is the refrac-

tive index at the fundamental frequency; and no and ne are the 
principal refractive indices for the second harmonic. Expressions 
for the gij (i, j = 1, 2) of KDP crystals can be found elsewhere 
[4, 8]. For example, at an incident intensity of 3.5 TW cm–2 the 
angle detuning, Dq, needed for efficient SHG in a KDP crystal 
is –0.35°. The minus sign corresponds to a decrease in the 
angle between the light propagation direction and the optic 
axis of the crystal. It is important to note that taking into 
account the temporal and spatial beam structures reduces the 
compensation efficiency because the intensity and, hence, the 
increase in refractive index, Dn, are then functions of time and 
transverse coordinates.

An obvious implication of the above model is that opti-
mal SHG conditions can be achieved in a quasi-static pulse 
interaction mode, when the length scale for the spatial separa-
tion between fundamental and second-harmonic pulses exceeds 
the characteristic conversion length. Moreover, in experimental 
studies of SHG in a strong laser field, one should ensure that 
self- and cross-action effects have an insignificant effect on 
the fundamental and second harmonic parameters.

3. Experimental results and discussion

To experimentally investigate frequency doubling in a strong 
laser field, we used the output beam from the front-end sys-
tem of the PEARL petawatt femtosecond laser system [1]. 
Figure 1 shows a schematic diagram of a vacuum chamber for 
highly efficient SHG. Such experiments should be conducted 
in vacuum because the cubic nonlinearity of air has a strong 
effect at laser beam intensities of several terawatts per square 

centimetre. The influence of small-scale self-focusing on the 
SHG process was examined in detail by Ginzburg et al. [16]. 
The distances between optical elements were calculated using 
a self-filtration principle for harmonic disturbances of high-
intensity laser beams [11]. Properly adjusted distances allowed 
us to avoid optical breakdown of the mirrors and KDP crys-
tal even though the B integral exceeded 4.8 (for the second 
harmonic, B = g21|A10|2L + g22|A10|2L, where L is the thick-
ness of the crystal).

The fundamental-harmonic shaping/monitoring system 
comprised a mirror telescope (with a magnification factor f2/
f1 = 0.3, where f1 and f2 are the focal lengths of the mirrors) 
for reducing the beam diameter, a femtosecond pulse width 
meter (second-order intensity autocorrelator), energy meter, 
CCD camera for measuring the beam profile and frequency 
spectrum analyser. The fundamental-pulse duration was mea-
sured before and after the experiments. The duration of each 
pulse is difficult to determine because a beam splitter (light 
transmission element) must be used, which considerably modi-
fies beam parameters at intensities of several terawatts per 
square centimetre. The centre wavelength of the fundamental 
harmonic was monitored with a spectrometer and was ~ 910 
nm in our experiments.

The frequency was doubled by KDP nonlinear elements 
1 and 0.5 mm thick, cut at 42° to the crystal’s optic axis. At the 
input of the KDP crystal, the pulse energy was 9 mJ and the 
full width at half intensity (for a Gaussian profile) was ~70 fs. 
In the problem under consideration, the phase-matching band-
width at half maximum of the function sinc2(DkL/2) is 34 nm 
for the 1-mm-thick crystal. Note that the spectrum of a 36-fs 
transform-limited Gaussian pulse has the same width. The 
angular phase-matching bandwidth in the case under consid-
eration is 9.36 mrad, which far exceeds the total laser beam 
divergence, 0.19 mrad, in our experiments. At these beam 
parameters, the group delay length is 1.9 mm, and the second-
order nonlinear conversion length at an intensity of 3 TW cm–2 
is 0.23 mm. The walk-off angle of the second-harmonic extra
ordinary wave is 28.8 mrad. Figure 2 illustrates the intensity 
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Figure 1.  Block diagram of the pilot vacuum chamber for highly effi-
cient SHG of intense femtosecond pulses: (1, 2) spherical mirrors of a 
beam-contracting telescope; (3, 4) wavelength-selective mirrors.



