
Quantum Electronics  41 (11)  968 – 975  (2011)	 © 2011  Kvantovaya Elektronika and Turpion Ltd

Abstract.   We present a brief review of the results of fifty years of 
development efforts in spectroscopy of one-dimensionally inhomo-
geneous media with quadratic nonlinearity. The recent original 
results obtained by the authors show the fundamental possibility of 
determining, from experimental data, the coordinate dependences 
of complex quadratic susceptibility tensor components of a one-
dimensionally inhomogeneous (along the z axis) medium with an 
arbitrary frequency dispersion, if the linear dielectric properties of 
the medium also vary along the z axis and are described by a diago-
nal tensor of the linear dielectric constant. It is assumed that the 
medium in question has the form of a plane-parallel plate, whose 
surfaces are perpendicular to the direction of the inhomogeneity. 
Using the example of several components of the tensors  ĉ(2)(z, 
w1 ± w2; w1, ± w2) , we describe two methods for finding their spa-
tial profiles, which differ in the interaction geometry of plane 
monochromatic fundamental waves with frequencies w1  and w2. 
The both methods are based on assessing the intensity of the waves 
propagating from the plate at the sum or difference frequency and 
require measurements over a range of angles of incidence of the 
fundamental waves. Such measurements include two series of addi-
tional estimates of the intensities of the waves generated under spe-
cial conditions by using the test and additional reference plates, 
which eliminates the need for complicated phase measurements of 
the complex amplitudes of the waves at the sum (difference) fre-
quency.

Keywords: one-dimensionally inhomogeneous medium, quadratic 
susceptibility, inverse problem, second harmonic generation, sum-
frequency generation, difference-frequency generation.

1. Introduction 

Nonlinear optical phenomena in media with quadratic sus-
ceptibility have been the subject of study since creation of the 
first lasers [1 – 7]. In particular, Maker et al. [5] investigated 
experimentally the dependence of the intensity I2w of the sec-
ond harmonic generated in an optically thick (L = 0.782 mm 
» 1000 l) plane-parallel quartz plate on the angle a of inci-

dence of a plane fundamental wave. It was found that the 
measured dependence is well described by a simple formula: 

2 ( / ) ( )sinI cP k k kL2
2

2
2 2p D D=w w ,	 (1)

where Dk = |k2w – 2kw|; k2w and kw are the wave vectors of the 
second harmonic and fundamental radiation in the plate, 
respectively; P is the modulus of the amplitude of the nonlin-
ear polarisation at the doubled frequency, induced by the 
wave with frequency w; c is the speed of light in vacuum. 

Intensity oscillations of the second harmonic generated in 
a plane-parallel plate upon changing the angle of incidence of 
the fundamental radiation wave [5] formed the basis of one of 
the most versatile methods for measuring the quadratic sus-
ceptibility tensor components, i.e., the Maker-fringe analysis 
[8 – 10]. Soon, however, it was found that the use of the 
approximate formula (1), which does not take into account, 
in particular, multiple reflections of the fundamental waves 
and waves generated from the surfaces of the plane-parallel 
plate, leads to a significant scatter in the results of measure-
ments obtained by different authors [11]. It turned out that 
the approximation is poorly applied, in particular, to thin 
plates, as well as in the case of media with a high dielectric 
constant. Papers [11 – 13] were devoted to improvement of the 
formulas describing the SHG process in a homogeneous 
plane-parallel plate, the process being first considered theo-
retically in detail in [7]. This process of improvement contin-
ues to this day [14], which allows one to achieve accurate 
reconstruction of the quadratic optical susceptibility of differ-
ent homogeneous crystals, comparable with the accuracy pro-
vided by other measurement methods [15 – 20]. 

The methods for finding the coordinate dependences of 
the quadratic nonlinearity tensor components in one-dimen-
sionally inhomogeneous media whose properties vary only in 
one direction are far less developed. And this despite the fact 
that interest (which emerged at the beginning of the era of 
nonlinear optics [21 – 23]) in structures with periodic modula-
tion of the quadratic dielectric susceptibility only continues to 
increase [24 – 30]. The interest is associated with the possibil-
ity of implementing so-called quasi-phase matching condi-
tions in media with periodic modulation of the quadratic sus-
ceptibility, which allows highly efficient conversion of the 
optical radiation frequency. A field of application for such 
media expanded dramatically after development (at the end 
of the last century) of effective methods for forming suffi-
ciently sophisticated periodic domain structures in some fer-
roelectrics. At the same time, researchers showed much inter-
est in quasi-periodic structures [31], suitable for conversion of 
radiation with a broad spectrum, as well as in the possibility 
of using strongly inhomogeneous, localised in a small region 
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of thickness of about 5 mm, quadratic nonlinearity, which 
arises under certain conditions in silica glass [32]. This control 
of the domain structure quality and study of the mechanisms 
of nonlinearity formation in different types of glasses gave, 
apparently, an impetus to intensive development of both 
destructive [32 – 34] and nondestructive [35 – 39] methods for 
finding the spatial profile of the quadratic nonlinearity in 
one-dimensionally inhomogeneous media. The task was 
greatly simplified by the fact that, as a rule, linear optical 
properties of the systems under study were assumed homoge-
neous, and the media producing them – nonabsorbing. 
However, recent research shows that this approximation is 
not always fully justified [40]. 

