ОБРАБОТКА ИЗОБРАЖЕНИЙ

PACS 07.60.Fs; 42.25.Lc; 87.19.xj

Пространственно-частотная фурье-поляриметрия комплексной степени взаимной анизотропии линейного и кругового двулучепреломления в диагностике онкологических изменений морфологической структуры биологических тканей

Ю.А.Ушенко, М.П.Горский, А.В.Дуболазов, А.В.Мотрич, В.А.Ушенко, М.И.Сидор

Приведены теоретические основы поляризационно-корреляционного анализа лазерных изображений гистологических срезов биоптата из ткани шейки матки на основе пространственно-частотной селекции механизмов линейного и кругового двулучепреломления. Представлены сравнительные результаты измерения координатных распределений комплексной степени взаимной анизотропии (КСВА), сформированных фибриллярными сетями миозиновых и коллагеновых волокон ткани шейки матки в различных патологических состояниях – предрак (дисплазия) и рак (аденокарцинома). Исследованы значения и диапазоны изменения статистических (моменты 1-го – 4-го порядков), корреляционных (эксцесс-автокорреляционные функции) и фрактальных (наклоны аппроксимирующих кривых и дисперсия экстремумов логарифмических зависимостей спектров мощности) параметров координатных распределений КСВА. Определены объективные критерии диагностики патологии и дифференциации степени ее тяжести.

Ключевые слова: лазер, поляризация, фурье-фильтрация, корреляция, биологическая ткань, двулучепреломление, кристалл, статистический момент, фрактал.

1. Введение

Оптические методы исследования структуры биологических тканей можно разделить на следующие основные группы.

1. Спектрофотометрические методы, которые базируются на анализе пространственных или временных изменений интенсивности лазерного излучения, рассеянного биологическими тканями [1,2].

2. Поляризационные методы, базирующиеся на использовании матрицы когерентности комплексной амплитуды и на анализе степени поляризации как фактора корреляции комплексных ортогональных компонент электромагнитных колебаний в одной из точек поля рассеянного лазерного излучения [3–12].

3. Корреляционные методы, построенные на анализе степени корреляции параллельных поляризационных компонент световых колебаний в разных точках объектного поля [13–20].

Обобщением указанных направлений оптической диагностики структуры биологических тканей стал новый, «двухточечный» поляризационно-корреляционный подход к изучению полей рассеянного этими структурами лазерного излучения. Данное направление, предложенное и развитое в серии теоретических [21–24] и прикладных [25–28] исследований, опирается на использование новых параметров для описания взаимосвязей между координатными структурами оптико-анизотропных протеиновых сетей (комплексная степень взаимной анизотропии – КСВА [25, 26]) и их лазерных изображений (ком-

Ю.А.Ушенко, М.П.Горский, А.В.Дуболазов, А.В.Мотрич, В.А.Ушенко, М.И.Сидор. Черновицкий национальный университет, Украина, 58012 Черновцы, ул. Коцюбинского, 2; e-mail: ushenko@itf.cv.ua

Поступила в редакцию 11 февраля 2012 г., после доработки – 27 апреля 2012 г.

плексная степень взаимной поляризации – КСВП [27]). Вместе с тем теоретический базис методов поляризационной коррелометрии, основанный на приближении линейного двулучепреломления, нуждается в дальнейшем развитии и углублении. В первую очередь необходим учет и других механизмов преобразования параметров лазерного излучения – оптической активности, или кругового двулучепреломления, дихроизма и т.д. [9, 10, 17–19]. Таким образом, дальнейший прогресс в оптических исследованиях свойств оптико-анизотропных протеиновых сетей биологических тканей может быть связан с разработкой новых методов диагностики и селекции параметров линейного и кругового двулучепреломления с целью выявления и дифференциации степени тяжести патологических изменений.

Наша работа направлена на развитие метода измерения КСВА с ипользованием пространственно-частотной фильтрации проявлений линейного и кругового двулучепреломления фибриллярных протеиновых сетей для диагностики и дифференциации патологических (доброкачественные и злокачественные) изменений тканей репродуктивной сферы женского организма (шейки матки (ШМ)).

