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Abstract.  We have analysed the conditions for the appearance of 
polarisation singularities in the second-harmonic beam cross sec-
tion arising in the case of reflection of a uniformly elliptically 
polarised Gaussian beam at the fundamental frequency from the 
surface of an isotropic gyrotropic medium. It is shown that there 
are elliptical polarisation states of the incident light at which the 
cross section of the second-harmonic reflected beam contains either 
one or two C lines and either two, or one, or none L lines [the loci of 
the points where the propagating radiation is circularly (C) or lin-
early (L) polarised].The formulas determining the conditions for 
the occurrence of L and C lines and specifying their orientation in 
the plane of the cross-section of the second-harmonic beam are 
obtained.

Keywords: polarisation singularities, second-harmonic generation, 
chirality, nonlinear-response nonlocality.

The laser-beam second-harmonic generation (SHG) was dis-
covered 50 years ago. Nevertheless, it has been actively inves-
tigated, applied, and improved in different schemes. For 
example, SHG is currently used to study the local and nonlo-
cal responses of nanoparticles [1] and microstructured materi-
als [2] and to analyse the radiation scattering from nanoscale 
surface inhomogeneities [3]. There have also been attempts to 
apply SHG for studying the two-photon resonances and 
vibrational spectra of various molecules [4 – 6].

One of the widest spread methods for studying nonlinear 
optically active media and thin films is based on the SHG 
from their surface. The conditions for second-harmonic gen-
eration and the technique for detecting the effects caused by 
the chirality of molecules are well known and described in the 
literature [7 – 12]. A relatively long time ago some theoretical 
studies were carried out within the plane-wave approxima-
tion, where the influence of the spatial dispersion of the non-
linear optical response of a chiral medium [7 – 10] and the sur-
face inhomogeneity of its optical properties [13] were taken 
into account in different ways. In some experiments there 
were attempts to separate the contributions from the surface 
and volume of the material to the second-harmonic signal [14] 
and select the second-harmonic component that is due to the 
chirality of the medium [15, 16]. The authors of [11, 12] were 

the first to take into account the boundedness of the funda-
mental beam when calculating the intensity and polarisation 
parameters of the second-harmonic signal from the surface of 
a medium with a spatial dispersion of quadratic nonlinearity. 
Formulas for the transverse spatial Fourier transform of the 
electric field of the second-harmonic reflected wave in the far-
field diffraction zone were obtained. However, these studies 
were focused on the possibility of second-harmonic genera-
tion and calculation of the energy characteristics of the 
reflected second-harmonic radiation (recall that within the 
plane-wave approximation SHG cannot occur when a funda-
mental wave is normally incident on an optically active 
medium). In these studies the surface inhomogeneity of the 
optical properties of a nonlinear medium was taken into 
account using modified boundary conditions for the electric 
and magnetic fields. The correctness of this approach was 
substantiated in [17, 18].

Thereafter, the formulas describing the spatial distribu-
tion of polarisation of the propagating second harmonic were 
found and analysed in [19]. Despite the results of the studies, 
indicative of the occurrence of spatially nonuniform polarisa-
tion distributions in the second-harmonic beam, no studies 
were aimed at revealing the possibilities and conditions for 
the formation of singularities of light-field polarisation in this 
beam (points or lines in the propagating beam cross section, 
where the intensity of one of its two orthogonal polarised 
components becomes zero).

The conditions for the occurrence of polarisation singu-
larities and the dynamics of their propagation in space were 
multiply theoretically and experimentally studied in linear 
optics. A terminology (which is actively used nowadays) was 
developed in one of the first studies [20]; according to it, the 
loci of the points where the propagating radiation has a circu-
lar (linear) polarisation are referred to as C lines (L surfaces). 
In the beam cross-section plane they are transformed into C 
points (L lines). In contrast to the conventional optical vorti-
ces (or screw phase dislocations) with zero scalar-field inten-
sity (they are generally studied within the approximation of 
constant polarisation of the propagating radiation), the C 
points (where the orientation of the polarisation ellipse of the 
electric field of electromagnetic wave is not determined) can 
be referred to as ‘component’ optical vortices. The morpho-
logical distributions of the polarisation ellipses in their vicini-
ties can be of three types: ‘star’, ‘lemon’, and ‘monstar’.

