Акустооптическая визуализация биологических сред с использованием многощелевых диафрагм

А.П.Соловьев, М.И.Перченко, О.В.Зюрюкина, А.В.Чапурин

Исследовано влияние специальных многощелевых диафрагм, установленных перед фотокатодом приемника, на величину сигнала и отношение сигнал/шум при акустооптической визуализации рассеивающих биологических сред. С использованием таких диафрагм проведена визуализация поглощающего свет и пропускающего звук объемного объекта в виде прямоугольного параллелепипеда с размерами 5 × 5 мм в плоскости, перпендикулярной оси лазерного пучка, и размером 2.5 мм параллельно этой оси. Объект погружался в рассеивающие среды толщиной $L_c = 62$ мм вдоль распространения оптического излучения с параметрами μL_c от 0 до 46 (μ – коэффициент экстинкции среды).

Ключевые слова: лазерное излучение, ультразвук, многощелевая диафрагма, рассеивающая биологическая среда, поглощающая свет неоднородность, акустооптическая визуализация неоднородности.

1. Введение

Акустооптическая томография (АОТ) является сравнительно новым методом визуализации объектов, скрытых в сильно рассеивающих средах (к которым относятся и биологические среды), сочетающим высокий оптический контраст и пространственное разрешение ультразвуковых (УЗ) томографов [1-4]. В основе метода лежит анализ характеристик оптического излучения, прошедшего через пересекаемую УЗ пучком рассеивающую среду. При этом в переменном токе фотодетектора, собирающего оптическое излучение, появляется составляющая на УЗ частоте, несущая информацию о свойствах среды, а следовательно, о наличии или отсутствии неоднородностей. Преимущества АОТ заключаются в относительной дешевизне, отсутствии ионизирующего излучения и неинвазивности, что представляет особый интерес при диагностике биоткани in vivo. Серьезным фактором, препятствующим применению метода АОТ в диагностике поглощающих оптическое излучение и незаметных для ультразвука неоднородностей, скрытых в рассеивающих средах, является малая величина как полезного сигнала, так и отношения сигнал/шум. Для преодоления этих проблем группами авторов предложены различные способы детектирования сигнала, например такие, как параллельное детектирование с использованием CCD-камер [5], интерферометра Фабри-Перо [6], фоторефрактивного кристалла [7], спекл-контрастное детектирование [8], использование интенсивных импульсов звука [9].

В работе [10] для широких лазерных пучков была теоретически предсказана возможность увеличения амплитуды фототока, соответствующего баллистической составляющей света, на УЗ частоте путем установки непосредственно перед фотокатодом приемника многощелевой

Поступила в редакцию 11 апреля 2012 г.

диафрагмы. Для расстояния между фотоприемником и осью V3 пучка, оптимального для регистрации баллистической составляющей тока, диафрагма должна иметь вид плоской решетки с несколькими одинаковыми параллельными прямоугольными щелями. При этом плоскости диафрагмы и фотокатода перпендикулярны оси лазерного го излучения, центр решетки находится на оси лазерного пучка, расстояние между центрами щелей равно длине волны звука в среде Λ , ширина каждой щели равна 0.5 Λ , а сами щели перпендикулярны направлению распространения звука в среде. Заметим, что отношение сигнал/шум достигает максимума при ширине щелей 0.375 Λ .

В настоящей работе экспериментально изучается влияние диафрагм с различным числом щелей на амплитуду фототока на УЗ частоте, на чувствительность приемной системы и на контраст и резкость изображения при визуализации поглощающего свет объекта в рассеивающей среде.