2. Теория метода

В [25,26] впервые для характеризации степени согласованности ориентаций оптических осей и двулучепреломления различных точек (r_1, r_2) фибриллярной сети протеиновых кристаллов биологических тканей предложен новый параметр (КСВА)

$$W(r_1, r_2) = \{ [d_{11}(r_1) \ d_{11}(r_2) - d_{12}(r_1) \ d_{12}(r_2)] + [d_{21}(r_1) \ d_{21}(r_2) - d_{22}(r_1) \ d_{22}(r_2)] \}^2 / [I(r_1) \ I(r_2)],$$
(1)

где d_{ik} – элементы матрицы Джонса [29] линейного двулучепреломления оптико-анизотропной фибриллы в двух точках с координатами (r_1, r_2) .

В нашей работе рассматривается возможность развития данного подхода для более общего случая многослойной биологической ткани (ШМ) с учетом обобщенной оптической анизотропии – линейного и кругового двулучепреломления.

В основу анализа процессов амплитудно-фазовой модуляции лазерного излучения таким объектом положены следующие модельные представления [30–36].

1. ШМ состоит из двух оптически анизотропных слоев мышечной (миометрий) и соединительной (эндометрий) ткани.

2. Оптически анизотропную сеть миометрия формируют крупномасштабные (поперечный размер $l \sim 50-200$ мкм) нитеобразные (длина $L \gg l$) миозиновые фибриллы с преимущественно линейным двулучепреломлением (за счет упорядоченности укладки, которая определяет направления оптических осей парциальных биологических кристаллов).

3. Оптически анизотропную компоненту эндометрия формируют разупорядоченные по направлениям оптических осей коллагеновые волокна ($l \sim 5-25$ мкм, $L \approx l$) с преимущественно круговым двулучепреломлением.

 Поляризационные свойства точек фибриллярной сети характеризуются обобщенной матрицей оптической анизотропии

$$\{D\} = \{Q\}\{A\},\tag{2}$$

где

$$\{Q\} = \begin{vmatrix} \sin^2 \rho + \cos^2 \rho \exp(-i\delta) & \sin\rho \cos\rho [1 - \exp(-i\delta)] \\ \sin\rho \cos\rho [1 - \exp(-i\delta)] & \cos^2 \rho + \sin^2 \rho \exp(-i\delta) \end{vmatrix}$$
(3)

- матрица Джонса линейного двулучепреломления;

$$\{A\} = \left\| \begin{array}{c} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right\| \tag{4}$$

– матрица Джонса кругового двулучепреломления, или оптической активности. Здесь ρ – угол с направлением оптической оси; $\delta = (2\pi/\lambda)\Delta nl$ – фазовый сдвиг между ортогональными составляющими амплитуды лазерного излучения с длиной волны λ , которое прошло геометрический путь l через биологический кристалл с разностью линейных показателей преломления обыкновенной и необыкновенной волн (показатель двулучепреломления) Δn ; θ – угол поворота плоскости поляризации лазерной волны, обусловленный круговым двулучепреломлением.

Учитывая малую величину показателя двулучепреломления ($\Delta n \sim 10^{-3}$) и незначительные поперечные размеры протеиновых фибрилл, в дальнейшем мы ограничимся (без снижения полноты анализа) приближением слабой анизотропии: величина и флуктуации параметров δ и θ достаточно малы. В этой ситуации можно полагать

$$\cos\begin{pmatrix}\delta\\\theta\end{pmatrix} \approx 1, \quad \sin\begin{pmatrix}\delta\\\theta\end{pmatrix} \approx \begin{pmatrix}\delta\\\theta\end{pmatrix}$$

и переписать матричные операторы (3), (4) следующим образом:

$$\{Q\} = \left\| \begin{array}{cc} \sin^2 \rho + \cos^2 \rho (1 - i\delta) & i\delta \sin \rho \cos \rho \\ i\delta \sin \rho \cos \rho & \cos^2 \rho + \sin^2 \rho \exp(1 - i\delta) \\ \end{array} \right\|,$$
(5)

$$\{A\} = \left\| \begin{array}{c} 1 & -\theta \\ \theta & 1 \end{array} \right\|. \tag{6}$$

