PACS 42.50.Gy; 42.25.Gy

Аномальное поведение дисперсии атомной среды с замкнутой схемой возбуждения

К.А.Баранцев, А.Н.Литвинов, Г.А.Казаков, Ю.В.Рождественский

Исследована дисперсия коэффициента преломления атомной среды в случае замкнутой схемы возбуждения. Показано, что в зависимости от алгебраической суммы фаз Ф возбуждающих полей и частот Раби коэффициент преломления имеет максимум в области Ф ≤ π/4. Найдена область частот вблизи этого максимума, в которой одновременно с ростом коэффициента преломления происходит усиление одного из оптических полей.

Ключевые слова: когерентное пленение населенностей, дисперсия, замкнутая схема возбуждения, электромагнитноиндуцированная прозрачность.

1. Введение

В последнее время проявляется значительный интерес к управлению коэффициентом преломления среды при воздействии оптического излучения. При этом на резонансных частотах коэффициент преломления оптической среды может в десятки раз превышать значения, характерные для взаимодействия той же среды с нерезонансным излучением. В случае среды двухуровневых атомов такой высокий коэффициент преломления обусловлен значительным поглощением оптического излучения. Однако в трёхуровневых системах, вследствие интерференции атомных переходов, которая приводит к возбуждению низкочастотной когерентности, можно получить прозрачную среду с высоким коэффициентом преломления [1-5]. Физически это связано с существованием для таких трёхуровневых сред как эффекта когерентного пленения населённостей (КПН) [6], так и близкого к нему эффекта электромагнитно-индуцированной прозрачности (ЭИП) [7-9].

Подчеркнём ещё раз, что наличие квантовой когерентности приводит к тому, что поглощение среды практически отсутствует (т.е. среда является прозрачной для действующего на неё излучения), а значения коэффициента преломления сопоставимы с его резонансным значением для среды двухуровневых атомов. Такие особенности поведения коэффициента преломления могут быть актуальными при разработке лазеров без инверсии населённостей [10–13]. Применение управления коэффициентом преломления в системах квантовой памяти рассмотрено в [14].

Важно, что получение больших значений дисперсии атомной среды при слабом поглощении требует дополнительной «подготовки» среды [10-13], которая может быть проведена как дополнительным излучением [12], так и путем распространения многочастотного излучения в среде многоуровневых атомов. В последнем случае ключевую роль играет схема взаимодействия оптических полей с системой квантовых уровней. Особое место здесь занимают атомные системы, которые взаимодействуют с полями по замкнутой схеме [15-18]. Оказывается, что для таких систем параметром, значение которого полностью меняет динамику системы, является алгебраическая сумма начальных фаз полей, действующих на неё. При этом замкнутая схема возбуждения может быть реализована в трёхуровневой Л-системе при приложении между нижними уровнями связывающего радиочастотного поля (так называемая ∆-система) [16], или же схему взаимодействия можно замкнуть с помощью двух оптических полей через дополнительный верхний уровень (двойная Л-система) [15, 17, 18].

В дальнейшем было показано, что начальные фазы полей определяют само существование в системах с замкнутой схемой взаимодействия как эффекта КПН [16–18], так и эффекта ЭИП, который был исследован в замкнутой Δ -системе, образованной при приложении между нижними состояниями микроволнового поля [19, 20]. При этом в [19, 21] было проведено исследование поглощения излучения в газовой ячейке для систем с замкнутой схемой возбуждения в случае приложения четырёх оптических импульсных полей. Примечательно, что такая замкнутая схема возбуждения может быть реализована как для атомов щелочных металлов, так и для полупроводниковых квантоворазмерных систем [22, 23].

В то же время работы [15-19] посвящены главным образом исследованию возникновения и разрушения эффектов КПН (ЭИП) для замкнутой схемы возбуждения в зависимости от относительной фазы Φ возбуждающих полей. Изучение влияния фазы Φ на дисперсию показателя преломления и коэффициента поглощения в этих работах не проводилось, хотя подобное исследование пред-

К.А.Баранцев, А.Н.Литвинов. Санкт-Петербургский государственный политехнический университет, Россия, 195251 С.-Петербург, ул. Политехническая, 29; e-mail: andrey.litvinov@mail.ru

Г.А.Казаков. Санкт-Петербургский государственный политехнический университет, Россия, 195251 С.-Петербург, ул. Политехническая, 29; Institute of Atomic and Subatomic Physics, Stadionalle 2, 1020 Vienna, Austria

Ю.В.Рождественский. Санкт-Петербургский государственный университет информационных технологий, механики и оптики, Россия, 197101 С.-Петербург, Кронверкский просп., 49

Поступила в редакцию 28 марта 2012 г., после доработки – 10 мая 2012 г.