2. Эксперимент

2.1. Экспериментальная установка

Схема установки, на которой проводились измерения, показана на рис.1. Излучение лазера З (Не-Ne-лазер, мода ТЕМ₀₀, длина волны 632.8 нм, диаметр пучка 1.2 мм, мощность 6 мВт) поступало на имитирующий биологическую ткань фантом 4, представляющий собой раствор молока в воде, который заполнял кювету 5. Кювета имела форму прямоугольного параллелепипеда с размером $L_{\rm c}=62~{\rm MM}$ вдоль оси распространения лазерного излучения. В раствор можно было помещать небольшой объект, моделирующий опухоль. УЗ преобразователь с фокусирующей линзой 2 (диаметр преобразователя 23 мм, длина волны звука Λ = 0.5 мм, фокусное расстояние 45 мм, диаметр фокального пятна в воде 1.4 мм), погруженный в раствор, возбуждал бегущую нормально оси лазерного излучения волну на частоте 3 МГц. Напротив преобразователя помещался поглотитель звука 6. Поскольку нами использовалась схема на прохождение, напротив лазера размещался фотоприемник 7 (ФЭУ-79), сигнал с которого регистрировался селективным вольтметром 8 типа В6-10. Вольтметр

А.П.Соловьев, М.И.Перченко, О.В.Зюрюкина, А.В.Чапурин. Национальный исследовательский Саратовский государственный университет им. Н.Г.Чернышевского, Россия, 410012 Саратов, ул. Астраханская, 83; e-mail: solovievap@yandex.ru

Рис.1. Схема экспериментальной установки:

УЗ генератор; 2 – УЗ преобразователь; 3 – лазер; 4 – фантом; 5 – кювета; 6 – поглотитель звука; 7 – фотоприемник; 8 – вольтметр;
 9 – осциллограф; 10 – диафрагма; 11 – дополнительный экран; 12 – полевая диафрагма.

измерял переменные составляющие фототока и шума в полосе 1 кГц с центром на частоте УЗ волны. При необходимости сигнал с фотоприемника регистрировался цифровым осциллографом 9 типа DS03062A (60 МГц, 10⁹ отсчетов в секунду), подключенным к выходу вольтметра. При этом использовалась функция усреднения значений измеряемой величины по 256-ти разверткам осциллографа, что существенно повышало точность измерения сигнала. Диафрагмой 10 служила решетка из т одинаковых прямоугольных параллельных щелей с шагом 0.5 мм, равным длине УЗ волны, устанавливаемая непосредственно на фотокатоде. Размеры каждой щели (ширина ~0.2 мм, высота ~1 мм) соответствовали максимальному отношению сигнал/шум для приема баллистической составляющей сигнала S_b [10]. Перед решеткой устанавливался дополнительный экран 11, который позволял открывать любую щель, три щели, или пять щелей. Фотоприемник вместе с диафрагмой 10 и экраном 11 можно было перемещать вдоль осей x, y и z. Полевая диафрагма 12 имела по осям *y*, *z* размеры 7×8 мм соответственно, а ее центр находился на оси излучения лазера.

2.2. Методика измерений

Селективный вольтметр измерял среднеквадратичные значения фототока, поэтому полезный сигнал S вычислялся по формуле $S = (U^2 - N^2)^{1/2}$, где U и N-значения фототока с включенным и выключенным генератором ультразвука соответственно. В эксперименте измерялись амплитуды фототока на УЗ частоте при двух положениях фотоприемника вдоль оси z: на оси лазерного пучка (положение $z_0 = 0$; измерялись U_0 и шум N_0) и вне геометрических размеров лазерного пучка (положение $z_0 \neq 0$; измерялись $U_{\rm w}$ и $N_{\rm w}$). Сигнал S_0 содержал баллистический ($S_{\rm b}$) и «рассеянный» компоненты фототока, соответствующие баллистическому свету, прошедшему через среду без рассеяния и рассеянному вперед. Сигнал S_w содержал практически только «рассеянный» компонент. Под положением ФЭУ будем понимать положение центра средней щели диафрагмы 10.

