ЛАЗЕРЫ

Лазер на парах цезия с диодной накачкой и прокачкой лазерной среды по замкнутому циклу

А.В.Богачев, С.Г.Гаранин, А.М.Дудов, В.А.Ерошенко, С.М.Куликов, Г.Т.Микаелян, В.А.Панарин, В.О.Паутов, А.В.Рус, С.А.Сухарев

Впервые сообщается о создании лазера на парах цезия с прокачкой лазерной среды по замкнутому циклу. Мощность излучения лазера составила ~1 кВт при эффективности «свет в свет» ~48%. Рассмотрена квазидвумерная расчетная модель работы лазера, адекватно описывающая экспериментальные результаты. Представлены расчетные и экспериментальные зависимости мощности лазерного излучения от температуры стенок кюветы, давления лазерной среды и мощности накачки.

Ключевые слова: лазер на парах цезия, диодная накачка, прокачка активной среды.

1. Введение

В настоящее время наблюдается значительный прогресс в повышении мощности лазеров на парах щелочных металлов с накачкой лазерными диодами [1–4]. Использование диодной накачки позволяет с высокой эффективностью $\eta_{ld} \sim 40\% - 70\%$ преобразовывать низковольтную электрическую энергию в энергию узкополосного излучения накачки. Высокая квантовая эффективность атомарных переходов щелочных металлов $\eta_q = \lambda_p / \lambda_{las} = 95\%$ для цезия и 98% для рубидия в сочетании с возможностью управления шириной линии и коэффициентом поглощения паров металла путем изменения давления и температуры среды, позволяет, согласно нашим расчетам, получать эффективность преобразования излучения накачки в лазерное излучение $\eta_{pl} \sim 50\% - 60\%$. Таким образом, КПД лазера η_{las} может достигать $\sim 20\% - 40\%$.

Инверсная населенность и генерация лазерного излучения на переходе $D_1 ({}^2P_{1/2} - {}^2S_{1/2})$ в случае оптической накачки на переходе $D_2 ({}^2S_{1/2} - {}^2P_{3/2})$ и заселении уровня ${}^2P_{1/2}$ при столкновении атомов щелочных металлов, находящихся на уровне ${}^2P_{3/2}$, с атомами буферного газа (рис.1) впервые получены в работах [5–7]. Позднее в [8] было показано, что эффективное заселение уровня ${}^2P_{1/2}$ при использовании этана в качестве буферного газа. Эффективность лазерной генерации в ранних экспериментах была очень низкой, и выходная мощность не превышала нескольких микроватт. В 2003 году была предложена новая концепция: непрерывный лазер на па-

Поступила в редакцию 3 октября 2011 г., после доработки – 23 декабря 2011 г.

Рис.1. Структура лазерных уровней атома цезия.

рах щелочных металлов с накачкой излучением лазерных диодов со столкновительным уширением D_2 -линии гелием в дополнение к столкновительному перемешиванию верхних уровней легкими углеводородами [9]. Концепция предусматривала применение для накачки серийных и относительно недорогих лазерных диодов с шириной линии излучения до нескольких нанометров и позволяла рассматривать возможность создания лазеров мегаваттной мощности при давлении буферного газа гелия до 25 атм [9, 10].

В первых экспериментах при накачке узкополосным излучением твердотельных лазеров было продемонстрировано, что эффективность преобразования накачки «свет в свет» может достигать 63% [11]. При накачке лазерными диодами эффективность оказалась несколько ниже -61% [12]. Максимальная мощность лазеров с диодной накачкой достигла 48 Вт (при эффективности «свет в свет» 49%) для лазера на парах цезия и 207 Вт (при эффективности «свет в свет» ~9%) для лазера на парах рубидия [3,13]. Все эксперименты до настоящего времени были выполнены в условиях, когда лазерная среда заключалась в замкнутый объем размером в несколько кубических сантиметров и охлаждение среды осуществлялось за счет теплообмена между ней и стенками кюветы. В настоящей работе впервые для лазеров на парах щелочных металлов применялась прокачка среды через область генерации лазерного излучения.

