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Abstract.  We discuss the physical basis of how to control changes 
in basic kinematic parameters of neutrons (energy, velocity, den-
sity, etc.) through variation in the current of a coaxial magnetic 
trap containing neutrons. We present quantitative assessment of 
possible changes in the parameters by several orders of magnitude 
and outline potentials and prospects for application of the approach 
discussed. 

Keywords: quantum nucleonics, acceleration and deceleration of 
neutrons, manipulation of neutron concentration, ultracold neu-
trons, nuclear reaction with neutrons, neutron pumping of gamma 
lasers. 

1. Introduction 

Goal-directed control of kinematics of the neutrons, hindered 
by their electrical neutrality, is needed to solve problems in 
neutron optics, microscopy, interferometry, quantum nucle-
onics, etc. (see, for example, [1 – 3]). Typically, the neutron 
motion is controlled by using the interaction of its magnetic 
moment with the electromagnetic field having a finite gradi-
ent of the magnetic induction. This paper discusses the physi-
cal basis of the control of kinematic parameters of neutrons 
accumulated in a coaxial magnetic trap, which was success-
fully applied earlier to maintain the beam of neutral sodium 
atoms [4]. The method may help to solve problems in areas 
that are discussed in [1 – 3]. 

2. Neutrons in a coaxial magnetic trap 

The basis of a coaxial trap is a straight conductor of diameter 
2rj with a current J, producing, at a sufficient distance from 
the ends of the conductor in a cylindrical coordinate system 
(z, r, j), the magnetic field with induction 
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and circular lines of force, encompassing the current in the 
plane (r, j) (m0 is the magnetic permeability of free space). In 
this field, the vector of the magnetic dipole moment with the 
modulus m = 0.95 ´ 10–20  J T–1 is set along a tangent to the 

line of force, and a neutron finds itself trapped in a potential 
well 
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experiencing, at point r ³ rj, the impact of a gradient-mag-
netic force with the modulus 
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directed along the radius to r = 0.. 
To describe the behaviour of the neutron in a coaxial 

magnetic trap, which is a macroscopic device, the classical 
consideration is sufficient and the quantum-mechanical anal-
ysis is hardly necessary. 

In fact, the solution of the Schrödinger equation for a neu-
tron with mass M and energy e is Y 2 (r, j, z) = Y 2 (r) ´ 
cos2(Nj)cos2(Qz), where N is the integer orbital quantum 
number; Q = (2Mez)1/2/ћ; ez is the longitudinal component of 
the energy e; Y(r) is the integral of the equation 
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Next, using the analysis of quantization conditions, for exam-
ple, for orbital degree of freedom of the neutron [the factor 
cos(Nj)], and estimating, in accordance with the Bohr rules, 
the orbital quantum number N = (r/ћ)(2Mej)1/2 as the ratio of 
the circular orbit length with radius r to the orbital compo-
nent of the de Broglie wavelength Lj = 2pћ(2Mej)–1/2, where 
ej is the orbital component of the energy, it is easy to see that 
the energies of the two neighbouring states with the numbers 
N + 1 and N differ by Dej » (ћ/r)(2ej/M)1/2. If the difference 
Dej is comparable to the homogeneous energy width of the 
orbital state de (Dej £ de), the spectrum of the states becomes 
continuous, and the quantum properties of the system are lost 
together with the discrete nature of the spectrum. 

The homogeneous  width de = 2pћtn–1 is inversely propor-
tional to the smallest of the lifetimes tn  of the state (for exam-
ple, to the storage time of a neutron in a trap, to the inverse 
probability of neutron collisions, etc., up to the maximum 
time – the lifetime of a b-radioactive neutron tb » 1300 s), i.e., 
de = 2pћtn–1 ³ 2pћtb

–1 » 3 ´ 10–18 eV, with an overstoke, 
because usually tn << tb, and the entire energy spectrum of the 
states is much more dense due to quantization of two other 
degrees of freedom of the neutron. 

Thus, the need for a quantum approach is lost if 
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i.e., at macroscopic parameters quite typical of the trap (e.g., 
at r < 10–4 cm even for thermal neutrons with e » 25 meV and 
without reservations due to tn << tb and compression of the 
spectrum of states by other degrees of freedom). 