Определим возможности пространственно-частотной фильтрации для сепарации координатных распределений КСВА, сформированных различными составляющими диагностируемого слоя ШМ с линейным и круговым двулучепреломлением. Для этого рассмотрим процесс преобразования ($E_0 \rightarrow (\rho, \delta, \theta) \rightarrow E$) плоскополяризованной с азимутальным углом 0⁰ лазерной волны с вектором Джонса

$$E_0 = \begin{bmatrix} E_{0x} \exp(-i\varphi_{0x}) \\ E_{0y} \exp(-i\varphi_{0y}) \end{bmatrix} \longrightarrow E_0(0^0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Вектор Джонса

$$E = \begin{bmatrix} E_x \exp(-i\varphi_x) \\ E_y \exp(-i\varphi_y) \end{bmatrix}$$

преобразованного излучения определяется следующим матричным уравнением:

$$E = \{D\}E_0.$$
 (7)

С учетом соотношений (5), (6) ортогональные компоненты амплитуды вектора Джонса *E* преобразованного лазерного пучка запишутся следующим образом:

$$E_x(0^0) = 1 - i\delta \cos\rho(\cos\rho + \theta \sin\rho),$$

$$E_y(0^0) = \theta - i\delta \sin\rho(\cos\rho + \theta \sin\rho).$$
(8)

С медицинской точки зрения актуальной является задача «оптической селекции» поляризационных проявлений линейного (ρ , δ) и кругового (θ) двулучепреломления сети протеиновых фибрилл слоев миометрия и эндометрия ШМ для диагностики возникновения и дифференциации степени тяжести патологического процесса. Дело в том, что на ранних этапах патологические изменения локализованы в поверхностном слое эндометрия и сопровождаются ростом концентрации коллагенов (θ^{\uparrow}) в соответствующей фибриллярной сети. Более развитому патологическому состоянию соответствует рост концентрации миозина (δ^{\uparrow}) и формирование направлений роста злокачественного образования в слое миометрия [37]. Традиционная гистологическая диагностика и дифференциация таких патологий достаточно трудоемки, требуют больших временных затрат и зачастую оказываются неоднозначными [38]. В основу оптической селекции таких состояний мы положили метод пространственно-частотной фильтрации поля лазерного излучения в фурье-плоскости. В этой плоскости формируются распределения комплексных амплитуд, математически определяемые прямым фурьепреобразованием выражений (8):

$$U_{x}\left(\frac{X}{\lambda f},\frac{Y}{\lambda f}\right) \equiv U_{x}(v,\mu) = \frac{1}{i\lambda f} \iint_{-\infty}^{\infty} \exp\left[-i2\pi(xv+y\mu)\right] dxdy$$
$$-\frac{1}{\lambda f} \iint_{-\infty}^{\infty} \delta \cos\rho(\cos\rho+\theta\sin\rho) \exp\left[-i2\pi(xv+y\mu)\right] dxdy, \quad (9)$$

$$U_{y}\left(\frac{X}{\lambda f},\frac{Y}{\lambda f}\right) \equiv U_{y}(v,\mu) = \frac{1}{i\lambda f} \iint_{-\infty}^{\infty} \theta \exp\left[-i2\pi(xv+y\mu)\right] dxdy$$

$$-\frac{1}{\lambda f} \iint_{-\infty}^{\infty} \delta \cos\rho(\cos\rho + \theta \sin\rho) \exp[-i2\pi(xv + y\mu)] dxdy. (10)$$

Здесь $U_x(v,\mu)$, $U_y(v,\mu) - фурье-образы распределений <math>E_x(\rho, \delta, \theta)$ и $E_y(\rho, \delta, \theta)$ в фокусной (f) плоскости объектива; $v = X/(\lambda f)$, $\mu = Y/(\lambda f)$ – нормированные пространственные частоты. Из (9), (10) следует, что пространственночастотная структура распределений $U_x(v,\mu)$, $U_y(v,\mu)$ определяется суммами гармоник $\exp[-i2\pi(xv + y\mu)]$ с периодами пространственной модуляции $L(v,\mu) = \lambda f/(v^2 + \mu^2)^{1/2}$. Нетрудно видеть, что различным по геометрическим размерам фибриллярным сетям стромы и эпителиальным пластинам паренхимы присуща разночастотная модуляция фурье-образов распределений $E_{x,y}(\rho, \delta, \theta)$ (8). Таким образом, если в центральной части фурье-плоскости разместить виньетирующую прозрачную $(R(\Delta v, \Delta \mu))$ или непрозрачную $(R^{-1}(\Delta v, \Delta \mu))$ диафрагму

$$\hat{U}(\rho, \delta, v, \mu) = R(\Delta v, \Delta \mu) U(v, \mu),$$
$$\hat{U}(\theta, v, \mu) = R^{-1}(\Delta v, \Delta \mu) U(v, \mu),$$