ставляется весьма актуальным и может привести к нетривиальным результатам. Таким образом, целью настоящей работы как раз и является исследование зависимости дисперсии показателя преломления и коэффициента поглощения от относительной фазы возбуждающих полей в условиях эффекта КПН.

2. Основные уравнения

На рис.1 представлена трёхуровневая система с замкнутой схемой взаимодействия – Δ -система. Здесь переход между состояниями $|1\rangle$ и $|2\rangle$ является магнитодипольным, а переходы $|1\rangle \rightarrow |3\rangle$ и $|2\rangle \rightarrow |3\rangle$ представляют собой сильные электродипольные переходы в оптической области спектра. Верхнее состояние системы распадается на состояния $|1\rangle$ и $|2\rangle$ со скоростью распада 2 γ . Будем считать, что квантовая система, показанная на рис.1, взаимодействует с тремя резонансными полями: на переходах $|1\rangle \rightarrow |3\rangle$ и $|2\rangle \rightarrow |3\rangle$ действуют оптические поля с частотами Раби Ω_1 и Ω_2 соответственно, а между уровнями $|1\rangle$ и $|2\rangle$ приложено микроволновое поле с частотой Раби U.

Система квантовых кинетических уравнений для элементов матрицы плотности ρ_{ij} , которые определяют взаимодействие замкнутой Δ -системы (рис.1) с трёхчастотным полем, может быть записана в виде

$$\frac{\partial \rho_{ik}}{\partial t} = -\frac{\mathrm{i}}{\hbar} \sum_{l} (H_{il}\rho_{lk} - \rho_{il}H_{lk}) + \sum_{l,m} \Gamma_{ik\,lm}\rho_{lm}, \qquad (1)$$

где H – гамильтониан, а Γ – матрица релаксации. Гамильтониан H может быть представлен как $H = H_0 + H_{int}$, где

$$H_0 = \sum_{i=1}^{4} E_i \left| i \right\rangle \left\langle i \right| \tag{2}$$

– гамильтониан в отсутствие лазерного поля, а *H*_{int} описывает взаимодействие квантовой системы с лазерным полем. В резонансном приближении

$$H_{\text{int}} = \hbar \Omega_1 \exp[-i(v_1 t + \varphi_1)] |3\rangle \langle 1| + \hbar \Omega_2 \exp[-i(v_2 t + \varphi_2)] \times$$

Рис.1. Схема уровней в трёхуровневой системе с замкнутой схемой возбуждения (в Δ -системе): v_1 и v_2 – частоты оптического излучения; γ' – скорость релаксации микроволновой когерентности; Δ_1 и Δ_2 – однофотонные отстройки.

$$\times |3\rangle\langle 2| + \hbar U \exp[-i(v_3 t + \varphi_3)]|2\rangle\langle 1| + эрмит. сопр.$$
 (3)

Здесь $\Omega_1 = \mu_{13}E_1/(2\hbar); \ \Omega_2 = \mu_{23}E_2/(2\hbar); \ U = \mu_{12}E_3/(2\hbar); E_i$ и φ_i – амплитуда и начальная фаза *i*-й компоненты лазерного поля с частотой v_i (i = 1, 2, 3); $v_1 = v_2 + v_3; \mu_{13}$ и μ_{23} – дипольные моменты переходов $|1\rangle \rightarrow |3\rangle$ и $|2\rangle \rightarrow |3\rangle; \mu_{12}$ – магнитодипольный момент перехода $|1\rangle \rightarrow |2\rangle$. Однофотонные отстройки лазерных полей от переходов $|1\rangle \rightarrow |3\rangle$ и $|2\rangle \rightarrow |3\rangle$ определяются выражениям $\Delta_j = v_j - \omega_{3j}$ (j = 1, 2), где ω_{3j} – частоты перехода между уровнями 3 и j. Отстройка от двухфотонного резонанса $\delta = (\Delta_1 - \Delta_2)/2$.