As a result, for further consideration of the trap of macro-
scopic geometry, it is sufficient to resort to a cylindrical ver-
sion of the Kepler model, restricting ourselves for definite-
ness, only to circular orbits. 

3. Kepler model of a coaxial magnetic trap 

In the Kepler model with cylindrical geometry, along with the 
gradient-magnetic force FB (3) the centrifugal force with the 
modulus 

Fc = 2ej/r.	 (5)

acts on the neutron. 
The equality Fc = FB sets the stationary motion of the neu-

tron along the circular orbit with the radius 
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and rotation frequency 
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In this case, the product 
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forms a family of hyperbolas with the current J as a parame-
ter (here and below, in numerical expressions – cm, s, eV, A). 

Because the force components tangential to the orbit of 
the neutron are absent, its angular momentum remains 
unchanged, 

r(2Mej)1/2 = const,	 (9) 

and, therefore, Fc = const2/(Mr 3). Thus, due to a rapid 
decrease in Fc ~ r –2 as compared to Fc ~ r –3 with increasing 
radius r, the equilibrium orbit of radius r0 is stationary. 

Note that in the expression for the force FB (3), we made 
an assumption about parallelism of the dipole moment vector 
m and the vector B, because at the precession frequency of the 
neutron, significantly higher than the frequency W (7), the 
vector m has time to follow the direction of the vector B. For 
this reason, the orbital quantum number N also includes 
changes of Berry’s phase, which occurs due to rotation of the 
vector m, following the vector B in its orbital motion. 

As a result, the neutron trajectory is a spiral with radius r0 
and step Dz = 2puz /W, and a set of trajectories forms a circular 
cylinder of radius r0  (6), moving with a velocity uz = (2ez /M)1/2 
along the z axis and rotating around it with a frequency W (7). 

The fact that the present non-monokineticity of the neu-
tron flux is of purely thermodynamic origin raises doubts, 
because the energy dispersion of the neutron, De, to a greater 
extent is due to the technological features of loading of neu-
trons in the trap. However, it is convenient to ascribe to neu-
trons a conventional parameter with the temperature dimen-
sion 

T  * º De/kB	 (10)

(kB is the Boltzmann constant). 
A non-monokinetic neutron flux fills a cylindrical layer 

with an average radius r0 (6), a relative radial thickness 

Dr0/r0 = kBT  */ej	 (11)

and a volume per unit length of the trap with a total length L 
along the z axis 
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The neutron ensemble in the volume VL can be assumed 
collisionless if the probability of collisions during the storage 
time of the neutron in the trap is small, 

snL(kBT  */ez)1/2 << 1;	 (13)

otherwise, the collision should be taken into account (s is the 
collision cross section, n is the concentration of neutrons). 

4. Neutrons in a coaxial magnetic trap 
(transient processes) 

The change in the orbital states of the neutron in a coaxial 
trap proceeds under the variation of the current J. If J changes 
sufficiently slowly, i.e., if the relative change in the equilib-
rium radius, occurring during the time 2p/W, is small (|dr0|/r0 
<< 1), the transient process can be viewed as a sequence of 
stationary states, to which we can apply the results of the pre-
vious section. This limits the rate of change in the current by 
the inequality

3 10
d
d
t
J

mM

2
/

/
/

0
1 2

3 2
17 3 2

#% .
m

e
ej

j
^ h

 (A/c),	 (14)

which can hardly result in noticeable difficulties in experi-
ments even with ultracold neutrons. 

Due to the constancy of the orbital angular momentum 
(9) and fulfilment of (14), the change in the current from J1 to 
J2 leads the transition from the steady state 1 to state 2 with 
the following relationship between the initial and final param-
eters: 

e2/e1 = (J2/J1)2,	 (15)

De2/De1 = T2
*/T1

* = (J2/J1)2,	 (16)

r02/r01 = J1/J2 ,	 (17)

V2/V1 = (J1/J2)2,	 (18)

n2/n1 = (J2/J1)2,	 (19)

e2n2 /e1n1 = (J2/J1)4,	 (20)

W2 /W1 = (J2/J1)2.	 (21)

A few necessary remarks. 
1. The ratios between the neutron concentration (19) and 

the density of the orbital energy component (20) are valid 
under the assumption that the variation of the current J and 



1123Control of kinematics of neutrons in a coaxial magnetic trap

the corresponding change in the volume V (18) occur without 
changing the number of neutrons: Vn = const. 