то путем обратного фурье-преобразования можно восстановить низко- и высокочастотные компоненты

$$\hat{U}_{x}(R,\nu,\mu) \sim \frac{1}{\lambda f} \iint_{-\infty}^{\infty} \delta \cos^{2} \rho \exp[-i2\pi (x\Delta\nu + y\Delta\mu)] dxdy,$$
(11)
$$\hat{U}_{y}(R,\nu,\mu) \sim \frac{1}{\lambda f} \iint_{-\infty}^{\infty} \delta \sin^{2} \rho \exp[-i2\pi (x\Delta\nu + y\Delta\mu)] dxdy,$$

$$\hat{U}_{x}(R^{-1}, v, \mu) \sim \frac{1}{\lambda f} \iint_{-\infty}^{\infty} \theta \sin \rho \cos \rho$$

$$\times \exp[-i2\pi (x\Delta v + y\Delta \mu)] dxdy,$$

$$\hat{U}_{y}(R^{-1}, v, \mu) = \frac{1}{i\lambda f} \iint_{-\infty}^{\infty} \theta (1 + \sin \rho)$$
(12)

$$\times \exp[-i2\pi(x\Delta v + y\Delta \mu)]dxdy.$$

Преобразования (11) и (12) позволяют согласно классической методике [28] определить координатные распределения элементов матриц Джонса линейного ($q_{ik}(\rho, \delta)$) и ($a_{ik}(\theta)$) кругового двулучепреломления. С учетом полученных данных и базового соотношения (1) находим аналитические выражения параметра КСВА для различных типов оптически анизотропных составляющих ШМ:

$$W_{\rho,\delta}(r_1, r_2) \sim [q_{11}(r_1) q_{11}(r_2) + q_{22}(r_1) q_{22}(r_2) + 0.5 \sin 2\rho(r_1) \sin 2\rho(r_2) \delta(r_1) \delta(r_2)]^2 / [I(r_1) I(r_2)], \quad (13)$$

$$W_{\theta}(r_1, r_2) \sim \frac{\left[1 - \theta(r_1)\theta(r_2)\right]^2}{I(r_1)I(r_2)}.$$
(14)

3. Оптическая реализация пространственночастотной фильтрации координатных распределений КСВА протеиновых сетей слоев ткани шейки матки

В качестве объектов исследования нами были выбраны две группы оптически тонких (коэффициент ослабления $\tau \approx 0.087 - 0.093$) гистологических срезов ткани ШМ, изготовленных по стандартной методике на замораживающем микротоме, двух групп пациентов со следующими диагнозами: предраковое состояние (дисплазия) – 21 образец (группа 1), рак – 19 образцов (группа 2).

Экспериментальные исследования координатных распределений КСВА проводились с помощью классического поляриметра [25–27], основные узлы и элементы которого приведены на рис.1.

Поляризационный осветитель (четвертьволновые пластинки 3, 5 и поляризатор 4) последовательно формировал совокупность зондирующих линейно поляризованных лазерных пучков с азимутальными углами $\alpha_0 = 0, 45^\circ, 90^\circ$ и правоциркулярно поляризованную волну (\otimes).

Гистологические срезы 6 биоптата из ШМ размещались в фокальной площади поляризационного микрообъектива 7 (числовая апертура 0.1, фокусное расстояние 30 мм, увеличение 4^{\times}). В задней фокальной плоскости (фурьеплоскость) размещалась виньетирующая диафрагма F(u, v), размеры которой изменялись от 10 до 300 пикселей; при этом реализовывалась пространственно-частотная фильтрация граничного поля гистологического среза. С помощью поляризационного микрообъектива 8, размещен-

1 – Не–Nе-лазер; 2 – коллиматор; 3 – стационарная четвертьволновая пластинка; 5, 9 – вращающиеся четвертьволновые пластинки; 4, 10 – поляризатор и анализатор; 6 – объект исследования; 7, 8 – поляризационные микрообъективы; 11 – ССД-камера; 12 – компьютер ($F(x_1, y_1)$ – плоскость образца, F(u, v) – фурье-плоскость с диафрагмами, ($F(x_2, y_2)$ – плоскость восстановленного (отфильтрованного) изображения.

