Спектрально-люминесцентные и генерационные свойства кристаллов ZrO₂-Y₂O₃-Tm₂O₃

М.А.Борик, Е.Е.Ломонова, А.В.Малов, А.В.Кулебякин, П.А.Рябочкина, С.Н.Ушаков, М.А.Усламина, А.Н.Чабушкин

Исследованы спектры поглощения из основного состояния ${}^{3}H_{6}$ на возбужденные мультиплеты ${}^{1}G_{4}$, ${}^{3}F_{2}$, ${}^{3}F_{3}$, ${}^{3}H_{4}$, ${}^{3}H_{5}$, ${}^{3}F_{4}$ и спектр люминесценции лазерного перехода ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ при возбуждении на уровень ${}^{3}H_{4}$ ионов Tm³⁺ в кристаллах $ZrO_{2}-12$ мол.% $Y_{2}O_{3}-2$ мол.% $Tm_{2}O_{3}$ при температуре 300 К. Эффективность процесса кросс-релаксации (${}^{3}H_{4} \rightarrow {}^{3}F_{4}$, ${}^{3}H_{6} \rightarrow {}^{3}F_{4}$) ионов Tm³⁺, оцененная по интегральным характеристикам кривых затухания люминесценции с уровня ${}^{3}H_{4}$ ионов Tm³⁺, составляет более 90%. Рассчитаны спектральные зависимости сечения усиления лазерного перехода ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ ионов Tm³⁺ при различных значениях относительной инверсной населенности. Впервые получена лазерная генерация на переходе ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ ионов Tm³⁺ на кристаллах $ZrO_{2}-12$ мол.% $Y_{2}O_{3}-2$ мол.% $Tm_{2}O_{3}$ в условиях лазерной диодной накачки. Длина волны генерации составила 2046 нм.

Ключевые слова: спектр поглощения, спектр люминесценции, лазерная генерация, ионы Tm³⁺, кристаллы ZrO₂-Y₂O₃-Tm₂O₃.

Кристаллы стабилизированного диоксида циркония характеризуются разупорядоченной кристаллической структурой, вследствие чего спектры поглощения и люминесценции редкоземельных ионов в этих кристаллах имеют значительное неоднородное уширение. Результаты исследования спектрально-люминесцентных свойств кристаллов стабилизированного диоксида циркония, активированных ионами Nd³⁺ и Yb³⁺, представлены в работах [1,2].

С использованием этих кристаллов была получена лазерная генерация при полупроводниковой лазерной накачке. Результаты экспериментов по генерации на кристаллах $ZrO_2-Y_2O_3-Yb_2O_3$ описаны в работах [3,4]. В [3] приведены результаты исследования лазерной генерации на переходе ${}^4F_{5/2} \rightarrow {}^4F_{7/2}$ ионов Yb^{3+} в области длин волн 1.04–1.06 мкм на указанных кристаллах. О генерации незатухающего цуга импульсов на тех же кристаллах при использовании импульсной и непрерывной накачек сообщается в работе [4].

В настоящее время для медицинских применений и лидаров представляют интерес лазеры, генерирующие излучение в двухмикронной области спектра. Лазерная генерация в этой спектральной области получена на переходах ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ ионов Tm^{3+} и ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ ионов Ho^{3+} в различных оксидных и фторидных кристаллах. Характеристики двухмикронных лазеров на основе оксидных и фторидных материалов, активированных ионами Tm^{3+} и Ho^{3+} , приведены в обзоре [5]. В связи с этим поиск и исследование новых лазерных материалов для спектральной области 1.8-2.1 мкм являются по-прежнему актуальными.

В работе [6] представлены результаты нашего исследования структуры и спектрально-люминесцентных свойств

Поступила в редакцию 4 апреля 2012 г., после доработки – 1 июня 2012 г.

кристаллов $ZrO_2-Y_2O_3-Tm_2O_3$. В настоящей работе приведены спектрально-люминесцентные характеристики кристаллов состава ZrO_2-12 мол.% Y_2O_3-2 мол.% Tm_2O_3 , а также результаты экспериментов по генерации на этих кристаллах при полупроводниковой лазерной накачке.