The conditions for the formation of polarisation singu-
larities and the dynamics of their development in various 
problems of linear optics have been investigated later [20 – 31]. 
We should also note the highly efficient experimental meth-
ods for detecting light beams with phase and polarisation sin-
gularities [26 – 31]. The polarisation singularities are stable 
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objects in the propagating light beam, and their formation, 
annihilation, and interaction follow strictly specified scenarios.

This work was stimulated by the absence of studies on the 
formation of polarisation singularities in the signal beam in 
the case of second-harmonic or sum-frequency generation 
from the surface of an isotropic chiral medium and by the 
small number of studies on the formation of polarisation sin-
gularities in the nonlinear optics applications. We considered 
the polarisation singularities arising in the cross section of the 
double-frequency beam that is formed during SHG by a uni-
formly polarised fundamental Gaussian beam normally inci-
dent on the surface of an isotropic chiral medium. Specifically 
under the conditions of normal incidence the nonuniformity 
of the polarisation distribution in the signal beam is most pro-
nounced [12]. In this case, the polarisation distribution in the 
reflected beam is cylindrically symmetric [19], i.e., the polari-
sation state is the same along any straight line drawn in the 
cross-section plane of the beam through its centre. This con-
dition forbids point singularities (C points) in the beam but 
allows for L and C lines intersecting in the beam centre, where 
the intensity is zero. In this paper, we report the results of 
studying these objects.

Let an elliptically polarised monochromatic Gaussian 
beam be normally incident on the flat surface of an isotropic 
gyrotropic medium from vacuum. The electric-field strength 
in this beam is given by the formula
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Here, ez is the unit vector parallel to the z axis; E0 is the ampli-
tude; w is the frequency; w is the incident-beam half-width; k 
= w/c is the wave-vector magnitude; and b(z) = 1 + 2iz/(kw2). 
Expression (1) contains the longitudinal component Ezez and 
the transverse component [ ( ) (iE E Ee e e ex y x= - + += + -

)] /ie 2y , where E± = Ex ± iEy are the circularly polarised 
field components and ex and ey are the unit vectors parallel to 
the x and y axes, respectively. It is convenient to characterise 
the incident light beam by the normalised intensity I(x,y) = 
(|E+|2 + |E–|2)/2 , which depends on the transverse coordinates, 
and two constants: the ellipticity of the polarisation ellipse,  
M0 = (|E+|2 – |E–|2) / (|E+|2 + |E–|2), and the inclination angle of 
its major axis, Y0 = 0.5arg{E+E * -}. The parameter M0 is gen-
erally varied from –1 (left-handed circular polarisation) to 1 
(right-handed circular polarisation), with a passage through 
zero (linear polarisation). The isotropic gyrotropic medium 
belongs to the limiting group ¥ ¥, and its surface belongs to 
the group ¥. Therefore, the angle Y0 can be equated to zero 
without losing generality (actually, the x-axis direction is 
specified by the direction of the major axis of the incident-
radiation polarisation ellipse). In this case, the unit complex 
polarisation vector e = 0.5[(1 – M0)1/2(ex + iey) + (1 + M0)1/2 (ex 

– iey). Note that expression (1) satisfies the Maxwell equation 
divE = 0 within the first-order approximation for the beam 
divergence angle, which will be considered as small below.

The distribution of the electric field ESH = ESH+e–  + ESH–

e+ in the beam is given by the formula
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which was derived previously in [19]. Here, r = (x2 + y2)1/2 and 
j = arctan(y/x) are, respectively, the polar radius and angle in 
the cylindrical coordinate system; C0 = n2wb1 + ig0 /n2w; 

( )iC n b b± 3 5"= w ; nw and n2w are the linear refractive indices of 
the medium at frequencies w and 2w; ;b b( ) ( )
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The tensors ĝ(2) (2w; w, w) and k̂(2) (2w; w, w) describe, respec-
tively, the spatial dispersion of the quadratic nonlinearity of 
the chiral medium and the field-quadratic response of its sur-
face within the approach developed in [17, 18]. The numerical 
values of the parameters characterising the nonlinearity of 
isotropic chiral liquids and a review of the experimental stud-
ies of these parameters can be found in [19, 32]. 

