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Abstract.  Interaction of counterpropagating waves in Brillouin-active 
media has been analysed by numerical computation. The dynamics 
of the development of acoustic waves is described using a second-
order equation. It is shown that in the case of counterpropagating 
waves with sufficiently steep leading pulse edges (tf £ 3T2, where 
T2 is the acoustic phonon lifetime), SBS begins from the level of 
acoustic waves induced by shock excitation in the bulk of the active 
medium rather than from the spontaneous noise level. This mechanism 
determines the phase of the output Stokes wave, which is generated in 
the backward direction to the wave with the highest input intensity, 
irrespective of the ratio of counterpropagating-wave frequencies. 

Keywords: phase conjugation, stimulated Brillouin scattering, abso-
lute instability, shock excitation.

1. Introduction

Numerous studies on the phase conjugation of laser radiation 
in the form of several beams, using stimulated Brillouin scat-
tering (SBS) nonlinearity, showed that the necessary condition 
for implementing phasing of the output Stokes beams in dif-
ferent channels is the mutual interference of all input beams in 
the same volume of the active medium [1 – 3]. When four-wave 
mixing schemes are used to phase several channels, all input 
laser beams must interfere with the same reference wave [4, 5]. 
These requirements are quite obvious, because the aforemen-
tioned phase-conjugation systems implement not absolute 
but only relative phase conjugation of the beams interacting 
in the SBS mirror.

Recently, a new interferometric scheme (see Fig. 1a) has 
been proposed and implemented in a series of experimental 
studies [6 – 8]. Here, the initial laser beam is split into two 
beams by a semitransparent mirror, while the reflection from 
two independent SBS cells is obtained after transmitting the 
radiation through the active-medium volume, with subsequent 
backward focusing into the same volume. The experiments 
showed that the radiation reflected backward in the cells was 
frequency-shifted with respect to the incident radiation by the 
value of the Stokes shift, which is typical of the active medium 
used, while the phase difference of the two output waves barely 
changed in a series of independent experiments (Fig. 1b shows 

the phase difference realisations obtained in more than 200 
independent tests [7]). The phase difference changed with a 
change in the position of the focusing mirrors M1 and M2 in 
the same way as in an interferometer with conventional mir-
rors. Hence, a direct conclusion is that the stimulated scatter-
ing starts developing not from the spontaneous-noise level. 
Meanwhile, we believe the theoretical interpretation of this 
effect that was proposed in [9] to be far from reality. The pur-
pose of this study was to propose a correct interpretation.

The effect under consideration can qualitatively be explained 
as follows: when two counterpropagating waves with the same 
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Figure 1.  (a) Schematic of the experiment [7] and (b) the phase differ-
ences F of the output waves obtained in independent tests.
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frequency are introduced into an active medium, a standing 
wave of density variation is generated in the bulk of the medium 
due to the occurrence of striction forces. If the leading edges 
of light pulses are sufficiently steep, shock excitation of intrinsic 
acoustic vibrations of the active medium occurs. Physical 
analogies of this process are the shock excitation of a reso-
nant electrical circuit by a step voltage or vibrational excita-
tion of a mechanical oscillator at a sharp transition to a new 
equilibrium state. Specifically these vibrations initiate stimu-
lated scattering of input radiation. Therefore, in contrast to 
the concept proposed in [6 – 9], the generation of the intrinsic 
acoustic vibrations with frequencies in the vicinity of the SBS 
resonance is caused by not the standing grating of density 
variation but the high growth rate of this grating.

We analysed the interaction of counterpropagating waves 
in an SBS-active medium on the basis of numerical computa-
tion. To describe more adequately the dynamics of development 
of acoustic waves and their role in the process under consider-
ation, we used the second-order equation for the first time. It 
is shown below that the time-dependent regime is characterised 
by generation of resonant acoustic waves under shock excitation 
of the active medium; the process studied occurs specifically 
on these waves under the conditions of absolute instability.