Кристаллы стабилизированного оксидом иттрия диоксида циркония, активированного ионами Tm³⁺, выращены на установке «Кристалл-407». Синтез исследуемых кристаллов проводился в холодном контейнере диаметром 130 мм при скорости роста 10 мм/ч. Выращенные кристаллы имели длину 30–40 мм и поперечный размер 10–20 мм.

Количественный элементный анализ кристаллов ZrO_2 – 12 мол.% Y_2O_3 –2 мол.% Tm_2O_3 был выполнен с помощью аналитической приставки INCA ENERGY (Oxford Instruments) к электронному микроскопу JSM-5910LV (JEOL). Согласно результатам этого анализа, концентрация ионов Tm^{3+} в данных кристаллах составила 1.1×10^{21} см⁻³.

Спектры поглощения ионов Tm³⁺ в исследуемых кристаллах регистрировались спектрофотометром Lambda 950 (Perkin Elmer). Спектры люминесценции с уровня ${}^{3}F_{4}$ ионов Tm³⁺ регистрировались с помощью автоматизированной установки на базе монохроматора МДР-23 при возбуждении уровня ${}^{3}H_{4}$ излучением лазерного диода с $\lambda_{rad} \sim 809$ нм.

Кинетика затухания люминесценции с уровней ³H₄, ³F₄ ионов Tm³⁺ регистрировалась при возбуждении уровня ³H₄ излучением перестраиваемого импульсного твердотельного лазера LX 329 на основе Al₂O₃: Ti. Регистрация кинетики затухания люминесценции проводилась монохроматором MДР-23 и цифровым осциллографом GDS 720C.

Длина волны генерации контролировалась монохроматором МДР-23. В качестве приемника излучения использовалось фотосопротивление на основе PbS.

Спектр поглощения, обусловленного переходом из основного состояния ${}^{3}\text{H}_{6}$ на уровень ${}^{3}\text{H}_{4}$ ионов Tm ${}^{3+}$ для кристалла ZrO₂-12 мол.% Y₂O₃-2 мол.% Tm₂O₃ при температуре *T* = 300 K, представлен на рис.1. Видно, что данный спектр состоит из широких малоструктурированных полос. Коэффициент поглощения в области 800 нм близок к 1 см⁻¹, что позволяет использовать для накачки этого кристалла широко распространенные лазерные диодные

А.В.Малов, П.А.Рябочкина, М.А.Усламина, А.Н.Чабушкин. Мордовский государственный университет им. Н.П.Огарева, Россия, 430005 Саранск, ул. Большевистская, 68; e-mail: malovav@pisem.net, ryabochkina@freemail.mrsu.ru

М.А.Борик, Е.Е.Ломонова, А.В.Кулебякин, С.Н.Ушаков. Институт общей физики им. А.М.Прохорова РАН, Россия, 119991 Москва, ул. Вавилова, 38

Рис.1. Спектр поглощения для перехода ${}^{3}H_{6} \rightarrow {}^{3}H_{4}$ ионов Tm³⁺ в кристалле ZrO₂−12 мол.% Y₂O₃−2 мол.% Tm₂O₃ при *T* = 300 K.

линейки. Большая спектральная ширина линии поглощения ионов Tm³⁺ в данном кристалле существенно снижает требования к температурной стабилизации лазерного диода накачки.