The condition for the occurrence of the L line j = jL, 
which makes the angle jL with the x axis, in the cross section 
of the second-harmonic beam is 

| ( , , ) | | ( , , ) |E r z E r zSH L SH Lj j j j= = =+ - .	 (3)

At the points belonging to this line the ellipticity MSH(r, j, z) 
= (|ESH+|2 – |ESH–|2)/ (|ESH+|2 + |ESH–|2) of the second-harmonic 
polarisation ellipse becomes zero. It was shown in [19] that, at 
certain values of the nonlinear-medium parameters and the 
incident light ellipticity, Eqn (3) may have two roots,
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which enter into (4), satisfy the condition B2 – AC > 0. In this 
case, the cross section plane of the second-harmonic beam is 
divided by two L lines (j = jL1 and j = jL2), which are inter-
sected at the point (0, 0, z) into four sectors, so that the polar-
isation rotation direction changes every time when passing 
through the L line. At B2 – AC = 0 we have jL1 = jL2, and 
there is one L line in the beam and the polarisation rotation is 
the same everywhere. If B2 – AC < 0, Eqn (4) has no solutions. 
Polarisation singularities of the L type do not arise in this 
case.

The conditions for the occurrence of C line (j = jC+) (j 
= jC–) with left-handed (right-handed) rotation of the elec-
tric-field vector, where  MSH(jC+)  = –1 (MSH(jC–) = 1), can 
be written, respectively, as

ESH+(r, j = jС+,z) = 0,	 (5)
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 ESH–(r, j = jС– ,z) = 0.	 (6)

Actually, each of Eqns (5) and (6) is a system of two equa-
tions, because the quantities ESH±(r, j, z) are complex. 
Therefore, their solutions j = jC+ and j = jC–, exist only 
under some limitation on the parameters M0, b1, b3, b5 and g0; 
it is reasonable to present this limitation as a dependence of 
the polarisation of incident radiation on the parameters of 
nonlinear medium. At
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where G1 = nw
2(b32 + b52) and G± = (g0/n2w ± nwb5)2 + (nwb3 – 

n2wb1)2, the solutions to (5) and (6) take, respectively, the form
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Having passed through the line j = jC+ or j = jC– in the 
beam cross-section plane, the angle of rotation of the major 
axis of the polarisation ellipse changes stepwise by  p/2. Note 
that both values of the ellipticity M0± exist at any real values 
of b1, b3, b5 and g0 (i.e., in the absence of absorption at the 
frequencies w and 2w). Only when all components of the ten-

sors ĝ (2) (2w; w, w) and k̂ (2) (2w; w, w) are zero (the double-fre-
quency signal is absent), G± + G1 = 0.

For example, Fig. 1 shows the polarisation distributions 
in the cross section of the second-harmonic beam. The ellipses 
plotted in the different areas of the figure, with centres at the 
coordinates  x0, y0, are similar to the light polarisation ellipses 
at the points with the same coordinates in the beam cross sec-
tion. The angle between the major axis of the ellipse centred at 
the point (x0, y0) and the x axis in Fig.1 coincides with the 
inclination angle of the major axis of the second-harmonic 
polarisation ellipse: YSH(x0 ,y0) = 0.5 ́  arg{ESH+E * SH–}. The 
point at the edge of each of them specifies the electric field 
direction at a fixed instant (i.e., determines the angle FSH = 
arg{ESH+ + E * SH–}). The open and closed ellipses indicate that 
the electric field at the point (x0, y0) is rotated clockwise and 
counterclockwise, respectively.