А.В.Богачев, С.Г.Гаранин, А.М.Дудов, В.А.Ерошенко, С.М.Куликов, В.О.Паутов, А.В.Рус, С.А.Сухарев. ФГУП «Российский федеральный ядерный центр – ВНИИЭФ», Россия, Нижегородская обл., 607188 Саров, просп. Мира, 37; e-mail: dudov@otd13vniief.ru

Г.Т.Микаелян, В.А.Панарии. ОАО "Научно-производственное предприятие «Инжект»", Россия, 410052 Саратов, просп. 50 лет Октября, 101

2. Описание установки и условия проведения экспериментов

Для накачки цезиевого лазера использовались узкополосные линейки диодных лазеров с внешними селективными отражателями. Расходимость излучения по двум взаимно перпендикулярным направлениям корректировалась асферическими микролинзами. Линейки диодных лазеров оптически объединены в единый корпус (модуль). В каждом модуле находится по 15 линеек. Излучающая поверхность модуля (зона свечения) представляла собой прямоугольник размером 5×30 мм. Четыре модуля лазерных линеек, расположенных в горизонтальной плоскости, представляли собой один элемент накачки – матрицу. Оптическая система сложения излучения в горизонтальной плоскости позволила получить суммарную зону свечения от четырех модулей размером 6×120 мм. Расходимость излучения в горизонтальной плоскости $\theta_x \sim 3$ мрад, а в вертикальной плоскости $\theta_v \sim 0.1$ рад. Система ввода излучения в лазерную кювету давала возможность формировать в лазерной кювете пучок излучения накачки длиной $L \sim 36$ мм с поперечным размером $\sim 5 \times 4$ мм при мощности излучения на окне лазерной кюветы ~350 Вт. Для дальнейшего повышения мощности накачки использовался принцип вертикального сложения излучения от N матриц, расположенных одна над другой (вертикальный перископ). При такой системе накачки зона излучения представляет собой прямоугольник размером $\sim (6N) \times 120$ мм, а расходимость излучения независимо от числа матриц остается прежней ($\theta_x \sim 3$ мрад, $\theta_v \sim 0.1$ рад). Сохраняется также и интенсивность излучения (без учета потерь на оптических элементах сведения) как на окнах лазерной кюветы, так и в лазерной среде, поскольку и мощность излучения накачки, и размер пучка в лазерной кювете по вертикали также увеличивались в N раз.

Второй такой же источник накачки находился по другую сторону лазерной кюветы (рис.2), что позволяло проводить эксперименты и при односторонней, и при двусторонней накачке. Использовался плоскопараллельный резонатор, зеркала 31 и 32 которого с коэффициентами отражения $R_1 = 0.35$ и $R_2 = 0.95$ и зеркало 33, выводящее лазерное излучение, имели размер 5×15 мм и располагались в пучке излучения накачки, что приводило к его частичному виньетированию.

Ширина спектра излучения отдельных линеек лазерных диодов на полувысоте составляла ~0.3 нм, однако в экспериментах наблюдалось смещение максимума линий излучения отдельных линеек относительно линии поглощения цезия, и ширина спектра суммарного излучения всех линеек составляла ~0.7 нм, причем ~90% всей мощности накачки содержалось в спектральной области шириной 1 нм.

Рис.2. Схема лазера на парах цезия с диодной накачкой.

Лазерная кювета объемом 12 см³ была включена в замкнутую двухконтурную систему прокачки лазерной среды через пучок накачки (суммарный объем системы ~3000 см³). Основной контур обеспечивал непрерывный проток лазерной среды через зону генерации со скоростью до 20 м/с, а дополнительный – обдув окон кюветы с той же скоростью. Окна кюветы были выполнены из сапфира и просветлены. Пропускание окна кюветы на длинах волн накачки и генерации было примерно одинаковым и первоначально составляло ~0.92. Вся конструкция изготовлена из нержавеющей стали и снабжена нагревательными элементами и датчиками температуры. Температурный режим обеспечивался системой автоматической термостабилизации, причем температура окон всегда поддерживалась выше температуры металлоконструкций на ~10°С.

Для перемешивания верхних уровней цезия вместо этана использовался метан, что позволяло проводить эксперименты при температуре лазерной среды до 150 °С. При комнатной температуре давление среды (He – CH₄ – Cs) варьировалось в пределах 1-5 атм, а парциальное давление метана – в пределах 0.1-1 атм.

3. Численное моделирование

Для анализа результатов и оптимизации условий генерации лазера разработана квазидвумерная программа, позволяющая рассчитывать характеристики генерации лазерного излучения в предположении, что пучки накачки и лазерные пучки, распространяющиеся внутри резонатора как вправо, так и влево, имеют переменное поперечное сечение, которое изменяется подобно сечению гауссова пучка в области перетяжки:

$$S = S_{\rm w} + \left[\pi \frac{\alpha}{2} (z - z_{\rm w})\right]^2,\tag{1}$$

где $S_{\rm w}$ – сечение пучка в перетяжке; $z_{\rm w}$ – положение перетяжки; α – угол полного раскрытия пучка накачки на бесконечности.