Destructive methods usually include measurement of the 
SHG intensity as a function of sample thickness [32, 41, 42], 
as well as the study of the sample cut in the plane along the 
axis of inhomogeneity using different techniques [33, 34, 43 – 45]. 
The resolution of these methods achieves one micron. 

However, of greatest practical interest are, of course, non-
destructive methods for finding the coordinate dependence of 
the quadratic nonlinearity. One of the most developed among 
them is the Maker-fringe analysis, generalised to the case of a 
plane-parallel plate formed by a one-dimensionally inhomo-
geneous nonlinear medium with homogeneous linear proper-
ties [35, 37, 46 – 54]. The direction in which the medium is 
inhomogeneous, is perpendicular to the plate surface. Appa
rently, formula (1) was first generalised to this case in [35]: 

( ) ( )exp i dI AI z kz z( )
eff

d

2
2 2

0

2

c D=w y .	 (2)

Here, d is the thickness of the plate or of the nonlinearity 
region inside it; ( )2

eff|  is expressed in terms of the components 
of the quadratic susceptibility tensor ( )2|t  and the Fresnel 
coefficients, the form of this dependence being determined by 
the geometry of measurements ; I is the intensity of the funda-
mental wave; A is the normalisation factor. The integral in (2) 
has the form of the Fourier transform, which is known to be 
reversible. However, even in the case of a commonly used 
approximation of absence of linear and nonlinear absorption, 
where ( )2

eff| (z) is a real function, for its unambiguous determi-
nation it is needed to find from the experimental data not only 
the modulus, but also the complex-integral argument entering 
into (2) [52]. The latter is quite a challenge. Therefore, many 
researchers use the relations of the form (2) in combination 
with different a priori assumptions about the form of func-
tions that define the shape of the spatial profiles of the com-
ponents of the tensor ĉ(2), and then find the values of several 
fitting parameters of these functions that give the best agree-
ment with the experiment [36, 46 – 50]. Naturally, this 
approach cannot guarantee the uniqueness of the reconstruc-
tion of the coordinate dependence of the quadratic suscepti-
bility tensor components, and at best gives only an assessment 
of its basic parameters, and under certain circumstances can 
even lead to erroneous results. The authors of [49, 51 – 54] 
suggested several methods for solving this problem; the basic 
idea of the methods is to use an auxiliary plate or a mirror. 
However, all of them are only applicable to nonabsorbing 
media. In addition, papers [49, 51 – 54] as well as all other 
papers that use the formula of the form (2) do not take into 
account multiple reflections of waves from the interfaces of 
the main and auxiliary plates. As mentioned above, even in 
the case of homogeneous media, neglect of multiple reflec-

tions can significantly reduce the accuracy of finding the qua-
dratic susceptibility tensor components [11]. 

In [55 – 59], formula (1) was generalised to the media con-
sisting of homogeneous layers with different linear properties. 
The results obtained by solving the direct problem take into 
account all possible multiple reflections from surfaces in such 
a multilayer system. Nevertheless, the problem of finding the 
quadratic susceptibility tensor components describing each of 
the structure layers was studied much less than in the above 
case of a linear homogeneous medium [56, 58]. Another 
promising method for diagnosing the form of a coordinate 
dependence of the quadratic optical susceptibility is the ana
lysis of w – k spectra of parametric scattering of light 
[39,  60 – 66]. However, despite the construction of a suffi-
ciently complete theory of this phenomenon [67], the develop-
ment of a technique used to solve the inverse problem is still 
far from complete. 

In this paper, using the example of the component ( )
yxy
2|  

and    ( )
yyy
2|  of the complex tensors ĉ(2) (z, w1 + w2; w1, w2) and 

ĉ(2) (z, w1 –w2; w1, – w2), we demonstrated for the first time the 
possibility of finding the coordinate dependence of the qua-
dratic optical susceptibility tensor of the one-dimensionally 
inhomogeneous medium along the z axis without any a priori 
assumptions about the form of the functions ĉ(2) (z, w1 + w2; 
w1, w2) and ̂c(2) (z, w1 – w2; w1, – w2) if its linear dielectric prop-
erties also vary along the z axis and are described by the diag-
onal tensor of the linear dielectric constant ê(z,w), which 
depends on the frequency in an arbitrary manner. 

In this paper we propose and justify the two methods for 
reconstructing the coordinate dependence of the quadratic 
susceptibility tensor. In the first method, use is made of the 
wave with frequency w1, normally incident on the plate, and 
of the wave with frequency w2, incident on the plate at a cer-
tain angle. In this case, the components of the tensor ̂c(2) (z, w1 

+ w2; w1, w2) can be reconstructed by measuring the complex 
amplitude of the wave propagating from the plate at the sum 
frequency in a certain range of angles a of incidence of the 
plane wave with frequency w2. Similarly, we can reconstruct 
the profiles of the components of the quadratic susceptibility 
tensor ̂c(2) (z, w1 – w2; w1, – w2), which describes the difference-
frequency generation. 