Для вычисления показателя преломления и коэффициента поглощения рассмотрим нелинейную восприимчивость среды χ , которая, вообще говоря, является комплексной величиной ($\chi = \chi' + i\chi''$) и связана с вектором поляризуемости **P** соотношением

$$\boldsymbol{P} = \varepsilon_0 \boldsymbol{\chi} \boldsymbol{E},\tag{4}$$

где ε_0 – диэлектрическая постоянная; E – электрическое поле.

Реальная (χ') и мнимая (χ'') части нелинейной восприимчивости описывают дисперсию и поглощение на расстоянии, равном длине волны оптического излучения, и могут быть выражены через недиагональные элементы матрицы плотности (1) в виде [1]

$$\chi_{13} = \frac{N |\mu_{13}|^2}{2\hbar \varepsilon_0 \Omega_1} \rho_{13}, \quad \chi_{23} = \frac{N |\mu_{23}|^2}{2\hbar \varepsilon_0 \Omega_2} \rho_{23}, \tag{5}$$

где N – число активных атомов в ячейке; μ_{ij} – дипольный момент перехода $|i\rangle \rightarrow |j\rangle$. Тогда $\chi'_{13} \sim \text{Re}\rho_{13}$ и $\chi'_{23} \sim \text{Re}\rho_{23}$ – дисперсии (т. е. коэффициенты преломления), а $\chi''_{13} \sim \text{Im}\rho_{13}$ и $\chi''_{23} \sim \text{Im}\rho_{23}$ – потери (т. е. коэффициенты поглощения) для оптических полей с частотами Раби Ω_1 и Ω_2 соответственно.

Далее, решая систему уравнений (1) в стационарном режиме, мы получим выражение для мнимой и вещественной частей оптических когерентностей ρ_{13} и ρ_{23} . Поскольку $\text{Re}\rho_{13} = -\text{Re}\rho_{23}$ и $\text{Im}\rho_{13} = \text{Im}\rho_{23}$, то ограничимся анализом выражений только для $\text{Re}\rho_{23}$ и $\text{Im}\rho_{23}$:

$$\operatorname{Re}\rho_{23} = \frac{U^2 \Omega \gamma \sin \Phi \cos \Phi}{U^2 \gamma^2 + 4(\Omega^2 - U^2)^2 + 12\Omega^2 U^2 \sin^2 \Phi},$$
 (6)

$$\mathrm{Im}\rho_{23} = \frac{U\Omega\sin\Phi[U\gamma\sin\Phi + 2(\Omega^2 - U^2)]}{U^2\gamma^2 + 4(\Omega^2 - U^2)^2 + 12\Omega^2U^2\sin^2\Phi}.$$
 (7)

Здесь частоты Раби оптических полей считаются равными ($\Omega_1 = \Omega_2 = \Omega$) и полагается, что выполнено условие двухфотонного резонанса $\delta = 0$. В выражения (6) и (7) введена общая фаза для замкнутой атомной схемы взаимодействия $\Phi = \varphi_1 - \varphi_2 - \varphi_3$, где φ_i – начальные фазы возбуждающих полей.

3. Обсуждение результатов

Полученные выше выражения (6) и (7) полностью определяют зависимость от фазы Φ коэффициентов преломления и поглощения для среды трёхуровневых Δ -атомов при условии двухфотонного резонанса. Известно, что наличие замкнутой схемы возбуждения в трёхуровневой системе приводит к разрушению (при $\Phi = \pi/2$) и восстановлению (при $\Phi = 0$) эффекта КПН [14–16]. На рис.2

Рис.2. Зависимости дисперсии $\operatorname{Re}\rho_{23}$ (сплошная кривая) и коэффициента поглощения $\operatorname{Im}\rho_{23}$ (штриховая кривая) от фазы Φ для Δ -системы в условиях двухфотонного резонанса ($\delta = 0$) при частотах Раби $\Omega_1 = \Omega_2 = U = 0.1\gamma$ (a), $\Omega_1 = \Omega_2 = U = \gamma$ (δ) и $\Omega_1 = \Omega_2 = U = 10\gamma$ (ϵ).