Таким образом учитывается возможное изменение интенсивности излучения при сужении или расширении пучка. Считается, что каустики пучка накачки и лазерного пучка совпадают. Квазидвумерность заключается в том, что распространение излучения накачки и лазерного излучения вдоль оси z рассчитывается путем прямого интегрирования уравнений переноса, тогда как изменение интенсивности вследствие изменения сечения пучка учитывается в предположении, что ее поперечное распределение остается однородным. На границах расчетной области по оси z могут быть заданы характеристики входных пучков накачки и лазерного излучения. Кроме того, на этих же границах через граничные условия задаются отражающие зеркала как для лазерного излучения, так и для излучения накачки. Таким образом может моделироваться как режим генерации, так и режим усиления с инжекцией внешнего сигнала. Активная среда ограничена окнами, для которых вводится заданный коэффициент пропускания.

Кинетические процессы в активной среде, поглощение излучения накачки и усиление лазерного излучения описываются следующими уравнениями:

$$\frac{1}{c}\frac{\partial P_{\text{las1}}}{\partial t} + \frac{\partial P_{\text{las1}}}{\partial z} = \sigma_{21}(n_2 - n_1)P_{\text{las1}} - \gamma P_{\text{las1}} + k_{\text{ns}}Sn_2,$$

$$\frac{1}{c}\frac{\partial P_{\text{las2}}}{\partial t} - \frac{\partial P_{\text{las2}}}{\partial z} = \sigma_{21}(n_2 - n_1)P_{\text{las2}} - \gamma P_{\text{las2}} + k_{\text{ns}}Sn_2,$$

$$\frac{1}{c}\frac{\partial P_{\text{p1}}}{\partial t} + \frac{\partial P_{\text{p1}}}{\partial z} = \sigma_{13}\left(n_1 - \frac{1}{2}n_3\right)P_{\text{p1}},$$

$$\frac{1}{c}\frac{\partial P_{\text{p2}}}{\partial t} - \frac{\partial P_{\text{p2}}}{\partial z} = \sigma_{13}\left(n_1 - \frac{1}{2}n_3\right)P_{\text{p2}},$$

$$\frac{\partial n_1}{\partial t} = \sigma_{21}(n_2 - n_1)\frac{P_{\text{las1}} + P_{\text{las2}}}{S}$$

$$-\int \sigma_{13}(v)\left(n_1 - \frac{1}{2}n_3\right)\frac{P_{\text{p1}}(v) + P_{\text{p2}}(v)}{S}dv,$$

$$\frac{\partial n_2}{\partial t} = -\sigma_{21}(n_2 - n_1)\frac{P_{\text{las1}} + P_{\text{las2}}}{S} - \frac{n_2}{\tau_2} + \gamma_{32}n_3 - \gamma_{23}n_2,$$

$$\frac{\partial n_3}{\partial t} = \int \sigma_{13}(v)\left(n_1 - \frac{1}{2}n_3\right)\frac{P_{\text{p1}}(v) + P_{\text{p2}}(v)}{S}dv$$

$$-\frac{n_3}{\tau_3} - \gamma_{32}n_3 + \gamma_{23}n_2.$$

Здесь $P_{las1}, P_{las2}, P_{p1}, P_{p2}$ – мощности распространяющихся вправо (индекс 1) и влево (индекс 2) волн лазерного излучения и излучения накачки; *с* – скорость света; *n*₁, *n*₂ и n_3 – населенности уровней ${}^2S_{1/2}$, ${}^2P_{1/2}$ и ${}^2S_{3/2}$ атома щелочного металла соответственно; σ_{21} и σ_{13} – сечения соответствующих переходов; S(z) – поперечное сечение пучка в данной точке внутри резонатора; у – коэффициент поглощения активной среды; γ_{32} и $\gamma_{23} = \gamma_{32} \exp[-\Delta E/(kT)]$ – константы скорости перемешивания верхних подуровней; ΔE – разность энергий верхних уровней; τ_3 и τ_2 – времена жизни относительно спонтанного распада уровней 3 и 2; k_{ns} - константа, определяющая амплитуду шумового излучения и зависящая от геометрии каустики и ожидаемой ширины линии генерации. Спектрально-кинетические параметры активной среды брались из работы [9]. Интегрирование системы (2) проводится в спектрально-групповом приближении методом конечных разностей на равномерной по z сетке. Шаг интегрирования по времени Δt связан с шагом пространственной сетки Δz соотношением $\Delta t = \Delta z/c$.