2. Basic equations and analysis

The analysis will be performed within the approximation of 
active medium with a length L << tc (t is the duration of interact-
ing light pulses and c is the speed of light), which generally 
corresponds to the experimental conditions (the versions 
related to the compression of Stokes pulses due to the group-
delay effects are disregarded). Then the time derivatives in the 
equations for the counterpropagating light fields can be 
neglected. Dynamics of the acoustic wave Q(z, t) = 
q(z, t) exp(ikqz) will be described by the second-order equa-
tion, which is exact for Raman scattering and approximate 
for Brillouin scattering. We assume that the interaction is 
local with respect to the active-medium response; therefore, 
we neglect the spatial derivatives in the equation for the 
amplitude q(z, t); this approach is valid at short acoustic-pho-
non lifetimes T2 and corresponds to the experimental condi-
tions [6 – 8]. The counterpropagating waves can be considered 
as plane near the focal waist (where their interaction is most 
efficient) (see Fig. 1a). In this region, the wave propagating in 
the forward direction and the wave focused backward will be 
referred to as the signal and pump waves, respectively. Finally, 
the system of dynamic equations for the counterpropagating 
plane waves, according to the schematic diagram in Fig. 2a, 
can be written as
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Here, z is the longitudinal coordinate (in the wave propaga-
tion direction); g0 is the specific amplification increment of 
the Stokes signal upon SBS; A(z, t) is the slow amplitude of 
the counterpropagating pump wave; a(z, t) is the slow ampli-
tude of the signal wave; w0 = |kq u| is the Brillouin resonance 
frequency; u is the speed of sound in the active medium; T2 is 
the acoustic-wave lifetime; q(z, t) is the acoustic-oscillation 
amplitude, which is normalised so that the spatial derivatives 
of light-field amplitudes are proportional to g0; and F(z, t)  is 
a d-correlated thermal noise source of density fluctuations (it 
must be introduced to take into account the influence of 
spontaneous noise). Note also that, within these approxima-
tions, the wave vector of acoustic vibrations, kq, is assumed to 
be kA + ka (kA and ka are the moduli of the wave vectors of the 
pump and signal waves, respectively).

Obviously, system (1) remains valid when the counter-
propagating waves have different frequencies. To explain the 
results of [6 – 8], the equality of the counterpropagating-wave 
frequencies will be specified. 

To describe the process under consideration, system (1) 
was solved under the following boundary and initial condi-
tions: a(0, t) = a(t) exp(iwt), A(L, t) = A(t), q(z, 0) = 0, q’(z, 0) = 0. 
Here, the pump-wave frequency is taken to be the origin of fre-
quency coordinate and w is the weak-wave frequency detuning 
from the counterpropagating-wave frequency. 

The third equation for the acoustic vibrations of system 
(1) at step switching on light fields (with a noise source 
neglected and the light fields assumed to be specified with 
identical frequencies) yields the following estimate for the 
parameter q(z, t):

q(z, t) ~ 2iT0 2w  exp [i(jA – ja)]
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where jA and ja are the pump- and signal-wave phases. 
Having presented the cosine as half-sum of two exponentials 
and multiplied the expression for q(z, t) by exp(ikqz), we obtain 
the solution for the acoustic waves in the form
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Figure 2.  (a) Schematic diagram of interaction between the signal and 
pump waves and (b) the four-wave mechanism of generation of Stokes 
and anti-Stokes frequency components. 
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Here, wR = (w0
2 – T2

–2)1/2 is the frequency of intrinsic acoustic 
vibrations of the medium. The first term describes the steady-
state grating of the density of the medium, while the two oth-
ers describe the acoustic waves propagating in the opposite 
directions. Specifically these waves initiate SBS of the input 
light fields. This fact was also experimentally confirmed in 
[10].

It follows from the above solution that the amplitude of 
shock-excited acoustic vibrations is inversely proportional to 
the product w0Т2. The active medium in [6 – 8] was Freon 
FC-75, which is characterised by the minimum product w0Т2 
among the active media that are generally used in experiments; 
we believe this circumstance to be favourable for detecting the 
effect. The influence of a noise source in the equation for 
acoustic vibrations will be discussed below for specific time 
parameters of the pulses used in the experiments. 