ного на фокусном расстоянии от частотной плоскости микрообъектива 7, осуществлялось обратное фурье-преобразование поляризационно отфильтрованного (четвертьволновая пластинка 9 и поляризатор 10) поля лазерного излучения. Для каждого типа поляризации зондирующего пучка ($i \equiv 0, 90^\circ, 45^\circ, \otimes$) с использованием поляризационного анализатора реализовывались линейная ($j \equiv 0$, 90°, 45°, 135) и циркулярная (правая и левая) поляризационные фильтрации. С помощью цифровой камеры 11 измерялся набор из шести координатных распределений интенсивности $(I_{(n)}^{(i)})$ $(m \times n)$) такого поля. На основании полученных данных рассчитывались координатные распределения элементов матрицы Джонса [29], характеризующих свойства различных двулучепреломляющих структур стромы $(q_{ik} (m \times n))$ и паренхимы $(a_{ik} (m \times n))$ ШМ. Значение КСВА $W(r_1, r_2 = r_1 + \Delta r)$ двух смещенных на интервал Δr точек $(r_1, r_2 + \Delta r)$ в плоскости гистологических срезов 6 вычислялось с использованием соотношений (8) и (9). Координатные распределения параметров $W_{\rho,\delta}(r_1,r_2)$ и $W_{\theta}(r_1, r_2)$ определялись путем сканирования массивов $q_{ik}(m \times n)$ и $a_{ik}(m \times n)$ с шагом $\Delta r = 1$ пиксель в двух взаимно перпендикулярных направлениях ($x = 1 \div m, y = 1 \div n$).

Для количественной оценки распределений

$$q = \begin{cases} W_{\rho,\delta}(m \times n) \\ W_{\theta}(m \times n) \end{cases}$$
(15)

нами были выбраны следующие типы анализа: статистический (статистические моменты 1-го – 4-го порядков $Z_{J=1,2,3,4}^W$ [6]), корреляционный («корреляционные моменты» Q_2^W и Q_4^W , определяющие дисперсию и эксцесс автокорреляционной функции [8, 20]) и фрактальный (наклон $V(\eta)$ и дисперсия D^W логарифмических зависимостей спектров мощности [11, 30, 32, 33]).

4. Экспериментальные результаты и их обсуждение

На первом этапе путем прямой поляриметрии лазерных изображений были определены координатные распределения КСВА (соотношение (1)) фибриллярной сети образцов ткани ШМ. Зависимости, приведенные на рис.2, иллюстрируют статистическую (e, e), корреляционную (∂ , \mathcal{H}) и самоподобную (e, 3) структуры таких распределений, найденных для гистологических срезов биоптата с обеими типами патологии.

Сравнительный анализ гистограмм (e, e), автокорреляционных функций (∂ , $\mathcal{H}e$) и логарифмических зависимостей спектров мощности (e, 3) распределений КСВА поликристаллических сетей (a, δ) гистологических срезов биоптата ШМ не выявил существенных различий между двумя типами патологии. Данный факт можно связать с суперпозицией (соотношения (2), (7), (8)) проявлений линейной и круговой анизотропии миозиновых и коллагеновых фибрилл слоев миометрия и эндометрия ШМ, что обуславливает близкие для дисплазии и рака статистические, корреляционные и самоподобные структуры распределений КСВА.

Диагностические возможности в дифференциации образцов ткани ШМ обеих групп с использованием пространственно-частотной фильтрации в фурье-плоскости (соотношения (9)–(12)) иллюстрируют зависимости, приведенные на рис.3 и 4.

С целью определения оптимальных условий сепарации проявлений линейного (соотношения (3), (5)) и кругового (соотношения (4), (6)) двулучепреломления слоев миометрия и эндометрия размеры виньетирующей диафрагмы изменялись в пределах 10-200 мкм. Оптимальным считался размер R = 50 мкм, $R^{-1} = 30$ мкм, при котором набор статистических моментов 1-го – 4-го порядков, характеризующих распределения КСВА (15), приобретает экстремальные значения.