Unfortunately, in finding the spatial dependence of the 
components of ĉ(2) (z, w1 – w2; w1, – w2), the first method is 
ineffective if |w1 – w2|<< w2. The wave at the difference fre-
quency in this case will propagate from the plate in the form 
of a homogeneous wave only at small angles a (if the condi-
tion w2 sin a £ |w1 – w2| is fulfilled). Because of the small range 
of angles of incidence at which the amplitude of the reflected 
wave can be measured at the difference frequency, it is almost 
impossible to provide any reasonable accuracy of the qua-
dratic susceptibility profile reconstruction. On the other 
hand, this frequency relation arises in many important practi-
cal applications, such as generation of terahertz waves by 
nonlinear optics methods. 

In this case, the second suggested method is more effective 
for finding the coordinate dependence of the quadratic opti-
cal susceptibility. It involves the use of a biharmonic funda-
mental wave (formed by two collinearly propagating mono-
chromatic waves with frequencies w1 and w2) which is incident 
at an angle a to the plane-parallel plate. In this scheme, the 
angle of reflection or transmission of the wave at the differ-
ence (sum) frequency through the plate is also equal to a. To 
implement the method, it is sufficient to measure the complex 
amplitude of the (sum-) difference-frequency wave propagat-
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ing to one of the sides of the plate in some range of angles of 
incidence. 

The both proposed method for reconstructing the coordi-
nate dependence of the components of the tensors   ĉ(2) (z, w1 

± w2; w1, ± w2), in contrast to all existing methods, are appli-
cable to media with any, including piecewise-continuous, 
dependence of linear and nonlinear optical properties of the 
medium. They are based on the solution of inhomogeneous 
Fredholm equations of the first kind, take into account all 
multiple reflections of the waves, and consist of three series of 
measurements of the intensities of the waves generated under 
special conditions with the use of the test and additional refer-
ence plates. This helps to avoid complicated phase measure-
ments of the complex amplitudes of the waves at the differ-
ence (sum) frequency. 

In all the cases below, we assume that the amplitudes and 
frequencies of the incident waves, as well as the quantities  

z( , ; , )( )
jlm
2

1 2 1 2! !| ~ ~ ~ ~ , where z, , , ,j l m x y= , are such that 
the waves are strongly generated at sum and (or) the differ-
ence frequencies in the medium, which is sufficient for reliable 
measurements. However, these waves and the waves at the 
doubled frequency are not involved in the generation of the 
waves with other frequencies and do not affect significantly 
the propagation of the initial waves and each other. 

2. Reconstruction of spatial profiles 
of the components of the tensors ̂c(2) (z, w1 ± w2; w1, ± w2) 
with the help of noncollinear interaction 
of the waves 

Consider a plane-parallel plate bounded by the planes z = z1 
and z = z2 (z2 > z1) and placed in a homogeneous isotropic 
linear medium with real dielectric constant e0. The plate 
medium is nonmagnetic, one-dimensionally inhomogeneous 
along the z axis, and its linear dielectric properties, when the 
directions of the Cartesian axes x, y are properly chosen, are 
described by the diagonal tensor of the dielectric constant  
e(z, w). 

Let a plane monochromatic wave with frequency w1, 
whose electric field strength vector is exp[ (iE te( )

x01
1

1w + 
)( ) ]k z z1 2-  + c.c. at z > z2, be incident perpendicularly to the 

surface of the plates in the negative direction of the z axis. We 
also assume that in addition to this wave, an s-polarised wave 
with frequency w2 is incident on the plate at an angle a. The 
electric field strength vector of the latter at z > z2 is 

)exp[ ( ( ) ]iE t k x k z ze
( )

y x z2 2 202
1

2~ + --  + c.c. Here, k ,1 2 = w1,2 
´ /c0f ; ex  and ey  are the unit vectors directed, respectively, 
along the axes x and y; k2x = k2 sina;  k2z = k2 cos a. 

As a result, the wave ( ) exp(i )E E z te01
(1)

1
(1)

1x w  + c.c with fre-
quency w1 and the wave ( ) exp[i( )]E E z t k xe0

(1)
y x2 2 2 2w -  + c.c 

with frequency w2 will propagate in the plate. Changes in their 
dimensionless amplitudes ( )E z1

(1)  and  E2(z) are described by 
the equations 

( , ) ,
d
d
z
E

c
z E 0

( )
( )

xx2

2
1
1

2
1
2

1 1
1w e w+ =  	 (3)

k( , ) ,
d
d
z
E

c
z E 0yy x2

2 2
2 2

2
2

2

2

2w e w+ - =; E 	 (4)

whose solutions at z = z1,2 satisfy the boundary conditions 
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d
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z
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1
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1
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d
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E
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(5)
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d
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d
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k E z k2z z
z z