965Highly efficient second-harmonic generation of intense femtosecond pulses

distribution in the Fresnel zone in our experiments with the 
1-mm-thick crystal. At a pulse energy of 9 mJ and pulse dura-
tion of 70 fs, the peak input intensity for this profile is 3 TW cm–2 
and the average over the beam aperture is 1 TW cm–2. The 
characteristic length scale for the spatial intensity distribution 
is d = 4 mm. For KDP crystals, the length scales on which the 
diffraction and angular walk-off of the second-harmonic extra
ordinary wave become significant are k1d2 = 166 m and d/(2r) = 
69.4 mm, respectively.

The second-harmonic monitoring system comprised an 
energy meter, spectrum analyser and CCD camera in the 
Fresnel zone. The fundamental and second harmonics were 
separated by dielectric mirrors, which ensured a total funda-
mental-harmonic discrimination ratio of 10–4. In energy mea-
surements, we used calibrated pyroelectric detectors.

Figure 3a shows experimental and theoretical SHG effi-
ciencies in the 1-mm-thick KDP crystal. In numerical simula-
tion of the process, we used the basic equations (1), boundary 
conditions (2) and the fundamental-harmonic intensity distri-
bution in Fig. 2. The angle detuning from the phase-matching 
angle was taken to be Dq = 0.95 mrad. The beam was assumed 
to have a Gaussian temporal profile.

As seen in Fig. 3a, increasing the fundamental-harmonic 
intensity increases the conversion efficiency to only a certain 
level. For the 1-mm-thick KDP crystal and the laser beam 
parameters under consideration, the optimal peak intensity is 
~1.5 TW cm–2. Further increase in energy density is accom-
panied by a reduction in conversion efficiency. The decrease 
in efficiency is caused by the cubic nonlinearity of the frequency 
doubling medium. As shown earlier [4, 11], angle detuning of 
a nonlinear element from the phase-matching angle allows 
one to raise the conversion efficiency for a top-hat laser beam 
profile. The optimal angle detuning depends on beam inten-
sity. For laser beams similar to that used in our experiments 
(Fig. 2), with the angular walk-off of the second-harmonic 
extraordinary wave taken into account, detuning from the 
phase-matching angle increases the conversion efficiency only 
slightly (Fig. 4). The observed reduction in efficiency (Fig. 3a) 
at pulse energies above 6 mJ is due to the fact that high values 
of the B integral (which reaches 4.8 at this second-harmonic 

pulse energy) lead to significant modulation of the spectrum. 
Typical fundamental- and second-harmonic spectra are pre-
sented in Fig. 5.

The effect of cubic nonlinearity can be reduced by lower-
ing the input fundamental-harmonic intensity, which would 
increase the aperture of the crystal, and by utilising thinner 
nonlinear elements. Figure 3b shows the SHG efficiency in 
the 0.5-mm-thick KDP nonlinear element. In those experiments, 
the beam profile differed slightly from that in Fig. 2 in fill factor 
F (0.26 instead of 0.34), which can be represented as
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where x and y are transverse coordinates and W stands for the 
region occupied by the beam. The reduction in the thickness 
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Figure 2.  Fundamental-harmonic intensity distribution at the input of 
a KDP crystal.
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of the frequency doubling crystal led to a drop in efficiency by 
up to 50 % but enabled the peak intensity at which cubic non-
linearity is insignificant to be raised to 3.5 TW cm–2. In com-
puter simulation, we used an experimentally determined beam 
profile and an angle detuning Dq = –1 mrad. The discrepancy 
between the simulation results and experimental data may be 
due to slight changes in beam shape during our experiments.

As seen in Fig. 3, the experimental data and simulation 
results are in reasonable agreement. Thus, we are led to con-
clude that the theoretical approach used to describe SHG with 
a significant effect of cubic polarisation is supported by experi-
mental data for the beam parameters and nonlinear element 
thicknesses examined. At the same time, further raising the 
beam intensity requires that the fourth-order nonlinearity be 
taken into account. The use of shorter fundamental pulses 
makes it necessary to take into account transient crystal polari-
sation effects: the dependence of the group velocity on the 
intensity and the nonlinear susceptibility tensor dispersion [14].