Сравнивать рассеивающие среды удобно, используя параметр μL_c (μ – коэффициент экстинкции среды), который определяется как свойствами, так и толщиной визуализируемой среды. В эксперименте параметр μL_c задавался концентрацией *С* молока, которая изменялась от 0 до примерно 2%. Согласно [11] при таких концентрациях молока коэффициент рассеяния μ_s по величине пропорционален *С* и значительно больше коэффициента погло-

щения μ_a . Поэтому в условиях эксперимента величина μL_c примерно равна $\mu_s L_c$ и пропорциональна *C*. Коэффициент пропорциональности определялся по затуханию баллистической составляющей сигнала при малых концентрациях *C*, когда $S_b \gg S_w$. Величина μL_c изменялась от 0 до 46. В процессе исследований измеряемые величины изменялись более чем на 10 порядков, поэтому для ввода фотоприемника в линейный режим при малом μL_c на пути лазерного пучка между кюветой с рассеивающей жидкостью и лазером устанавливались нейтральные калиброванные светофильтры (на рис.1 не показаны).

Для акустооптической визуализации поглощающего свет и пропускающего звук объемного объекта использовались решетки с разным числом щелей. Объект представлял собой прямоугольный параллелепипед с размерами 5×5 мм в плоскости, перпендикулярной оси лазерного пучка, и с размером 2.5 мм вдоль этой оси. Объект механически сканировался относительно точки пересечения звуковой и оптической осей в кювете вдоль координатных осей *z* (ось распространения звука) и *y* (перпендикулярно плоскости осей распространения лазерного (ось *x*) и звукового (ось *z*) излучений).

2.3. Результаты экспериментов и их обсуждение

Для рассеивающих сред с разными значениями μL_c было исследовано влияние числа щелей диафрагмы на баллистическую и «рассеянную» составляющие сигнала и отношение сигнал/шум. Ниже числовые индексы в обозначениях сигналов означают число щелей в диафрагмах.

На рис.2 приведены зависимости отношений сигналов S_{0m}/S_{wm} от параметра μL_c . Видно, что с ростом μL_c это отношение для всех решеток снижается и, начиная с $\mu L_c \approx 23$, колеблется чуть выше единицы. Наблюдаемый на рис.2 рост разброса точек относительно среднего значения связан с уменьшением точности измерений при малых величинах измеряемых сигналов.

На рис.3 и 4 показано, как влияет использование в приемной системе многощелевых диафрагм с разным числом щелей *m* на величину сигналов S_{0m} и на чувствительность приемной системы η_{0m} ($\eta_{0m} = S_{0m}/N_{0m}$). Можно видеть, что во всем исследованном нами диапазоне изменения μL_c (от 0 до 46) увеличение числа щелей диафрагмы приводит к увеличению всех измеряемых величин. При этом чувствительность приемной системы растет или не меняется.

Полученные результаты удобно анализировать, условно разделив исследованную область изменения параметра среды μL_c на два диапазона. Первый диапазон соот-

Рис.2. Зависимости отношений сигналов S_{0m}/S_{wm} от параметра среды μL_c при использовании многощелевых диафрагм (*m* – число щелей решетки).

Рис.3. Зависимости отношений сигналов S_{0m}/S_{01} и S_{w3}/S_{w1} и шумов N_{05}/N_{01} от параметра среды μL_c .

Рис.4. Зависимости относительной чувствительности $\eta = (S/N)$ приемной системы от параметра среды μL_c при использовании трехщелевой (η_{03}/η_{01}) и пятищелевой (η_{05}/η_{01}) диафрагм.