2
2 2 22

2
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,	

(6)

which follow directly from Maxwell’s boundary conditions. 
Propagation of the waves ( )E E z e( ) ( )

x01
1

1
1  ́  ( )exp i t1w  + c.c 

and ( ) [ ( )]exp iE E z t k xe( )
y x02

1
2 2 2w -  + c.c. in the plate leads, in 

particular, to the emergence of nonlinear polarisation of the 
medium at the sum frequency: 

( , ) ( , ; , )P z z( )
s sj jxy1

2
1 2w c w w w=

	 ´ ( ) ( ) [ ( )]exp iI E z E z t k x( )
s x1 1

1
2 2w -  + c.c.	 (7)

Here, I E E2 ( ) ( )
1 01

1
02
1

= ; ws = w1 + w2; j = x, y, z. In writing (7), we 
take into account that ( , ; , ) ( , ; , )z z( ) ( )

s sjlm jml
2

2 1
2

1 2c w w w c w w w=  for 
all, including absorbing, media. As a result, s- and p-polarised 
waves with frequency ws are generated in the plate. In this 
case, the electric field strength vector of the s-polarised sum-
frequency waves in the plate can be written as   ( )I E z es y1 ´ 
exp[ ( )]i t k xs x2w -  + c.c. The change in the dimensionless 
amplitude Es(z) is described by the equation 

( , )
d
d
z
E

c
z k Es s

s syy x2

2

2

2

2
2w e w+ -< F  =

( ) ( ) ( )
c

z E z E z4 ( ) ( )s s
yxy2

2

1
1

2
pw c- ,	 (8)

where ( ) ( , ; , )z z( ) ( )s
s

2
1 2/c c w w wt t . 

We consider the linear dielectric constant of the medium 
of the one-dimensionally inhomogeneous plate in question to 
be known. Recall that we examine media in which the tensors  
ê(z, w1), ê(z, w2) and ê(z, ws) are diagonal. Their components 
can be found using the method proposed in [68 – 70] and 
experimentally implemented for homogeneous media in [71]. 
Therefore, the dependences E 1

(1)
(z) and E 2(z), uniquely 

defined by (3) – (6) can be also regarded as known. 
The s-polarised wave appearing in the plate at the sum 

frequency ( ) exp[ ( )]iI E z t k xes sy x1 2w -  + c.c. continues to 
propagate in homogeneous linear media bordering the non-
linear medium: in the region z < z1 (behind the plate) – in the 
form of a wave with electric field strength S I et( )

s y1 #  
{ [exp i t k x k zss x2w - + }( )]z z1-  + c.c. and in the region  z > z2 

(in front of the plate) – in the form of a wave with   
{ [exp iS I t k x ker

z
( )

ss sy x1 2w - -   }( )]z z2-  + c.c. [here,   ksz = 
(ws

2e0 /c2 – k2x
2  )1/2]. 

Note that k2x = (w2 /c) e0
1/2sina < (ws /c)e0

1/2 and, therefore, 
ksz is a positive real value at all angles of incidence of the wave 
with frequency w2. In these formulas, the coefficients ( )S ( )

s
t a  

and ( )S r( )
s a  characterise the conversion efficiency. The inci-

dent waves with frequencies w1, w2 and orthogonal linear 
polarisations are converted by the plate into the s-polarised 
sum-frequency waves propagating behind and in front of the 
plate. In what follows we will call S r( )

s  and S t( )
s  the coefficients 
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of conversion into the sum-frequency waves upon reflection 
and transmission, respectively. On flat surfaces of the plate, 
the functions E1s(z) satisfy Maxwell’s boundary conditions, 
which, with the above notations taken into account, can be 
written in the form: 

( ) , / | ,d d iE z S E z k S( ) ( )
s s

t
s s s

t
z z z1 1= ==

( ) , / |d d iE z S E z k S( ) ( )
s s

r
s s s

r
z z z2 2= =-= .	

(9)

Let Rs(z,a) be any continuously differentiable solution to the 
homogeneous equation (8): 

( , ) 0.
d
d
z
R

c
z k Rs s

s syy x2

2

2

2

2
2w e w+ - =< F 	 (10)

Multiplying equations (8) and (10) by Rs(z) and Es(z), respec-
tively, and subtracting the second product from the first, we 
obtain 

( ) ( ) ( , ) ( , )
c

z E z E z R z4 ( ) ( )s s
syxy2

2

1
1

2
pw c a a-

	 .
d
d

d
d

z
E R

z
R Es

ss
s

2

2

2

2

= - 	 (11)

Integrating equality (11) from z1 to z2 and using the 
method of integration by parts and boundary conditions (9) 
to calculate the integral in the right-hand side of (11), after 
some transformations we obtain for the function ( )z( )s

yxyc  the 
Fredholm equation of the first kind: 