4. Further temporal compression  
of second-harmonic pulses

Cubic nonlinearity of a frequency doubling medium gives rise 
to self- and cross-action of the interacting fundamental and 
second harmonics. This leads to spectral broadening (Fig. 5), 
and the pulses acquire phase modulation and are not trans-
form-limited when emerging from the crystal. The phase 
modulation can be partially compensated through reflection 
from anomalous-dispersion (chirped) mirrors. Prism compres-

sors cannot be used for further compression because they 
strongly modify intense pulses. Moreover, small-scale self-
focusing may lead to optical breakdown in the glass. Experi
mental evidence of fundamental-pulse compression was reported 
by Mevel et al. [17], and a detailed theoretical analysis of this 
effect was presented by Akhmanov et al. [14].

Complete phase correction in experiments is a rather com-
plicated problem, but even correction of the quadratic compo-
nent enables a substantial decrease in pulse duration. Mathe
matically, this procedure can be represented by

A2c(t) = F [exp(–iaw2/2)F–1(A2(t, L))],

where A2(t, L) is the complex field amplitude of the funda-
mental harmonic at the output of the frequency doubling 
crystal; F and F –1 are the forward and inverse Fourier trans-
formations; and a is the quadratic dispersion coefficient.

Figure 6 presents spatiotemporal dependences of the sec-
ond-harmonic intensity at the output of a nonlinear element 
(frequency doubler) before and after correction of the qua-
dratic component. The dependences were obtained by numer-
ically solving the system of equations (1) subject to the bound-
ary conditions (2), with the fundamental-beam profile shown 
in Fig. 2 (pulse duration, 70 fs; thickness of the KDP element, 
1 mm). Phase correction enables a substantial decrease in 
second-harmonic pulse duration in the section through the 
average beam centre: from 54 fs at the output of the crystal to 
35 fs. The a parameter was adjusted so as to minimise the pulse 
duration in this section. Note that the transverse second-har-
monic pulse duration distribution at the output of a nonlinear 
element depends significantly on detuning from the phase-
matching angle.

The spatial distribution of the fundamental-harmonic inten-
sity at the input of a nonlinear crystal is typically nonuniform. 
Therefore, the accumulated B integral varies across the second-
harmonic beam. As a consequence, correction of the quadratic 
component fails to ensure a pulse duration uniform across the 
beam. Numerical simulation of SHG with the beam profile 
shown in Fig. 2 indicates that, after further compression, the 
second-harmonic pulse duration may vary across the beam by 
a factor of 2. An increase in the fill factor of the fundamental 
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beam would allow this effect to be reduced. Note that ultra-
high power femtosecond laser pulses usually have a nearly 
top-hat beam profile.

Raising the fundamental-pulse energy increases the B 
integral, resulting in further spectral broadening. In the model 
under consideration, at a fundamental-pulse energy of 9 mJ 
and duration of 70 fs, second-harmonic pulses can be com-
pressed to a 20-fs width at a = –202 fs2. It is worth emphasising 
here that, in this case, higher order terms in the Taylor expan-
sion of the phase for the second harmonic remain uncompen-
sated because the transform-limited pulse duration in a sec-
tion through the average beam centre is 17 fs, i.e., 15 % less 
than 20 fs.

5. Conclusions

Experimental data have been presented on the frequency 
doubling of pulses with a peak intensity of up to several tera
watts per square centimetre. We have demonstrated a 73 % 
energy conversion efficiency at a peak intensity of ~2 TW cm–2 
in a 1-mm-thick KDP crystal and a 50 % efficiency at peak inten-
sities of up to 3.5 TW cm–2 in a 0.5-mm-thick KDP crystal.

3D modelling of the SHG process allowed us to analyse 
the possibility of further pulse compression not only for model 
beams but also for an experimentally determined intensity 
profile. Theoretical analysis suggests that the second-harmonic 
pulse duration can be reduced from 70 to 20 fs.
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