ветствует изменению μL_{c} от 0 до 18 и в нем, как следует из рис.2, $S_{0m} \gg S_w$, т.е. баллистическая составляющая света вносит основной вклад в сигнал. В этом случае при постоянной интенсивности в поперечном сечении лазерного пучка и поперечном размере пучка, превышающем соответствующий размер многощелевой диафрагмы, отношение сигналов S_{0m}/S₀₁ должно быть равно числу щелей т многощелевой диафрагмы, т.к. токи от всех щелей на фотокатоде складываются в фазе. Отношения шумов N_{0m}/N_{01} и, следовательно, чувствительностей η_{0m}/η_{01} должны быть равны \sqrt{m} . В эксперименте распределение интенсивности излучения лазера (ТЕМ₀₀-мода) является гауссовым, а диаметр лазерного пучка сравним с размером используемых многощелевых диафрагм. Поэтому интенсивность лазерного излучения в области центральной щели многощелевой диафрагмы будет больше, чем в боковых щелях, и, следовательно, отношение сигналов S_{0m}/S_{01} должно быть меньше *m*, а отношения шумов (N_{0m}/N_{01}) и чувствительностей (η_{0m}/η_{01}) меньше \sqrt{m} . При этом отношения чувствительностей превышают единицу. Кроме того, в апертуру используемого в эксперименте лазерного пучка диаметром $a_{\rm las} \approx 1.2$ мм укладываются три периода решетки, т.е. трехщелевая диафрагма, общий размер которой $(2\Lambda + d) = 1.2$ мм. При использовании решетки с б льшим числом щелей вклад в сигнал S_{0m} от остальных щелей (в нашем случае - от двух крайних щелей пятищелевой диафрагмы) должен быть незначительным. Поэтому отношения S_{05}/S_{01} и η_{05}/η_{01} должны быть чуть больше соответствующих отношений S_{03}/S_{01} и η_{03}/η_{01} , а отношение S_{05}/S_{03} должно быть несколько больше единицы. Все сделанные выводы хорошо согласуются с экспериментальными результатами.

Во втором диапазоне ($\mu L_c > 23$) баллистическая составляющая сигнала S_b становится меньше «рассеянной» составляющей сигнала S_w, и различие между ними растет с увеличением $\mu L_{\rm c}$. Сигналы S_{0m} стремятся к чисто рассеянным составляющим S_{wm}. То же относится и к шумам, т.е. $N_{0m} \approx N_{wm}$. Следовательно, отношения сигнал/шум, измеренные на оси лазерного пучка, S_{03}/S_{01} , S_{05}/S_{01} , S_{05}/S_{03} и N_{0m}/N_{01} , должны быть примерно равны отношениям сигналов и шумов для S_{wm} и N_{wm}. В [12] показано, что при изменении ширины щели однощелевой диафрагмы «рассеянная» составляющая сигнала S_{w1} ведет себя как шум $N_{\rm w1}$, т.е. она тоже пропорциональна корню квадратному из площади щели. Для диафрагмы из *т* щелей шум N_{wm} должен быть пропорционален \sqrt{m} . Результаты экспериментов, проведенных в настоящем исследовании, показали, что «рассеянная» составляющая сигнала S_{wm} (на рис.3 приведена зависимость S_{w3}/S_{w1} от параметра μL_c для трех щелей) увеличивается с ростом числа щелей примерно в \sqrt{m} раз во всем диапазоне изменения $\mu L_{\rm c}$, включая первый диапазон. Это свидетельствует об отсутствии вдоль оси распространения звука пространственной корреляции как рассеянного сигнала S_{wm}, так и равного ему сигнала на лазерной оси S_{0m} (в отличие от баллистического сигнала). Таким образом, во втором диапазоне изменения μL_{c} отношения S_{0m}/S_{01} и N_{0m}/N_{01} также должны быть равны \sqrt{m} , а следовательно, отношения чувствительностей η_{0m}/η_{01} примерно равны единице. Эти выводы хорошо согласуются с полученными экспериментальными результатами: $S_{03}/S_{01} \approx 1.7 \approx \sqrt{3}$, $S_{05}/S_{01} \approx 2.2 \approx \sqrt{5}$, S_{05}/S_{03} $\approx 1.3 \approx \sqrt{5/3}$, $N_{05}/N_{01} \approx 2.4 \approx \sqrt{5}$. Отношения чувствительностей η_{03}/η_{01} и η_{05}/η_{01} в указанном диапазоне изменения $\mu L_{\rm c}$ также примерно равны единице.