( ) ( , ) [ ( ) ( )] ( )d iu K u u R z k R z S( ) ( )s
s s s s s

t
yxy

z

z
z1 1

1

2
c a a= -ly

	 s[ ( ) ( )] ( )iR z k R z S ( )s s s
r

z2 2 a- +l 	 (12)

with a known normalised kernel ( )z( , )K z E4 ( )
s s

2
1
1pa w=- ´ 

/c( , ) ( , )E z R za as
2

2 . Note that the right-hand side of equation 
(12) becomes independent of S s

(t) if Rs(z, a) satisfies the bound-
ary conditions 

( ) 1, ( / )d d iR z R z ks ss z z z1 1
= ==

,	 (13)

and is independent of S s
(r), if 

( ) 1, ( / )d d iR z R z ks ss z z z2 2
= =-=

.	 (14)

Suppose that for a given layer thickness in some range of 
angles of incidence of the wave with frequency w2, we know 
from the experiment the values of the conversion coefficients  
S s
(r)(a) and (or) S s

(t)(a). Then, with the appropriate choice of 
boundary conditions for the auxiliary function Rs(z, a), the 
right-hand side of equation (12) becomes known. Thus, using 
the standard methods of solution of the Fredholm equations 
of the first kind [72, 73], we can find the coordinate depen-
dence of the component ( , ; , )z( )s

syxy 1 2c w w w . 
If the plate is rotated by 90° around the z axis without 

changing the incidence plane and polarisation of incident 
waves, then after measuring a new coefficient of conversion 

into the s-polarised wave at the sum frequency in some range 
of incidence angles and acting as in the previous of case, we 
can reconstruct the profile of the component ( )s

xyxc (z).
Similarly, we can reconstruct the components ( )d

xyxc  and 
( )d
yxyc  of the tensor ( ) ( , ; , )z z( ) ( )d

d
2

1 2/c c w w w-t t , wd = w1 – w2, 
describing the difference-frequency generation in the plate. 
However, the difference-frequency waves with the wave vec-
tor projections k zd! u  on the z axis propagate in the medium 
surrounding the plate; here, 

( / ) ( ) /sink c k c/ /
d d dz x

2
0

2
2
2 1 2

0
2

2
2 2 1 2

/ w e e w w a- = -u 6 @ .

Obviously, these waves will be homogeneous only if  
w2 sin a £ |wd|. This fact makes it almost impossible to use this 
technique to reconstruct the components of the tensor ( )z( )dct  
when |w1 – w2| << w2. In the practically important case, the col-
linear geometry of interaction of the waves, discussed below, 
proves more efficient. 

3. Reconstruction of the components 
of the tensors ĉ(2) (z, w1 ± w2; w1, ± w2)  with the help
of a biharmonic fundamental wave 

Let the s-polarised plane fundamental wave with two mono-
chromatic components, propagating in the negative direction 
of the z axis, be incident on the investigated plate at an angle 
a; the electric field strength vector at z > z2 has the form 

[ ( ( )]expE i t k x k z ze( )
y x z01

2
1 1 1 2w - + -

[ ( ( )]exp iE t k x k z ze( )
y x z02

2
2 2 2 2w+ - + -  + c.с.

Here, knx = kn sin a and knz = kn cos a are the wave-vector pro-
jections /k cn n 0w e=  of the wave with frequency wn on the 
x and z axes; n = 1, 2. 

The change in the dimensionless amplitude of each of 
the two waves propagating in the plate, ( )E E z e( )

n n y0
2  ́

[ ( )]exp i t k xn nxw -   + c.c., with frequency wn is described by 
the equations and boundary conditions that are similar to 
relations (4) and (6): 

( , ) 0
d
d
z
E

c
z k En n

yy n nx n2

2

2

2
2w e w+ - =< F ,	 (15)

( ) 0,
d
d i
z
E k E zn

nz n 1
1

- =
z z=

d
d i
z
En

nz n nz2
z z2

+
=

( ) 2 .iE z k=k 	

(16)

Propagation of the waves in the plate,   ( )E E z e( )
n n y0
2  ́

[ ( )]exp i t k xn nxw -  + c.c., leads, in particular, to the emergence 
of nonlinear polarisation of the medium at the difference fre-
quency: 

( , ) ( ) ( ) [ ( )]P z I z E z E z( ) *
d

d
j jyy2 2 1 2w c=

	 ´  [ ( )]exp i t k xd dxw -  + c.c.,	 (17)

where j = x, y, z; 2 ( )I E E( ) ( ) *
2 01

2
02
2

= ; wd = w1 – w2; kdx = k1x – k2x 
= (wde0

1/2/c)sin a; the asterisk denotes complex conjuga-
tion.  In  deriving (17), we have taken into account that  
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, )w w( , ; , ) ( , ;z z( ) ( )
d djlm jml

2
1 2

2
2 1c w w w c w- = -  for all, including the 

absorbing, media. 
Because nonlinear polarisation (17) is present in the 

medium, s-and p-polarised waves are generated at frequency 
wd in the plate. The electric field strength vector of the s-polar-
ised difference-frequency wave in the plate can be written as  

( ) [ ( )]exp iI E z t k xed d dy x2 w -  + c.c. Changes in its dimension-
less amplitude are described by the equation 