Figure 1a shows the polarisation distribution in the sec-
ond-harmonic beam cross section at the nonlinear-medium 
parameters allowing for the presence of one C line and two L 
lines in this cross section. The C line coincides with the x axis. 
The ellipse on this line transforms into a circle. When passing 
through the C line, the rotation angle of the major axis of the 
polarisation ellipse changes stepwise by p/2. Two L lines are 
intersected at the beam centre. One of them is vertical, while 
the other makes an angle of 45° with it and passes through the 
second and fourth quadrants of the xy coordinate system. 
Figure 1b was plotted at the parameters of the incident radia-
tion and nonlinear chiral medium that allow for the occur-
rence of two C lines and two L lines in the cross section plane 
of the second-harmonic beam. All these lines pass through the 
beam centre. One of the C lines passes through the first and 
third quadrants, while the other passes through the second 
and fourth quadrants. One of the L lines is almost vertical, 
while the other passes through the second and fourth quad-
rants.

Note a number of peculiar cases, which are implemented 
at specific ratios of the parameters b1, b3, b5 and g0. If n2wb1 = 
nwb3 and condition (7) is satisfied, the reflected second-har-
monic beam is left- (at g0 = –nwn2wb5) and right-hand (g0 = 
nwn2wb5) circularly polarised at all points of the cross section. 
If there is no spatial dispersion (g0 = 0) but condition (7) is 
valid and at least one of the equalities b1  = 0 or n2wb1 = 2nwb3 
is satisfied, the second-harmonic beam is linearly polarised at 
all points of the cross-section plane. In this case, this plane 
contains a straight line passing through the beam centre; the 
second-harmonic field intensity becomes zero at the points of 
this line, because the orientations of two C lines coincide. 
Finally, if the properties of the medium satisfy the equalities 
b3 = b5 = 0, the second-harmonic beam is radially polarised 
(see [19]). In this case, condition (7) is transformed into M0 = 
±1, and the second-harmonic signal disappears.

Analytical expressions (4), (7), and (8) are of practical 
interest for nonlinear laser spectroscopy. Indeed, for linearly 
polarised incident radiation, the polar angles (4), which deter-
mine the orientation of the L lines in the cross-section plane 
of the second-harmonic beam, become equal to p/2 and –
arctan(b5 / b3). If the integral beam power in the case of circu-
larly polarised pumping is known, one can find the b3 and b5 
values (see [19] for details). If the nw and n2w values are known, 
relations (4), (7), and (8) can be used to determine g0 and b1.

Thus, under normal incidence of a uniformly elliptically 
polarised fundamental Gaussian beam on the surface of an 
isotropic gyrotropic medium, polarisation singularities may 
occur in the cross section of the reflected second-harmonic 
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Figure 1.  Nonuniform distribution of light polarisation in the second-
harmonic reflected beam at (a)  M0 = 0, nw = 1.33, n2w = 1.35, b3 /b1 = 
0.508, b5 = b3, g0 /b1 = –1.823 (there is one C line and two L lines) and (b)  
M0 = – 0.27, nw = 1.32, n2w = 1.34, b3 /b1 = 1.1, b5 = 0.322, g0 /b1 = –2.1 
(there are two C lines and two L lines). The ends of the C and L lines are 
marked by symbols L1, L2, C+ and C–.
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beam. Any real values of the parameters describing the qua-
dratic optical response of a chiral medium and its surface 
allow for such states of elliptical polarisation of the incident 
light that the cross section of reflected second-harmonic beam 
would contain one or two C lines. Exceptions are few cases 
where the parameters of the medium satisfy exactly the pecu-
liar relations between them. The cross section of the second-
harmonic beam may also contain two, one, or none L lines. 
The analytical expressions describing the conditions for the 
occurrence of L and C lines and the formulas determining 
their orientation can be used to find the components of the 
tensors characterising the field-quadratic nonlocal optical 
response of the medium and the local response of its surface. 
The case of oblique incidence, which is much more complex, 
is of peculiar interest. Determination of the conditions for the 
occurrence of polarisation singularities in this case is beyond 
the scope of this study. 
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