Сравнительный анализ совокупности параметров, характеризующих пространственно и частотно отфильтрованные координатные распределения $W_{\rho,\delta}(m \times n)$ крупномасштабной сети миозиновых фибрилл слоя миометрия, выявил определенные различия между ними. А именно, гистограммы распределения значений КСВА для гистологического среза онкологически измененной ткани ШМ характеризуются асимметричным построением с острым пиком главного экстремума (рис.3,*e*) в сравнении с аналогичным распределением, найденным для образца ткани в состоянии дисплазии (рис.3,*b*). Выявленная особенность, по нашему мнению, связана с более упорядоченной по на-

Рис.2. Координатные структуры (*a*, *б*), гистограммы (*в*, *г*), автокорреляционные функции (*д*, *ж*) и логарифмические зависимости спектров мощности (*e*, *з*) распределений КСВА гистологических срезов биоптата из ШМ пациентов группы 1 (*a*, *в*, *д*, *e*) и группы 2 (*б*, *г*, *ж*, *з*).

Рис.3. Координатные структура (a, d), гистограммы (δ , e), автокорреляционные функции (b, \mathcal{H}) и логарифмические зависимости спектров мощности (r, s) распределений КСВА линейного двулучепреломления гистологических срезов ткани ШМ пациентов группы 1 (a-r) и группы 2 (d-s).

Рис.4. Координатная структура (a, d), гистограммы (δ , e), автокорреляционные функции (s, πc) и логарифмические зависимости спектров мощности (r, 3) распределений КСВА кругового двулучепреломления гистологических срезов ткани ШМ пациентов группы 1 (a-r) и группы 2 (d-3).

правлениям оптических осей структуры сетью миозиновых фибрилл (направления ростков злокачественной опухоли), чем в случае дисплазии миометрия. Оптически такое геометрическое построение ($\rho^* \leftrightarrow N_{max}$) проявляется в формировании приоритетных, наиболее вероятных значений КСВА $W_{\rho,\delta}(m \times n)$ (соотношения (3), (5), (13)), совокупность которых и формирует главный экстремум.

Зависимости автокорреляционных функций распределений КСВА фибриллярных миозиновых сетей для обоих образцов плавно и монотонно спадают (рис.3,*s*, *ж*). Данный факт указывает на координатно-однородную структуру соответствующих распределений $W_{\rho,\delta}(m \times n)$, сформированных механизмами взаимодействия лазерного излучения с ансамблем линейно двулучепреломляющих миозиновых фибрилл. Кроме этого выявлено самоподобное построение таких распределений – логарифмические зависимости спектров мощности lg $J(W_{\rho,\delta})$ –lg d^{-1} характеризуются одинаковым углом наклона практически во всем диапазоне (2 – 1000 мкм) изменения геометрических размеров (рис.3,*г*, *з*).

Таким образом, главным признаком онкологических изменений ткани ШМ является формирование пространственно детерминированных направлений роста миозиновых фибрилл [38] и связанная с этим трансформация гистограммы распределения КСВА $W_{\rho,\delta}(m \times n)$.

Иная картина имеет место при комплексном (статистическом, корреляционном и фрактальном) анализе пространственно и частотно отфильтрованных координатных распределений КСВА мелкомасштабных оптически активных коллагеновых сетей слоя эндометрия (рис.4).

Сопоставление результатов (рис.4,*a* и *д*) выявило следующие признаки онкологического состояния ткани ШМ.

1. Существенное расширение диапазона изменения значений КСВА $W_{\theta}(m \times n)$ фибриллярной сети слоя эндометрия (рис.4, *б* и *е*) вследствие увеличения концентрации оптически активного коллагена.

2. «Патологический» рост количества хаотически ориентированных фибрилл, приводящий к более однородному координатному распределению $W_{\theta}(m \times n)$, что про-

является в увеличении полуширины соответствующей автокорреляционной зависимости $K(\Delta m)$ (рис.4, в и ж).

3. Перестройка коллагеновой оптико-анизотропной сети проявляется в расширении диапазона геометрических размеров локальных фибрилл, что сопровождается возрастанием дисперсии распределения экстремумов зависимостей $\lg J(W_{\rho,\delta}) - \lg d^{-1}$ спектра мощности КСВА W_{θ} , определяемого размерностными параметрами коллагеновых нитей (рис.4, *г* и *з*).

Количественно различия между координатными распределениями параметров КСВА линейного ($W_{\rho,\delta}$, (13)) и кругового (W_{θ} , (14)) двулучепреломления фибриллярных сетей слоев миометрия и эндометрия ШМ иллюстрируются средними значениями статистических, корреляционных и фрактальных параметров и их стандартными отклонениями в пределах обеих групп (табл.1).