( , )
d
d
z
E

c
z k Ed d

d dyy d x2

2

2

2
2w e w+ -< F

	 4 ( ) ( ) [ ( )]
c

z E z E z( ) *d d
yyy2

2

1 2
pw c=- .	 (18)

We still consider the linear dielectric constant of the medium 
of the plate under study and, consequently, the dependences 
E1(z) and E2(z), uniquely defined by relations (15) and (16), to 
be known [68 – 70]. At points z = z1,2 the dimensionless ampli-
tude Ed(z) satisfies the boundary conditions that are similar to 
(9): 

( ) ,
d
d iE z S
z
E k S( ) ( )

d d
t d

d d
t

z z
z1

1

= =
=

,

( ) ,
d
d iE z S
z
E k S( ) ( )

d d
r d

d d
r

z2
2

= =-
z z=

,	

(19)

where 2 2( / ) ( / )cosk c k cz
/

d d dx
2

0
2 2

0
/

dw e w e a= - =
1 1 ; ( )S ( )

d
t a  

and ( )S r( )
d a  are the coefficients of conversion of the funda-

mental waves with two equally s-polarised monochromatic 
components into the difference-frequency waves with the 
same polarisation, which propagate from the plate in the neg-
ative and positive directions along the z axis, respectively. If 
the values of the coefficients   ( )S r( )

d a  or ( )S ( )
d
t a  are known 

within a certain range of angles of incidence of the bihar-
monic wave, then we can reconstruct the spatial dependence 
of the component ( )zy

( )d
y yc . The procedure of ( )zy

( )d
y yc  recon-

struction, as in the previous case, is reduced to solving the 
Fredholm integral equation of the first kind with normalised 
kernel and known right-hand side. The latter is obtained from 
equation (18) and boundary conditions (19) in the same way 
as equation (12) was derived, and has the form: 

( ) ( , )du K u u
z

z (d)
dyyy

1

2

c ay

	 =  ( ) ( )] ( )iz k R z S a-[R z
( )

d d d d
t

1 1l

	 ( ) ( )] ( )iz k R z S a+ ,[R z
( )

d d d d
r

2 2- l 	 (20)

where /c( , ) ( , ) [ ( , )] ( , )K z E z E z R z4d d d
2

1 2
2pa w a a a=-

) ; ( , )R zd a  
is any continuously differentiable solution to the homogeneous 
equation (18): 

( , )
d
d
z
R

c
z k R 0d d

d d dyy x2

2

2

2
2w e w+ - =< F .	 (21)

As in the previous case, the right-hand side of equation 
(20) ceases to depend on the conversion coefficient ( )S ( )

d
t a  of 

the propagating fundamental wave, if the auxiliary function 
Rd(z, a) satisfies the boundary conditions 

( ) 1,R zd 1 = d
d i
z
R kd

d
z z

z
1

=
=

,	 (22)

and does not depend on the conversion coefficient S r( )
d upon 

reflection, if 

( ) 1,R zd 2 = d
d i
z
R kd

d
z z

z
2

=-
=

.	 (23)

If the plate is rotated by 90° around the z axis, without 
changing the incidence plane and polarisation of the incident 
biharmonic wave, then we can reconstruct the profile of the 
component ( )z( )d

xxxc . To do this, it is needed to measure a new 
coefficient of conversion into the s-polarised wave at the dif-
ference frequency in some range of incidence angles and to act 
as in the previous of case. Similarly, we can reconstruct the com-
ponents   ( )z( )s

yyyc  and ( )z( )s
xxxc  of the tensor ( , ; , )z( )

s
2

1 2c w w wt , 
responsible for generating the sum frequency. 

Note that one-dimensionally inhomogeneous media can 
have a local symmetry, described by one of ten crystal classes 
(1, 2, m, mm2, 3, 4, 6, 3m, 4mm, 6mm) or one of two limiting 
symmetry groups (¥, ¥m) [74, 75]. Three classes of symmetry 
(1, 2, and m) are not considered in this paper, because the 
linear dielectric properties of the corresponding media are 
described in the general case by a nondiagonal second-rank 
tensor. The reduction of possible classes and limiting symme-
try groups in comparison with homogeneous media is due to 
the fact that a one-dimensionally inhomogeneous system, 
strictly speaking, can only have a symmetry axis, whose direc-
tion coincides with the direction of inhomogeneity, and a 
symmetry plane containing the direction. Let the axes x, y 
and z coincide, respectively, with the axes X1, X2 and  X3 of 
the crystallophysical coordinate system [75] of the medium 
forming the plate. Then, in the media under study, the follow-
ing relations between the components of the complex tensors  
ĉ(s),(d)(z) are fulfilled [75]: 

( ) ( ) ( ) ( ) ( ),z z z z z( ),( ) ( ),( ) ( ),( ) ( ),( ) ( ),( )s d s d s d s d s d
yyx xyy xxx yxy 1c c c c s= =- = = 	

(24)
( ) ( ) ( ) ( ) ( ) .z z z z z( ),( ) ( ),( ) ( ),( ) ( ),( ) ( ),( )s d s d s d s d s d

xxy yxx yyy xyx 2c c c c s= =- = =

In this case, the functions ( )z( ),( )s d
1s  are not identically 

equal to zero only in class 3, whereas ( )z( ),( )s d
2s  – only in class 

3m (with the symmetry plane perpendicular to the x axis) and 
in class 3 [75]. 