2. Strictly speaking, in the collisionless neutron ensemble, 
subject to inequality (13), changes in the energy e (15) and in 
the conventional temperature T  * (16) are directly related only 
to their orbital components; however, in the case of the oppo-
site sign of inequality (13), neutron collisions can extend these 
changes to all degrees of freedom of the neutron. 

3. Difficulties associated with large values of the current J 
and magnetic field strength can be eliminated by at least two 
ways: by using short current pulses, J, and/or by using the 
available superconducting wires with a high critical magnetic 
field (see, for example, [5]). 

Parameters of the initial (state 1) and final (state 2) states 
of the transient processes can be illustrated by two numerical 
examples with a decrease (No.  1, J2 < J1) and an increase 
(No. 2, J2 > J1) in the current J (Table 1) which indicate the 
ability to manipulate all basic kinematic parameters of the 
neutrons that are listed in (15) – (21), by varying the current J. 

5. Conclusions and brief discussion 
of some experimental situations 

The list of the experimental tasks given below, does not con-
tain any final solutions, but is useful from the point of view of 
some possible options for the application and development of 
this method of control of the neutron kinematics in the coax-
ial magnetic trap. 

1. The change in the energy e and the conventional tem-
perature T  *, including the production of ultracold neutrons 
with Te ~ 10–3 K (and even the hypothetically extreme cold 
neutrons with Te << 10–3 K). 

2. The change in the neutron density and energy density ne. 
3. Excitation of nuclear reactions by neutrons with opti-

mised parameters – the energy e, the concentration n, etc., for 
which the exposed nuclei are placed in a coaxial cylindrical 
layer with a finite radius r02 [for example, the reaction of radi-
ative neutron capture (n, g)]. 

4. Pumping of nuclear gamma-ray laser by neutrons with 
optimised parameters [both according to the Mössbauer 
scheme with a solid-state matrix and according to the scheme 
with hidden inversion of free nuclei [3], in particular, the radi-
ation neutron capture (n, g)] with the placement of the nuclei 
in an extended final coaxial layer in accordance with item 3. 

5. Initiation of fission reaction of nuclei located in the 
final coaxial layer by neutrons with optimised parameters (the 
energy e, the concentration n, etc.) in accordance with item 3. 

6. Generation of a binary neutron – electron (ion) beam in 
a modified coaxial magnetic trap, where the central current-
carrying conductor is replaced by a straight beam of free 
charged particles (e.g., electrons), which produces the neces-
sary radial-gradient magnetic field of the form (1). The result 
of this modification is producing a mobile coaxial magnetic 
trap in the form of the unity of two coaxial beams of particles, 

moving in free space with a velocity equal to the lesser of the 
two transport velocities of the particles (it is important to 
emphasise an essential requirement for the inequality of the 
latter, which is needed to produce a magnetic field!). Such a 
moving coaxial magnetic trap (of course, if its long enough 
existence is established) offers the prospect of remote realisa-
tion of processes as listed in items 1 – 5. 

In general, the above list indicates the attractive prospect 
of constructing a coaxial neutron magnetic trap with a vari-
able current intensity as a tool for controlling kinematic 
parameters of neutrons (with a change by several orders of 
magnitude) in different areas of experimental physics. 

In conclusion, it is worth mentioning that a coaxial mag-
netic trap [4] capable of varying the current significantly 
expands the range of its applications in atomic experiments, 
transforming it from a simple accumulator of atoms into the 
device controlling their kinematic parameters.
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Tabl.1

Example No., state	 J/A	 r0/cm	 e/eV	 Te
*/K	 n/cm–3	 en/eV cm–3

№ 1 
State 1	 10	 10–3	 6 ´ 10–13	 10–3	 105	 6 ´ 10–8	
State 2	 1	 10–2	 6 ´ 10–15	 10–5	 103	 6 ´ 10–12	

№ 2
State 1	 1	 10–2	 6 ´ 10–11	 10–1	 105	 6 ´ 10–6	
State 2	 10	 10–3	 6 ´ 10–9	 10	 107	 6 ´ 10–2