4. Экспериментальные и расчетные результаты

На рис.3 и 4 приведены зависимости мощности излучения лазера при двусторонней накачке в «одноэтажном» варианте от температуры стенок кюветы и давления лазерной среды, полученные в экспериментах при пропускании окон лазерной кюветы $\tau = \tau_1 = \tau_2 = 0.92$. Здесь же представлены результаты расчетов. Видно хорошее согласие экспериментальных и расчетных данных.

Рис.3. Расчетные (сплошные кривые) и экспериментальные (точки) зависимости мощности лазерного излучения $P_{\rm las}$ от температуры стенок кюветы *T* в случае двусторонней накачки при $P_{\rm p} = 350$ Вт с каждой стороны, L = 3.6 см и $\tau = 0.92$. Расчет проводился при $\Delta \lambda = 0.7$ нм, $S_{\rm w} = 0.2$ см² и $\alpha = 5^{\circ}$.

Рис.4. Расчетная (сплошная кривая) и экспериментальная (точки) зависимости мощности лазерного излучения $P_{\rm las}$ от давления среды *p* в случае двусторонней накачки при $P_{\rm p} = 350$ Вт с каждой стороны, L = 3.6 см, $\tau = 0.92$ и T = 120 °C. Расчет проводился при $\Delta \lambda = 0.7$ нм, $S_{\rm w} = 0.2$ см² и $\alpha = 5^{\circ}$.

На рис.5 показаны расчетные зависимости мощности излучения лазера от мощности накачки при различных пропусканиях τ окон кюветы и экспериментальные значения зарегистрированной мощности. Видно, что увеличение τ , т.е. уменьшение внутрирезонаторных потерь, позволило существенно повысить эффективность генерации и получить мощность лазерного излучения ~1 кВт при эффективности «свет в свет» ~48%.

Рис.5. Расчетные (сплошные кривые) и экспериментальная (точки) зависимости мощности лазерного излучения $P_{\rm las}$ от мощности накачки $P_{\rm p}$ и пропускания окон кюветы τ при L = 3.6 см и T = 120 °C. Расчет проводился при $\Delta \lambda = 0.7$ нм, $P_{\rm p}/S_{\rm w} = 3.5$ кВт/см² и $\alpha = 5^{\circ}$.

5. Заключение

Впервые продемонстрирована генерация в лазере на парах цезия с диодной накачкой и прокачкой активной среды. В оптимальных условиях (пропускание окон кюветы 0.98) при двусторонней накачке (мощность излучения накачки на каждом окне кюветы 1 кВт) получена мощность непрерывного лазерного излучения ~1 кВт при эффективности преобразования «свет в свет» ~ 48 %.

- 1. Krupke W.F. Proc. SPIE Int. Soc. Opt. Eng., 7005, 700575 (2008).
- Zhdanov B.V., Shaffer M.K., Knize R.J. Proc. SPIE Int. Soc. Opt. Eng., 7581, 75810F (2010).
- 3. Zweiback J., Komashko A., Krupke W.F. *Proc. SPIE Int. Soc. Opt. Eng.*, **7581**, 75810G (2010).

- Zhdanov B.V., Knize R.J. Proc. SPIE Int. Soc. Opt. Eng., 6874, 68740F (2008).
- 5. Глушко Б.А., Мовсесян М.Е., Овакимян Т.О. Оптика и спектроскопия, **52** (4), 762 (1982).
- 6. Мовсесян М.Е., Овакимян Т.О., Шмавонян С.В. Оптика и спектроскопия, **61** (3), 454 (1986).
- Давтян А.М., Мовсесян М.Е., Папоян А.В., Шмавонян С.В. Оптика и спектроскопия, 66 (5), 1176 (1989).
- 8. Konefal Z. Opt. Commun., 164, 95 (1999).
- Beach R.J., Krupke W.F., Kanz V.K., Payne S.A., Dubinskii M.A., Merkle L.D. J. Opt. Soc. Am. B, 21, 2151 (2004).
- Krupke W.F., Beach R.J., Kanz V.K., Payne S.A., Early J.T. Proc. SPIE Int. Soc. Opt. Eng., 5448, 7 (2004).
- 11. Zhdanov B.V., Ehrenreich T., Knize R.J. Opt. Commun., 260 (2), 696 (2006).
- 12. Zhdanov B.V., Knize R.J. Opt. Lett., 32 (15), 2167 (2007).
- 13. Zhdanov B.V., Sell J., Knize R.J. Electron. Lett., 44 (9), 582 (2008).