The both proposed methods can be also used to recon-
struct the profiles of other components of the complex qua-
dratic susceptibility tensors ĉ(s)(z) and ĉ(d)(z) of one-dimen-
sionally inhomogeneous media belonging to classes mm2, 3, 
4, 6, 3m, 4mm and 6mm or limiting groups ¥ and ¥m. To this 
end, it is necessary to investigate not only generation of s- but 
also of p-polarised waves with frequencies  ws and wd, using 
the fundamental waves with specially selected polarisations. 
In this case, the reconstruction problem is reduced to solving 
the Fredholm integral equations [that are similar to (12)] 
with the known right-hand side. The capabilities of the both 
methods used to reconstruct the profiles of various compo-
nents of the tensors ( ,2 ; , )z( )2c w w wt ,   ( , ; , )z( )

s
2

1 2c w w wt  and 
( , ; , ),z( )

d
2

1 2c w w w-t  including the conditions of uniqueness of 
reconstruction, have been investigated in detail in [76 – 78]. 

4. Replacement of phase measurements 
by additional measurements of the intensity 

Until recently the complex conversion coefficients of the fun-
damental wave into the sum- or difference-frequency wave 
have been assumed experimentally known. However, their 
determination requires rather complicated phase measure-



973Spectroscopy of one-dimensionally inhomogeneous media

ments. Let us prove that the phase measurements can be 
avoided if three series of measurements of the modulus of the 
conversion coefficients are performed for each value of the 
angle. The first series of measurements is carried out only 
with the plate in question, the two other series – with the test 
and additional plates. Linear and nonlinear properties of the 
additional plate should be known, the symmetry class of its 
medium can be any other than classes 1, 2, and m, and the 
axes X1, X2 and X3 of the crystallophysical coordinate system 
should be oriented parallel to the axes x, y and z, respectively. 

Let us measure the intensity of the sum frequency wave in 
the case of reflection. We will use the boundary conditions 
(13) and (22) for the functions Rs(z, a) and Rd(z, a) entering 
into the integral equation (12) and (20),  respectively. Then, 
equations (12) and (20) can be written in the general form: 

( ) ( , ) ( )dq u K u u I
z

z
0

1

2
a a=y ,	 (25) 

where ( ) [ ( ) ( )] ( )iI R z k R z Sz0 2 2a a=- +l . Equation (25) trans-
forms into equation (12), if we put ( ) ( )q z z( )s

yxyc= , K(z, a) = Ks 

(z, a), R(z, a) = Rs (z, a), kz = ksz and S(a) = S s(r)(a). If  
( ) ( )q z z( )d

yyyc= , K(z, a) = Kd (z, a), R(z, a) = Rd (z, a), kz = kdz 
and S(a) = S d(r)(a) equation (25) transforms into equation 
(20). Because the complex functions K(z, a) and R(z, a) are 
determined only by the linear properties of the investigated 
plate, they are assumed known. Therefore, the most impor-
tant step to finding q(z) is to determine the real and imaginary 
parts of the complex function I0(a) from the experiment. 

We place an additional plate with well-known linear and 
nonlinear properties in front of the test plate (not necessarily 
close to it) in the region z z z< < 1a2 . For the new one-dimen-
sionally inhomogeneous structure we can write an equation, 
similar to (25): 

( ) ( , )dq u K u ua a
z

z
1 1

a

1

1
ay

	 .( ) ( )] ( )iz k R z Sa1 a+[R a a a az1 1 1 1=- l 	 (26)

Here, Sa1(a) is the coefficient characterising the efficiency 
of conversion of the fundamental waves into the reflected 
sum- or difference-frequency wave, the wave being converted 
by the test and reference plates. Functions qa1(z), Ka1(z, a), 
Ra1(z, a) entering into (26) are defined by the relations that 
are similar to those given after equation (25).Their values in 
the region z2 < z1 < za1 are known for the known linear prop-
erties of the investigated plate, as well as for linear and non-
linear dielectric parameters of the reference plate. Therefore, 
the function 

( ) ( ) ( , )dJ q u K u u1 1a a
z

z
1

a

2

1
/a ay 	 (27)

is also assumed known. 
Note that when [ , ]z z z1 2! , the equalities qa1(z) = q(z) and 

Ra1(z, a) = R(z, a) are fulfilled. The first equality is obvious, 
and the validity of the latter relation follows from the fact 
that the boundary conditions (13) and (22) for the auxiliary 
functions Rs(z, a) and Rd(z, a) are set at point z = z1 and, 
therefore, the solutions of equations (10) and (21) for these 
functions at [ , ]z z z1 2!  do not depend on what is in the region  
z > z2.