Табл.1. Параметры статистической, корреляционной и самоподобной структуры координатных распределений КСВА протеиновых сетей ткани шейки матки.

Пара- метры	$W_{\rho,\delta}(m \times n)$		$W_{\theta}(m \times n)$	
	Дисплазия	Рак	Дисплазия	Рак
$\overline{Z_1}$	0.49 ± 0.06	0.41 ± 0.07	0.05 ± 0.01	0.18 ± 0.02
Z_2	0.34 ± 0.05	0.18 ± 0.03	0.14 ± 0.02	0.29 ± 0.04
Z_3	0.73 ± 0.1	2.2 ± 0.4	2.1 ± 0.4	1.03 ± 0.1
Z_4	0.89 ± 0.02	3.1 ± 0.5	1.7 ± 0.2	0.56 ± 0.08
Ω_2	0.24 ± 0.04	0.21 ± 0.04	0.04 ± 0.01	0.11 ± 0.01
Ω_4	0.14 ± 0.02	0.18 ± 0.03	4.5 ± 0.7	2.1 ± 0.3
$V(\eta)$	Фрактальное	Фрактальное	Случайное	Случайное
D	0.32 ± 0.05	0.29 ± 0.04	0.11 ± 0.02	0.19 ± 0.02

Сравнительный анализ результатов пространственночастотной фурье-поляриметрии координатных распределений КСВА фибриллярных сетей слоев ШМ различного патологического состояния выявил следующие диагностически эффективные параметры (выделено жирным).

1. Статистические моменты 2-го и 4-го порядков, которые характеризуют распределения $W_{\rho,\delta}(m \times n)$ для линейно двулучепреломляющих фибрилл – различия составляют 2 – 3.5 раза.

2. Полный набор статистических моментов КСВА поликристаллической сети с круговым двулучепреломлением – различия составляет 2 – 3 раза.

3. Корреляционные моменты 2-го и 4-го порядков автокорреляционных функций распределений $W_{\theta}(m \times n)$ – различия составляют 2.2 – 3 раза.

4. Дисперсия логарифмических зависимостей спектров мощности распределений $W_{\theta}(m \times n)$ – различия достигают 2-х раз.

5. Заключение

Предложен и аналитически обоснован метод определения координатных распределений КСВА ткани ШМ с последующей пространственно-частотной фильтрацией проявлений линейного и кругового двулучепреломления.

Проведены сравнительные исследования эффективности использования разработанных методов пространственно-частотной фурье-поляриметрии КСВА для диагностики патологического состояния ткани ШМ и дифференциации степени его тяжести.

Установлены критерии дифференциации дисплазии и рака ШМ на основе статистического (статистические моменты 1-го – 4-го порядков), корреляционного (2-й и 4-й моменты автокорреляционных функций) и фрактального (дисперсия и наклон аппроксимирующих кривых log – log зависимостей спектров мощности) анализа пространственно и частотно отфильтрованных распределений КСВА протеиновых сетей с линейным и круговым двулучепреломлением.