представлены зависимости вещественной ($\text{Re}\rho_{23}$) и мнимой ($\text{Im}\rho_{23}$) частей оптической когерентности ρ_{23} от фазы Φ для случая равенства частот Раби как оптических, так и связывающего полей. Видно, что при $\Phi = 0$ поглощение и дисперсия также равны нулю, что соответствует существованию в системе эффекта КПН.

В то же время при $\Phi = \pi/2$ имеет место сильное поглощение, что связано с разрушением состояния КПН. По мере увеличения частот Раби возбуждающих полей наблюдается сдвиг области насыщения коэффициента поглощения в сторону малых значений фазы Φ (рис.2, *б*, *в*, штриховая кривая), что связано с усилением влияния поля на разрушение резонанса КПН. При этом увеличение амплитуды связывающего поля ведёт к усилению связи между нижними уровнями, что существенно влияет на оптические когерентности. Это проявляется, в частности, в том, что уменьшается амплитуда поглощения. Из рис.2, *а* видно, что максимум коэффициента преломления наблюдается при $\Phi = \pi/4$ (сплошная кривая). Дальнейшее увеличение частот Раби приводит к смещению этого максимума в область нулевых значений фазы (рис.2, *б*, *в*, сплошная кривая).

Отметим, что коэффициенты преломления и поглощения имеют максимальные значения при различных значениях фазы Φ . Найдём теперь значение Φ в интервале $\Phi \in [0; \pi/2]$, при котором коэффициент преломления имеет максимальное значение:

$$\Phi_{\rm ex} = \arccos\left(\sqrt{\frac{4U^4 + 4U^2 \Omega^2 + 4\Omega^4 + U^2 \gamma^2}{8U^4 - 4U^2 \Omega^2 + 8\Omega^4 + 2U^2 \gamma^2}}\right).$$
 (8)

В случае равенства частот Раби оптических и микроволнового полей ($\Omega_1 = \Omega_2 = U$) запишем (8) в виде

$$\Phi_{\rm ex} = \arccos\left(\sqrt{1 - \frac{\gamma^2}{12\Omega^2 + 2\gamma^2}}\right). \tag{9}$$

При этом из (8) следует, что $\Phi_{\rm ex} = \pi/4$ для частот Раби $\Omega \ll \gamma$ (рис.2,*a*), а в случае $\Omega \gg \gamma$ экстремальное значение фазы $\Phi_{\rm ex} = \gamma/(\Omega\sqrt{12})$, что соответствует рис.2,*в*.

Выше мы рассмотрели зависимости коэффициентов преломления и поглощения от фазы Φ в случае двухфотонного резонанса ($\delta = 0$). Исследуем теперь зависимость этих величин от двухфотонной отстройки δ при различных значениях фазы замкнутой схемы. Так, на рис.3,*a*,

Рис.3. Зависимости дисперсии $\operatorname{Re}_{23}(a, \delta)$ и коэффициента поглощения $\operatorname{Im}_{23}(\delta)$ от двухфотонной отстройки δ для разных фаз Φ и $\Omega_1 = \Omega_2 = U = \gamma$.

Рис.4. Зависимости дисперсии $\operatorname{Re}\rho_{23}$ (сплошная кривая) и коэффициента поглощения $\operatorname{Im}\rho_{23}$ (штриховая кривая) от двухфотонной отстройки δ для Δ -системы при $\Phi = \Phi_{\mathrm{ex}}$ и $\Omega_1 = \Omega_2 = U = \gamma$ в увеличенном масштабе.

представлены зависимости от отстройки δ вещественной части когерентности ρ_{23} для трёх значений фаз в замкнутой Δ -системе, а также зависимость $\text{Re}\rho_{23}$ от двухфотонной отстройки для трёхуровневой Λ -системы. Видно, что в области двухфотонного резонанса ($\delta = 0$) коэффициент преломления равен нулю при $\Phi = 0$ и $\pi/2$ как для Δ -системы (штрих-пунктирная кривая), так и для Λ -системы (штриховая кривая). При этом для $\Phi = \Phi_{\text{ех}}$ коэффициент преломления имеет максимальное значение. Сравнивая его с коэффициентом поглощения, который пропорционален мнимой части когерентности (рис.3, δ , штрих-пунктирная кривая) видим, что существует область отстроек, где в отсутствие поглощения можно получить достаточно высокий коэффициент преломления.