Визуализация сильно поглощающего оптическое излучение объекта, изготовленного из черного поливинила, проводилась с использованием решеток с разным числом щелей при различных значениях параметра μL_c среды. На рис.5 приведены результаты для $\mu L_c = 22$ и 32. Трактовку результатов подтверждают зависимости сигналов S_{0nnn} , нормированных на свои средние максимальные значения S_{0nmax} , полученные при полном выведении объекта из области зондирования. Изображения объекта на рис. 5, *а* получены по измерениям сигналов S_{01n} , S_{03n} и S_{05n} при сканировании вдоль оси *у* при $z_{obj} = 0$, а на рис. 5, δ – при сканировании вдоль оси *z* при $y_{obj} = 0$, 2.5 и 6 мм. Здесь z_{obj} и y_{obj} соответствуют положению центра объекта относительно центра области зондирования – точки пересечения осей лазерного и звукового пучков.

Из представленных рисунков можно сделать вывод, что для использованных сред количество щелей диафрагмы практически не влияет на качество (контраст и резкость) изображения объекта. При этом контраст и резкость практически не зависят от параметра μL_c в диапазоне 22 – 32. Контраст изображения, рассчитанный по формуле contr = $(S_{\text{max}} - S_{\text{min}})/(S_{\text{max}} + S_{\text{min}})$, равен примерно 0.7 при использования как однощелевой, так и многощелевых диафрагм. Здесь S_{min} – среднее значение сигнала в случае примерного совпадения центра объекта с центром области зондирования. Резкость изображения, определенная как величина, обратная величине смещения объекта, соответствующей изменению перепада ($S_{\text{max}} - S_{\text{min}}$) параметра визуализации от 0.1 до 0.9, равна примерно 0.4 мм⁻¹ по обеим координатам. Возможность томогра-

Рис.5. Зависимости нормированных сигналов S_{01n} , S_{03n} и S_{05n} от перемещения объекта вдоль оси у при $z_{obj} = 0$, $\mu L_c = 22$ и 32 (*a*) и вдоль оси *z* при $y_{obj} = 0$, 2.5 и 6 мм, $\mu L_c = 22$ и 32 (*b*).

фии в рассеивающей среде демонстрируют три зависимости сигнала S_{05n} на рис.5,6 при $\mu L_c = 22$: когда при перемещении объекта его центр проходит через центр области зондирования ($y_{obi} = 0$), когда край объекта проходит через центр области зондирования (yobj = 2.5 мм) и когда объект целиком проходит вне области зондирования (y_{obi} = 6 мм). Небольшое различие в значениях сигналов для $y_{\rm obj} = 0$ и 2.5 мм при положениях объекта $z_{\rm obj} < -6$ мм (объект смещен в сторону УЗ излучателя относительно оси лазерного пучка) и z_{obi} > 6 мм связано с небольшим поглощением УЗ излучения объектом. Численные значения контраста и резкости изображений при $\mu L_c = 22$ совпадают с аналогичными результатами для однощелевой диафрагмы [13, 14], где рассмотрена визуализация аналогичного объекта при µL_c от 0 до 27. Результаты, представленные в [13, 14] и в настоящей работе, также позволяют выделить два диапазона значений μL_c с примерно постоянными контрастом и резкостью изображений: при $\mu L_{c} < 18$ контраст и резкость равны 1 и 2.2 мм⁻¹, при $\mu L_{c} > 22$ они составляют 0.6 и 2.5 мм⁻¹ соответственно. В промежуточном диапазоне μL_c (от 18 до 22) контраст и резкость изображений быстро переходили от значений при $\mu L_{c} < 18$ к значениям при $\mu L_{c} > 22$. Приведенные численные значения примерно одинаковы для изображений по обеим координатам у и z.

Эти результаты можно объяснить следующим. Размер области зондирования определяет резкость изображения и его контраст. При малых μL_c (менее 18) размеры области зондирования определяются пересечением лазерного и звукового пучков. В этом случае размеры области зондирования вдоль направлений у и z меньше диаметров как лазерного, так и звукового пучков, которые в условиях эксперимента примерно равны. Поэтому контраст изображений объекта 5 × 5 мм был равен единице, т. к. объект полностью перекрывал область зондирования, а резкость составляла 2.2 мм⁻¹, что соответствует разрешению примерно 0.5 мм, меньшему диаметров лазерного и звукового пучков. При $\mu L_c > 22$ баллистическая составляющая лазерного излучения в области звукового пучка мала по сравнению с «рассеянной». В этом случае размеры области зондирования определяются только звуковым пучком (в предположении постоянства плотности рассеянного лазерного излучения в звуковом пучке). Причем, как показано в [12], для сфокусированного звукового пучка область зондирования сосредоточена в области фокуса, а ее размеры в направлениях у и z больше диаметра фокального пятна. Фактически размер области зондирования определяется скоростью снижения интенсивности волн дифракции по мере удаления от фокальной плоскости звукового пучка.