In the case of steady-state amplification of a small mono-
chromatic signal, one can easily derive the well-known depen-
dence of the gain on the signal frequency from system (1):
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Here, the pump-wave frequency, as was noted above, is taken 
to be the frequency coordinate origin. 

The expression for f (w) can be expanded in partial frac-
tions:
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where c = w0/wR. The first and second terms in (3) correspond 
to Stokes and anti-Stokes oscillation modes, respectively. Thus, 
one can clearly see that the frequency dependence of the gain 
is a superposition of two Lorentzian profiles, the first corre-
sponding to the Stokes scattering and the second describing 
the anti-Stokes scattering. The corresponding dependences for 
Freon FC-75 and the pump wavelength l = 1.064 mm are 
shown in Fig. 3 for the true profile f(w) and its approximation 
by the Lorentzian profile j(w) = [1 + iT2(wR + w)]–1, which is 
generally used to describe SBS, with wR replaced by w0.

As was noted above, two counterpropagating light waves 
with equal frequencies and steep leading edges of pulses gen-
erate resonant acoustic waves in the active medium. As a result, 
the light waves undergo scattering from the moving density 
gratings to generate waves with Stokes and anti-Stokes fre-
quency shifts with respect to the pump-wave frequency. In this 
case, the schematic diagram of interaction (Fig. 2b) corre-
sponds to the four-wave mechanism. A specific feature of this 
scheme is the absence of spatial separation of the generated 
and pump waves. Note that Fig. 2b shows only one acoustic 
wave, which corresponds to the scattering of high-power pump 
with a Stokes shift. In this case, the second acoustic wave can 
be neglected in the qualitative analysis below, because its 
maximum intensity is much smaller; this is confirmed by the 
results of numerical simulation. At the ratio of counterpropa-
gating-wave intensities |A(z, t)|2/|a(z, t)|2 ~ 10 – 1000 and suf-
ficiently large gain increments (G = g|A|2L ³ 4p), the regime 

of absolute instability for interacting waves is implemented 
[11, 12].

We will perform the analysis on the assumption that the 
amplitude of high-power pump wave (A(z, t) = A = const) and 
the weak-wave intensity (|a(z, t)|2 = |a|2 = const) are speci-
fied, taking into account the real gain profile (usually in the 
theoretical studies the pump-wave amplitude and the 
Lorentzian gain profile were considered to be specified a pri-
ori). On these assumptions, the steady-state equations for the 
amplitudes a–(z) and a+(z) of the Stokes and anti-Stokes 
waves, with the linear wave detuning neglected and the fre-
quencies of the initial waves considered as equal, can be writ-
ten as
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Here, the phase modulation of a small-signal wave in the 
strong-wave field is taken into account in the third equation. 
One can easily solve the latter and, substituting the solution 
into the first two equations of system (4) and replacing the 
variables, reduce it to the system of two equations with con-
stant coefficients. For brevity, we present the expression for 
the eigenvalues l instead of the entire system, because, when 
the eigenvalues are known, one can find the conditions for 
existence of nonzero solutions under zero boundary condi-
tions (specifically this is the criterion for implementing the 
absolute-instability mode):
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where D = g0(i/w0T2)|A|2. 
Having omitted some simple but cumbersome transfor-

mations, we present the final expression for determining the 
absolute-instability threshold:
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Figure 3.  Dependences of the real and imaginary parts of the steady-
state gain on the signal frequency: j(w) is the Lorentzian profile and 
f (w) is the true profile given by (2). The coordinate origin corresponds 
to the pump frequency. The calculations were performed for Freon 
FC‑75, proceeding from expressions (2) and (3).
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Eqn (5) for the generation frequencies w and the minimum 
threshold gain increments Gth = g0|A|2L yields 
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If the Lorentzian profile is used instead of f (w) and the 
phase additive (w0T2)–1 in (6) is neglected, the solution to the 
system is the well-known result [11, 12], which leads to degen-
eracy in the threshold increment Gth due to the Lorentzian 
profile symmetry. In other words, the modes with equal fre-
quency detunings from the gain-profile maximum have identi-
cal thresholds:
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(7)
w = – wR + W,

where W = ±p/(T2 ln b) and b = |A|2/|a|2.
This degeneracy causes strong output Stokes radiation 