Особенностью получения двухмикронной генерации в кристаллах, активированных ионами Tm³⁺, является то, что заселение верхнего лазерного уровня ³F₄ осуществляется с участием процесса кросс-релаксации (${}^{3}\text{H}_{4} \rightarrow {}^{3}\text{F}_{4}$, ${}^{3}\text{H}_{6} \rightarrow {}^{3}\text{F}_{4}$) ионов Tm $^{3+}$ при накачке на уровень ${}^{3}\text{H}_{4}$ ($\lambda_{\rm rad} \sim$ 800 нм). Для определения вклада этого процесса в населенность уровня ³F₄ мы исследовали кинетику затухания люминесценции ионов $Tm^{3+}\,c$ уровня 3H_4 в кристаллах с разным содержанием ионов Tm³⁺. На рис.2 приведены кинетики затухания люминесценции для кристаллов ZrO2-13.8 мол.% Y₂O₃-0.2 мол.% Tm₂O₃ и ZrO₂-12 мол.% Y₂O₃-2 мол.% Tm₂O₃ с уровня ${}^{3}\text{H}_{4}$ (λ_{det} = 800 нм) при резонансном возбуждении этого уровня (λ_{exc} = 770 нм). Следует отметить, что кинетика затухания люминесценции для кристаллов ZrO₂-13.8 мол.% Y₂O₃-0.2 мол.% Tm₂O₃ с малой концентрацией ионов Tm³⁺ является неэкспоненциальной. Это связано с разнообразием оптических центров ионов Tm³⁺ в кристаллах стабилизированного иттрием диоксида циркония. Времена жизни ионов Tm^{3+} на уровне ${}^{3}H_{4}$ в этих кристаллах, оцененные по начальному и конечному участкам кривой распада, равны 150 и 300 мкс соответственно. Из рис.2 видно, что при увеличении концентрации ионов Tm³⁺ до 2 мол.% в кристаллах стабилизированного диоксида циркония происходит более быстрый распад этого уровня, что может быть обусловлено про-

Рис.2. Кинетики затухания люминесценции с уровня ³H₄ ионов Tm³⁺ в кристаллах ZrO₂-13.8 мол.% Y₂O₃-0.2 мол.% Tm₂O₃ (*I*) и ZrO₂-12 мол.% Y₂O₃-2 мол.% Tm₂O₃ (*2*) при λ_{exc} = 770 нм, λ_{det} = 800 нм и *T* = 300 K.

цессом кросс-релаксации (${}^{3}\text{H}_{4} \rightarrow {}^{3}\text{F}_{4}$, ${}^{3}\text{H}_{6} \rightarrow {}^{3}\text{F}_{4}$) ионов Tm³⁺. По интегральным характеристикам кривых затухания люминесценции с уровня ${}^{3}\text{H}_{4}$ ионов Tm³⁺ была оценена эффективность процесса кросс-релаксации

$$\beta_{\text{Tm} \to \text{Tm}} = \left[1 - \frac{\int (I_{\text{Tm}}/I_0) \, dt}{\int (I'_{\text{Tm}}/I'_0) \, dt} \right] 100\%,\tag{1}$$

где $I_{\rm Tm}$ – интенсивность сигнала люминесценции с уровня ${}^{3}{\rm H}_{4}$ ионов Tm³⁺ для кристалла ZrO₂-12 мол.% Y₂O₃-2 мол.% Tm₂O₃; $I'_{\rm Tm}$ – интенсивность сигнала люминесценции ${}^{3}{\rm H}_{4}$ ионов Tm³⁺ для кристалла ZrO₂-13.8 мол.% Y₂O₃-0.2 мол.% Tm₂O₃; I_{0} и I'_{0} – соответствующие интенсивности сигнала люминесценции при t = 0. Оцененная по формуле (1) эффективность процесса кросс-релаксации (${}^{3}{\rm H}_{4} \rightarrow {}^{3}{\rm F}_{4}$, ${}^{3}{\rm H}_{6} \rightarrow {}^{3}{\rm F}_{4}$) ионов Tm³⁺ составляет более 90%.

Для проведения экспериментов по получению и исследованию лазерной генерации важно знать спектральную зависимость сечения усиления на лазерном переходе. Это способствует оптимальному выбору зеркал лазерного резонатора с необходимым коэффициентом отражения в интересующей нас спектральной области.