3. Заключение

В представленной работе экспериментально показано, что амплитуда сигнала S на УЗ частоте, которая в используемой схеме является параметром визуализации, может быть увеличена путем установки на фотоприемник специально рассчитанных диафрагм. При этом в диапазоне значений μL_c от 0 до 18, когда баллистическая составляющая света вносит значительный вклад в сигнал, использование трехщелевой и пятищелевой диафрагм привело к увеличению сигнала S₀₃ в 2.3-2.4 раза и S₀₅ в 2.5-2.6 раза по сравнению с сигналом S_{01} в случае однощелевой диафрагмы. Поскольку размер лазерного пучка на фотоприемнике был меньше длины пятищелевой решетки вдоль оси z, сигнал S₀₅ лишь немного превысил сигнал S_{03} . В этом диапазоне μL_{c} наблюдался заметный выигрыш в чувствительности приемной системы с использованием многощелевых диафрагм: $\eta_{03}/\eta_{01} \approx 1.49, \eta_{05}/\eta_{01} \approx 1.55.$

При $\mu L_c > 23$ баллистическая составляющая света существенно меньше «рассеянной», которая здесь в основном и определяет сигнал. В этом диапазоне $S_{05}/S_{01} = \sqrt{5}$ и $S_{03}/S_{01} = \sqrt{3}$, что свидетельствует об отсутствии пространственной корреляции в рассеянном сигнале. Выигрыша в чувствительности от использования многощелевых диафрагм в этом диапазоне μL_c получено не было.

Проведенная визуализация объекта с характерным размером 5 мм, поглощающего оптическое излучение и практически прозрачного для звукового излучения, показала, что в пределах достаточно больших значений параметра $22 < \mu L_c < 32$ контраст и резкость изображения объекта практически не зависят от числа щелей диафрагмы и остаются постоянными. Их значения в направлениях *у* и *z* примерно одинаковы.

- 1. Leutz M., Maret G. Phys. B: Phys. Condensed Matter, 204, 14 (1995).
- 2. Wang L.V. Photochem. Photobiol., 67, 41(1998).
- 3. Kempe M., Larionov M., et al. J. Opt. Soc. Am., 14 (5), 1151 (1997).
- 4. Тучин В.В. *УФН*, **167** (5), 517 (1997).
- 5. Gross M., Goy P., Koussa M.Al. Opt. Lett., 28, 2482 (2003).
- 6. Sahadzie S., Wang L.H. Opt. Lett., 29, 2770 (2004).
- 7. Murray T.W., Sue L., Magiluri G., et al. Opt. Lett., 29, 2509 (2004).
- 8. Li J., Ku G., Wang L.V. Opt. Lett., 41, 6030 (2002).
- 9. Kim C., Zemp K.I., Wang L.V. Opt. Lett., 31, 16 (2006).
- Соловьев А.П., Синичкин Ю.П. и др. ЖТФ, 72, 64 (2002).
- Rinneberg H., in Symposium and Memorian H. von Helmholtz. In The Inverse Problem (Berlin: Akademic Verlag, 1995, p. 107).
- Соловьев А.П и др. Оптика и спектроскопия, 100, 245 (2006).
- Соловьев А.П. и др. Оптика и спектроскопия, 100, 245 (2000).
 Соловьев А.П. и др. Оптика и спектроскопия, 92 (2), 345 (2002).
- 14. Соловьев А.П. и др. Оптика и спектроскопия, **101** (2), 305 (2006).