The presence of the additional reference plate will, of 
course, change the complex field amplitude of the fundamen-
tal wave in the test plate. In this case, the functions ( )E z1,1

( )
a

1  
and ( )E z, an 1 , where n = 1, 2, should at z = z1 satisfy the same 
homogeneous boundary conditions as functions ( )E z( )

1
1  and 

En(z) [see (5) and (16)]. Because any homogeneous boundary 
condition determines the solution of the second-order differ-
ential equation with an accuracy to a constant factor, then 

( ) ( ), ( , ) ( ) ( , )E z C E z E z C E z1,1
( ) ( ) ( )

,1
( )

a an n n
1 1

1
1 1a a a= = 	 (28)

for [ , ]z z z1 2! . Here, C (1), C ( )
n
1  are the known constant com-

plex factors which depend only on the frequency and angle of 
incidence of the fundamental waves onto the plates, as well as 
on the linear properties and mutual arrangement of the plates. 
It follows from (28) and definition of the function K(z, a) that 
at [ , ]z z z1 2!  the function ( , ) ( ) ( , )K z C K z1a 1a a a= , where the 
complex constant C1 is equal to C C( ) ( )1

2
1  or C C( ) ( ) *

1
1

2
1_ i , 

depending on the used method of measurements. Therefore, 
dividing the integration domain in the left-hand side of equa-
tion (26) into two subdomains ([z1, z2] and [z2, za1]) and using 
(25) and (27), equation (26) for a composite plate can be writ-
ten as 

( ) ( )] ( ) .iz k R z S a+( ) ( ) ( ) [J C I R za a a a a1 1 0 1 1 1 1 1a a a+ =- l (29) 

If we now shift the additional plate for some distance along 
the z axis or replace it with another reference plate such that 
it be in the region z2 < z < za2, then the value of the right-hand 
side of (27) changes to J2(a). Using the same line of reasoning 
as in the first case, we obtain 

( ) ( )] ( ) .iz k R z S a+( ) ( ) ( ) [J C I R2 2 2 2 2 2za a a a a2 0a a a+ =- l 	(30) 

After measuring the moduli of the conversion coefficients  
S(a), Sa1(a) and Sa2(a), the moduli of the right-hand sides of 
equations (25), (29) and (30), which we denote, respectively,  
A0, A1 and A2, prove to be the known quantities, and it is pos-
sible to write the relations 

| ( ) , | ( ) ( ) | ,I A I J A|0 0 0 1 1a a a= + =u u

| ( ) ( ) |I J A0 2 2a a+ =u u ,	 (31)

where ( ) ( ) / ( )J J Cn n na a a=u ; / | ( ) |A A Cn n n a=u ; n = 1, 2.
After some transformations, we obtain from (31) a system 

of linear equations 

Re{ }Re{ } Im{ }Im{ }J I J I, ,1 2 0 1 2 0+u u

	 ( ) /A A J 2, ,
2

1 2
2

0
2

1 2= - -u u ,	 (32)

allowing one to find unambiguously Re{ }I0  and Im{I0}, if the 
determinant Re{ }Im{ } Im{ }Re{ } Im{ }J J J J J J1 2 1 2 1 2- =

)u u u u u u  is 
not zero. Note that the latter is the decisive factor when 
choosing reference plates and their location relative to the test 
plate. Fulfilment of this condition should be checked before 
the measurements. It is easy to see that the proposed method 
of replacement of phase measurements by intensity measure-
ments is based on the interference of the waves at the sum 
(difference) frequency, and also takes into account the inter-
ference of the fundamental waves in the system of two parallel 
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plates. Therefore, it is necessary to measure the mutual posi-
tion of the plates with an error much smaller than the wave-
length at the sum (difference) frequency. 

5. Conclusions 

Thus, significant progress, made in recent years in the field of 
spectroscopy of one-dimensionally inhomogeneous media 
with quadratic nonlinearity, indicates the fundamental possi-
bility of unambiguous determination (by the experimental 
data) of the coordinate dependences of the components of 
complex quadratic susceptibility tensors, if the medium under 
study has the form of a plane-parallel plate, the surfaces of 
which are perpendicular to the direction of the inhomogeneity 
of its linear and nonlinear dielectric properties. The proposed 
methods for unique reconstruction of the profile of the tensor 
components, ĉ(2) (z, w1 ± w2; w1, ± w2), are applicable for a 
medium with an arbitrary frequency dispersion, if there exists 
a coordinate system in which the tensor of its linear dielectric 
constant is diagonal. They include three series of measure-
ments of the wave intensities at the sum (difference) fre-
quency, generated under special conditions with the test and 
additional reference plates, which eliminates the need for 
complicated phase measurements. By varying the frequencies  
w1 and (or) w2 of the incident waves, we can reconstruct the 
profiles of the tensor components, ĉ(2) (z, w1 ± w2; w1, ± w2) at 
different frequency arguments and, therefore, investigate the 
frequency dispersion of the quadratic susceptibility of differ-
ent parts of the medium. The latter, in particular, can be used 
for the problems of nondestructive testing of the internal 
structure of the various devices. 
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