Спектральная зависимость сечения люминесценции лазерного перехода ${}^3F_4 \rightarrow {}^3H_6$ ионов Tm^{3+} для кристаллов ZrO_2-12 мол.% Y_2O_3-2 мол.% Tm_2O_3 определялась по формуле Фухтбауэра–Ладенбурга

(

$$\sigma_{\rm e}(\lambda) = \frac{\lambda^5}{8\pi c n_{\lambda}^2} \frac{1}{\tau_{\rm rad}} \frac{I(\lambda)}{\left(\lambda I(\lambda) \,\mathrm{d}\lambda\right)},\tag{2}$$

где $\tau_{\rm rad}$ – радиационное время жизни уровня ${}^{3}F_{4}$ ионов Tm³⁺; n_{λ} – показатель преломления среды; λ – длина волны; I – интенсивность люминесценции (в относительных единицах). Считая, что вероятность безызлучательной релаксации с уровня ${}^{3}F_{4}$ мала, мы подставляли в выражение (2) $\tau_{\rm rad} = A^{-1} = 6.7$ мс. Здесь A – вероятность излучательного перехода с уровня ${}^{3}F_{4}$, которая оценивалась по формуле

$$A = \frac{8\pi n_{\lambda}^2 c}{N\lambda^4} \frac{2J^1 + 1}{2J + 1} \int k(\lambda) d\lambda,$$
(3)

где $k(\lambda)$ – коэффициент поглощения; J^1 и J – полные моменты количества движения 4f-электронов в основном и возбужденном состояниях, между которыми осуществлялся переход; N – концентрация ионов Tm³⁺.

На рис.3 представлены спектры поглощения и люминесценции для переходов ${}^{3}H_{6} \leftrightarrow {}^{3}F_{4}$ ионов Tm³⁺ в кристалле ZrO₂-12 мол.% Y₂O₃-2 мол.% Tm₂O₃ при *T* = 300 K.

Спектральная зависимость сечения усиления на лазерном переходе рассчитывалась как

$$\sigma_{\rm g} = P\sigma_{\rm e} - (1 - P)\sigma_{\rm a},\tag{4}$$

где $\sigma_{\rm e}$ – сечение люминесценции на выбранной длине волны; $\sigma_{\rm a}$ – сечение поглощения на той же длине волны; $P = N_{\rm e}/(N_{\rm e} + N_{\rm f})$ – относительная инверсная населенность; $N_{\rm e}$ – населенность верхнего лазерного уровня ${}^{3}{\rm F}_{4}$; $N_{\rm f}$ – населенность нижнего лазерного уровня ${}^{3}{\rm H}_{6}$. Полученные по формуле (4) зависимости для перехода ${}^{3}{\rm F}_{4} \rightarrow {}^{3}{\rm H}_{6}$ ионов Tm ${}^{3+}$ в кристалле ZrO₂–12 мол.% Y₂O₃–2 мол.% Tm₂O₃ приведены на рис.4.

Оптическая схема лазера для получения и исследования генерации на переходе ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ ионов Tm³⁺ в кри-

Рис.3. Спектры поглощения и люминесценции для переходов ${}^{3}\text{H}_{6} \leftrightarrow {}^{3}\text{F}_{4}$ ионов Tm ${}^{3+}$ в кристалле ZrO₂-12 мол.% Y₂O₃-2 мол.% Tm₂O₃ при *T* = 300 K.

сталлах ZrO_2-12 мол.% Y_2O_3-2 мол.% Tm_2O_3 показана на рис.5. Изначально неустойчивый резонатор длиной 15 мм, становится устойчивым вследствие наведения положительной тепловой линзы в активном элементе в процессе лазерной накачки.

Накачка активного элемента осуществлялась на уровень ${}^{3}\text{H}_{4}$ ионов Tm³⁺ линейкой лазерных диодов *l* с длиной волны излучения 798 нм. Для снижения тепловой нагрузки на активный элемент использовался обтюратор *4*, формирующий импульсы накачки длительностью 10 мс с частотой повторения ~3 Гц. Излучение линейки лазерных диодов с волоконным выходом *2* (диаметр волокна 400 мкм) проецировалось внутрь активного элемента без увеличения с помощью объектива *3*. Активный элемент *6* размером 3×3×5 мм был вырезан из кристалла ZrO₂–12 мол.% Y₂O₃–2 мол.% Tm₂O₃. На торцы активного элемента размером 3×3 мм наносилось просветляющее по-

Рис.4. Спектральные зависимости сечения усиления $\sigma_g(\lambda)$ для лазерного перехода ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ ионов Tm³⁺ в кристаллах ZrO₂-12 мол.% Y₂O₃-2 мол.% Tm₂O₃ при различных значениях относительной инверсной населенности *P*.