Далее рассмотрим более подробно соответствующий рис.3, δ диапазон отстроек –0.8 $\leq \delta/\gamma \leq 0$ (рис.4). Из рис.4 видно, что в заштрихованной области существует усиление. При этом в области усиления одновременно происходит рост коэффициента преломления (сплошная кривая). Такие особенности в поведении коэффициентов преломления и усиления могут быть использованы в различных приложениях нелинейной оптики.

4. Заключение

Таким образом, в работе исследована трёхуровневая система, взаимодействующая с двумя оптическими и одним микроволновым полями, которые образуют замкнутую схему возбуждения (Δ -система). Обнаружен максимум в зависимости коэффициента преломления от алгебраической суммы фаз возбуждающих полей Φ . Показано, что при различных частотах Раби максимум коэффициента преломления сдвигается от $\Phi = \pi/4 \ \kappa \Phi = \gamma/\sqrt{12\Omega^2}$. Для фазы Φ , соответствующей максимуму коэффициента преломления, найдена такая область отстроек, в которой имеет место увеличение коэффициента преломления с одновременным усилением излучения одного из оптических полей.

Подчеркнем, что максимум коэффициента преломления в области фаз $\Phi \le \pi/4$ имеет место не только в рассматриваемой системе, но и в любых системах с замкнутой схемой возбуждения. При этом коэффициент преломления по порядку величины сравним с его значением для трёхуровневой Λ -системы [1].

Работа выполнена при финансовой поддержке ФЦП «Научные и научно-педагогические кадры инновационной России на 2009–2013» (госконтракты № 14.740.11.0891 и 16.740.11.0586), РФФИ и фонда некоммерческих программ Династия.

- Скалли М.О., Зубайри М.С. Квантовая оптика (М.: Физматлит, 2003).
- 2. Scully M.O. Phys. Rev. Lett., 67, 1855 (1991).
- 3. Fleischhauer M., Keitel C., Scully M. Phys. Rev. A, 46, 1468 (1992).
- 4. Sultana S., Zubairy M.S. Phys. Rev. A, 49, 438 (1994)..
- Kocharovskaya O., Mandel P., Scully M. Phys. Rev. Lett., 74, 2451 (1995).
- Агапьев Б.Д., Горный М.Б., Матисов Б.Г., Рождественский Ю.В. УФН, 163, 1 (1993).
- Горный М.Б., Матисов Б.Г., Рождественский Ю.В. ЖЭТФ, 68, 728 (1989).
- 8. Harris S. Phys. Today, 50, 36 (1997).
- Fleischhauer M., Imamoglu A., Marangos J.P. Rev. Mod. Phys., 77, 633 (2005).
- 10. Harris S. Phys. Rev. Lett., 62, 1022 (1989).
- 11. Imamoglu A., Harris S. Opt. Lett., 14, 1344 (1989).
- 12. Кочаровская О., Ханин Я.И. *Письма в ЖЭТФ*, **48**, 581 (1988).
- 13. Kocharovskaya O., Mandel P. Phys. Rev. A, 42, 523 (1990).
- 14. Kalachev A., Kocharovskaya O. Phys. Rev. A, 83, 053849 (2011).
- Buckle S.J., Barnett S.M., Knight P.L., et al. Optica Acta, 33, 1129 (1986).
- Kosachiov D.V., Matisov B.G., Rozhdestvensky Yu.V. Opt. Commun., 85, 209 (1991).
- Kosachiov D.V., Matisov B.G., Rozhdestvensky Yu.V. J. Phys. B, 25, 2473 (1992).
- Kosachiov D.V., Matisov B.G., Rozhdestvensky Yu.V. Europhys. Lett., 22, 11 (1993).
- Li H., Sautenkov V.A., Rostovtsev Yu.V., et al. *Phys. Rev. A*, 80, 023820 (2009).
- 20. Luo B., Tang H., Guo H. J. Phys. B, 42, 235505 (2009).
- 21. Jha P.K., Rostovtsev Yu.V., Li H., et al. *Phys. Rev. A*, **83**, 033404 (2011).
- 22. Serapiglia G.B., Paspalakis E., Sirtori C., et al. *Phys. Rev. Lett.*, **84**, 1022 (2000).
- 23. Yang W.-X., Chen A.-X., Zha T.-T., Lee R.-K. J. Phys. B, 42 225501 (2009).