- 1. Тучин В.В. УФН, 167, 517 (1997).
- 2. Wang X., Yao G., Wang L.-H. Appl. Opt., 41, 792 (2002).
- 3. Wang X., Wang L.-H. J. Biomed. Opt., 7, 279 (2002).
- Wang X., Wang L.-H., Sun C.-W., Yang C.C. J. Biomed. Opt., 8, 608 (2003).
- 5. Сетейкин А.Ю. Изв. вузов. Сер. Физика, 3, 53 (2005).
- Ushenko A.G., Misevich I.Z., Istratiy V., Bachyns'ka I., Peresunko A.P., Numan O.K., Moiysuk T.G. Adv. Opt. Technol., 2010, 423145 (2010).
- Angelsky O.V., Tomka Yu.Ya., Ushenko A.G., Ushenko Ye.G., Ushenko Yu.A. J. Phys. D: Appl. Phys., 38, 4227 (2005).
- Angelsky O.V., Ushenko A.G., Ushenko Yu.A., Ushenko Ye.G., Tomka Yu.Ya., Pishak V.P. J. Biomed. Opt., 10, 064025 (2005).
- Guminetskiy S.H., Ushenko A.G., Polyanskiy I.P., Motrych A.V., Grynchuk F.V. Proc. SPIE Int. Soc. Opt. Eng., 7008, 700827 (2008).
- Yermolenko S., Ushenko A., Ivashko P., Goudail F., Gruia I., et al. Proc. SPIE Int. Soc. Opt. Eng., 7388, 73881D (2008).
- Ushenko A., Yermolenko S., Prydij A., Guminetsky S., Gruia I., Toma O., Vladychenko K. Proc. SPIE Int. Soc. Opt. Eng., 7008, 70082C (2008).
- Ангельский О.В., Ушенко А.Г., Архелюк А.Д., Ермоленко С.Б., Бурковец Д.Н., Ушенко Ю.А. Оптика и спектроскопия, 89, 1050 (2000).
- Angelsky O.V., Gorsky M.P., Maksimyak P.P., Maksimyak A.P., Hanson S.G., Zenkova C.Yu. Opt. Express, 19, 660 (2011).
- Angelsky O.V., Hanson S.G., Zenkova C.Yu., Gorsky M.P., Gorodyns'ka N.V. Opt. Express, 17, 15623 (2009).
- Makita S., Yasuno Y., Endo T., Itoh M., Yatagai T. Opt. Review, 12, 146 (2005).
- Makita S., Yasuno Y., Endo T., Itoh M., Yatagai T. Appl. Opt., 45, 1142 (2006).
- Pierce M.C., Strasswimmer J., Park B.H., Cense B., de Boer J.F. J. Biomed. Opt., 9, 287 (2004).
- Yasuno Y., Makita S., Sutoh Y., Itoh M., Yatagai T. Opt. Lett., 27, 1803 (2002).
- 19. Pan Y., Li Z., Xie T., Chu C.R. J. Biomed. Opt., 8, 648 (2003).
- 20. Ушенко А.Г. Оптика и спектроскопия, 91, 340 (2001).
- 21. Gori F., Santarsiero M., Vicalvi S., Borghi R., Guattari G. Pure Appl. Opt., 7, 941 (1998).
- 22. Wolf E. Phys. Lett. A, 312, 263 (2003).
- 23. Tervo J., Setala T., Friberg A. Opt. Express, 11, 1137 (2003).
- 24. Ellis J., Dogariu A. Opt. Lett., 29, 536 (2004).
- Ushenko Y.O., Tomka Y.Y., Misevitch I.Z., Istratiy V.V., Telenga O.I. Opt. Eng., 50, 039001 (2011).
- Ушенко А.Г., Томка Ю.Ю., Дуболазов А.В. Оптика и спектроскопия, 110, 865 (2011).
- Angelsky O.V., Ushenko A.G., Ushenko Y.G. J. Biomed. Opt., 10, 060502 (2005).
- 28. Ushenko Y.A. J. Biomed. Opt., 16, 066006 (2011).
- 29. Gerrard A., Burch J.M. Introduction to Matrix Methods in Optics (New York.: Wiley-Interscience Publ., 1975).
- Ангельский О.В., Ушенко А.Г., Архелюк А.Д., Ермоленко С.Б., Бурковец Д.Н. Оптика и спектроскопия, 88, 495 (2000).
- 31. Ушенко А.Г. Оптика и спектроскопия, **89**, 601 (2000).
- Pishak V., Ushenko A., Gryhoryshyn P., Yermolenko S., Rudeychuk V., Pishak O. Proc. SPIE Int. Soc. Opt. Eng., 3317, 418 (1997).
- Angelsky O.V., Ushenko A.G., Ushenko Y.G., Tomka Y.Y. J. Biomed. Opt., 11, 054030 (2006).
- Angelsky O.V., Ushenko A.G., Ushenko Yu.A., Ushenko Ye.G. J. Phys. D: Appl. Phys., 39, 3547 (2006).
- 35. Ушенко А.Г. Оптика и спектроскопия, 91, 997 (2001).
- 36. Ушенко А.Г. Оптика и спектроскопия, 91, 992 (2001).
- Дмитриева О.А., Пиголкин Ю.И., Федченко Т.М. Судебно-медицинская экспертиза половых функций мужчин (Владивосток: ЛАИНС, 2003, с.18–20).
- 38. Франк Г.А. Практическая онкология, 9 (2), 65 (2008).