Рис.5. Оптическая схема лазера на кристалле ZrO₂-12 мол.% Y₂O₃-2 мол.% Tm₂O₃:

1 – линейка лазерных диодов; 2 – оптическое волокно; 3 – объектив; 4 – обтюатор; 5 – входное зеркало; 6 – активный элемент, 7 – выходное зеркало.

Рис.6. Осциллограммы импульса лазерной генерации на кристалле ZrO_2-12 мол.% Y_2O_3-2 мол.% Tm_2O_3 (*1*) и импульса возбуждения (2).

крытие на длину волны генерации ($\lambda_{gen} \sim 2$ мкм). В эксперименте использовался резонатор, образованный сферическим зеркалом 5 с радиусом кривизны рабочей поверхности 600 мм, коэффициентом пропускания в области накачки не менее 90% и коэффициентом отражения на длине волны генерации более 99% и плоским выходным зеркалом 7 с коэффициентом пропускания на длине волны генерации менее 1%. Система термостабилизации обеспечивала температуру медной оправки активного элемента ~18 °C.

Осциллограммы импульса лазерной генерации на кристалле $ZrO_2-12 \text{ мол.}\% Y_2O_3-2 \text{ мол.}\% Tm_2O_3$ и импульса возбуждения, полученные с помощью цифрового осциллографа GDS 720C, представлены на рис.6.

Лазерная генерация на переходе ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ ионов Tm³⁺ в кристалле ZrO₂-12 мол.% Y₂O₃-2 мол.% Tm₂O₃ была получена на длине волны $\lambda_{gen} = 2046$ нм. Порог генерации составил 5 Вт по поглощенной мощности накачки.

В настоящей работе исследованы спектрально-люминесцентные свойства кристаллов ZrO_2-12 мол.% Y_2O_3-2 мол.% Tm_2O_3 . Эффективность процесса кросс-релаксации ионов Tm^{3+} в этих кристаллах, оцененная по результатам исследования кривых затухания люминесценции с уровня ${}^{3}H_4$ ионов Tm^{3+} в кристаллах $ZrO_2-13.8$ мол.% $Y_2O_3-0.2$ мол.% Tm_2O_3 и ZrO_2-12 мол.% Y_2O_3-2 мол.% Tm_2O_3 , составила более 90%.

Впервые на кристалле ZrO₂-12 мол.% Y₂O₃-2 мол.% Tm₂O₃ получена лазерная генерация на длине волны $\lambda_{gen} = 2046$ нм (переход ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ ионов Tm³⁺) в условиях полупроводниковой лазерной накачки. Отметим, что длина волны генерации лазера на этом кристалле находится между длинами волн самой длинноволновой линии генерации на кристалле Y₃Al₅O₁₂: Tm ($\lambda_{gen} = 2013$ нм) и линии генерации на кристалле Lu₂O₃: Tm ($\lambda_{gen} = 2070$ нм) [5].

Работа выполнена при финансовой поддержке ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы (государственный контракт 14.740.11.0071).

- Воронько Ю.К., Ломонова Е.Е., Вишнякова М.А., Попов А.В., Соболь А.А., Шукшин В.Е. *Неорганические материалы*, 40 (5), 585 (2004).
- Воронько Ю.К., Ломонова Е.Е., Попов А.В., Соболь А.А., Ушаков С.Н. *Неорганические материалы*, 41 (8), 955 (2005).
- 3. Шукшин В.Е. *Труды ИОФРАН*, **64**, 3 (2008).
- 4. Хромов М.Н. Автореф. канд. дис. (М., ИОФРАН, 2009).
- Scholle K., Lamrini S., Koopmann P., Fuhberg P., in *Frontiers in Guided Wave Optics and Optoelectronics* (Croatia, InTech, 2010).
- Рябочкина П.А., Борик М.А., Кулебякин А.В., Ломонова Е.Е., Малов А.В., Сомов Н.В., Ушаков С.Н., Чабушкин А.Н., Чупрунов Е.В. Оптика и спектроскопия, 112 (3), 513 (2012).