oscillations at an appropriate frequency; these oscillations 
were observed in [13], where, due to the specificity of the 
active medium used (CS2), the gain profile can be assumed to 
be Lorentzian and the phase additive can be neglected. The 
use of the real gain profile (2) in our case eliminates the degen-
eracy, and it can be shown that the mode with a frequency 
exceeding wR has a minimum threshold. Simultaneous con-
sideration of the real profile and the nonlinear phase additive 
leads to the opposite result: the minimum threshold corre-
sponds to the mode with a frequency lower than wR, because
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[this expression is obtained as a result of approximate solu-
tion of system (6)]. This leads to a decrease in the threshold 
increment in comparison with the value in (7). Anticipating 
things, we should note that the results of the numerical calcu-
lation confirm that the phase modulation of the weak pump 
wave must be taken into account (Fig. 5). Note also that, 
when counterpropagating pump waves with different fre-
quencies are used, the sign of nonlinear additive will change 
(Fig. 3) and, correspondingly, the sign of W will also change 
to opposite (see Fig. 5).

3. Basic results

The computer simulation was performed using the Mathcad 14 
Software. The numerical solution to system (1), which was 
obtained using the boundary and initial conditions, is a spatio
temporal matrix of amplitudes of the pump wave, the counter-
propagating wave, and the acoustic wave; this form allows one 
to obtain the main wave characteristics (phase and intensity) 
in an arbitrary spatiotemporal cross section. The temporal 

profile of the pump pulses was chosen proceeding from the 
data of the above-mentioned studies. The ratio of the counter-
propagating-wave intensities varied from 10 to 1000. A 
d-correlated noise source F(z, t) [see (1)] was simulated by the 
function R rnd(1) exp [ i rnd(2p)].

Note also that system (1) is written for slow envelopes of 
the pulses propagating in opposite directions rather than for 
the amplitudes of spectral components at specified frequen-
cies; i.e., there is a superposition of waves with different fre-
quencies that are shown in Fig. 2b in each of the two direc-
tions. After the Fourier transform of the calculated pulses we 
can select the signal and pump waves and the Stokes and anti-
Stokes components, because they have different carrier fre-
quencies.

First, the calculations were performed for zero intensity of 
a small-signal wave at a steady-state gain increment g0IL ~ 25 
(I is the pump-wave intensity) and a long (~50 ns) pump pulse 
with a smooth leading edge. In this case, the intensity of the 
output Stokes signal, which develops from the spontaneous-
noise level, should be ~1 % of the pump intensity; it is consid-
ered as the experimental SBS threshold. Based on specifically 
these considerations we found the noise source amplitude 
R ~ 2 ́ 104 in system (1). Figure 4 shows the time dependences 
of the interacting-wave intensities at the maximum steady-
state gain increment (35), the ratio of counterpropagating-
wave intensities equal to 100, and equal frequencies of the 
signal and pump waves. Oscillations with a frequency close to 
the Stokes-shift frequency can clearly be seen in the output 
signal and in the output pump wave. 

The spectral composition and phase behaviour of the 
interacting waves at different ratios of the pump and signal 
frequencies are shown in Fig. 5. The FWHM duration of the 
input pulses was assumed to be 7 ns. To model the real situa-
tion, the wave intensities during the first three nanoseconds 
were considered as zero in order to obtain the quasi-steady-
state level of noise acoustic vibrations before switching on the 
interaction between the signal and pump waves. Qualitatively 
similar results were obtained at steady-state gain increments 
of 20 – 30. Figure 5 shows the cases where the input signal has 
resonant Stokes (Figs 5a, b) and anti-Stokes (Figs 5c, d) fre-
quencies. Here, even in the case of anti-Stokes input signal, a 
Stokes-shifted wave (with respect to the pump wave) is 
recorded at the output (note that this holds true for only the 
interacting waves with the above-mentioned parameters). The 
spectra and phases in Figs 5e – h correspond to the cases where 
the input-signal frequency is within (Figs 5e, f) or beyond (Figs 
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5g, h) the frequency band of the real SBS profile. One can see 
that the output-signal spectrum is shifted in a particular direc-
tion with respect to the exact resonance; this pattern is in 
complete agreement with the results of approximate analysis 
in Section 2.

The time dependences of output-wave phases are shown 
in Figs 5b, d, f, and h. As was noted above, the frequency 
coordinate origin is taken to be the pump-wave frequency. 
The phase of the resonant Stokes signal is shown as a refer-
ence in each panel. One can clearly see that in the beginning 
and in the end of interaction the output-signal phase is deter-
mined by the frequency of the weak input wave ws, and, when 
the Stokes-shifted (with respect to the strong wave) signal 
dominates in the output beam, the phase begins to be deter-
mined by the frequency corresponding to the Stokes shift 
(ws = wp – wR) in the case of resonant excitation and the fre-
quency with the corresponding detuning from the exact reso-
nance at ws ¹ wp – wR. The time dependences of the output-
radiation phase become almost parallel to the reference one. 
The transition to a particular type of temporal phase varia-
tion at a chosen time scale is almost stepwise due to the fast 
increase in the Stokes component of the output signal in the 

beginning of the pulse or its fast decrease in the end. It can 
also be seen that the pump-wave phase remains practically the 
same because at the chosen ratios of interacting-wave intensi-
ties it is still most intense along the entire interaction length.

Nevertheless, the presence of a wave withy a Stokes shift 
in the output signal does not mean stable reproducibility of 
the phase ratios of signals in a number of independent tests 
according to the technique [7]. 

If the term F(z, t) in system (1) is neglected, the problem 
becomes completely deterministic, and the output-radiation 
phase (under zero initial conditions for acoustic vibrations) is 
determined by the input-signal phase. Indeed, the exact solu-
tions to system (1) will differ by only the presence of the cor-
responding phase factors of the exp [ijA,a(0)] type for light 
fields and the exp [ijA(0) – ija(0)] type for the acoustic wave, 
which can be proved by their substitution into system (1). The 
presence of a noise source should lead to the phase mismatch. 
Obviously, the average phase depends on the pump-wave 
intensity, the ratio of the pump- and signal-wave intensities, 
and the slope of the leading edge of interacting pulses. The 
most adequate characteristic is the rms deviation sN of the 
phase of the correlation coefficient corr [a(L, t), a(L, t)n], since 
specifically this parameter determines the position of the inter-
ference patterns in the recording system (Fig. 1). Here, a(L, t) 
and a(L, t)n correspond to the solutions to system (1) with the 
noise source neglected and taken into account, respectively; n 
is the test number; and N is the total number of independent 
tests. Figure 6 shows the dependence of sN on the width of the 
leading edges of the interacting pulses, which was determined 
from the time during which the pump intensity increased from 
0.1Imax to 0.9Imax. Each point in the plot corresponds to N = 
10. The solid line s = p/ 3  shows the uniform phase distribu-
tion from 0 to 2p. All data were obtained at the ratio of pump 
and signal intensities equal to 100 and the maximum steady-
state gain increment equal to 25. It can be seen that at the 
leading edge of the pulse duration up to ~3T2 (in our case, T2 
= 0.9 ns), the phase reproducibility is sufficiently good; at the 
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pulse duration above 4 T2 the phase distribution becomes 
independent of the initial signal phase and the output-signal 
phase starts being determined by a specific realisation of ran-
dom spontaneous noise in each independent test.

4. Conclusions

We showed that the mode of shock excitation of acoustic 
vibrations can be implemented in the case of counterpropa-
gating plane waves with steep leading edges (tf £ 3T2). In this 
case the input-signal phase is reproduced in a number of inde-
pendent tests. Note again that the main difference of the model 
of plane-wave interaction that was considered above from 
various versions based on the use of absolute instability on 
Brillouin nonlinearity is the absence of spatial separation of 
the signals with different frequencies. Therefore, by the analogy 
with the abbreviation BEFWM (Brillouin enhanced four-
wave mixing), this scheme can be referred to asBEFWA 
(Brillouin enhanced four-wave amplification). Obviously, a 
conventional SBS amplifier is implemented when a signal is 
introduced at a Stokes shift frequency.
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