PACS 42.82.-m; 77.55.+f; 42.82.Et

Измерение градиента показателя преломления по толщине диэлектрической пленки методом возбуждения волноводных мод

В.И.Соколов, В.Я.Панченко, В.Н.Семиногов

Предложен метод измерения градиента показателя преломления n(z) в неоднородных по толщине диэлектрических пленках. Метод основан на возбуждении волноводных мод в пленке с помощью призмы нарушенного полного внутреннего отражения и на расчете n(z) и толщины H_f пленки, исходя из угловых положений TE или TM мод. Он может использоваться при произвольной форме модуляции показателя преломления по толщине пленки в пределе слабого градиента ($\Delta n(z)/n(z) \ll 1$).

Ключевые слова: диэлектрические пленки, волноводные моды, метод нарушенного полного внутреннего отражения.

1. Введение

Метод нарушенного полного внутреннего отражения (НПВО) успешно используется для определения толщины H_f и показателя преломления n_f однородных по толщине диэлектрических пленок [1–5]. Он позволяет определять n_f пленок толщиной 0.3–15 мкм с точностью ±1×10⁻⁴, а их толщину – с точностью ±0.5% [5]. Данный метод применялся также для измерения показателя преломления $n_f(z)$ неоднородных по толщине пленок [6–9] при следующих ограничениях: $n_f(z)$ является непрерывной и монотонно спадающей при $z \ge 0$ функцией, максимум которой находится на границе пленки z = 0 (рис.1). В настоящей работе представлен метод измерения распределения показателя преломления $n_f(z)$ = $n_f + \Delta n_f(z)$ по толщине пленки для произвольной формы модуляции $n_f(z)$ в пределе сла-

Рис.1. Схема возбуждения волноводных мод в диэлектрической пленке методом НПВО: $N_{\rm p}$, $n_{\rm i}$, $n_{\rm f}$ и $n_{\rm s}$ – показатели преломления призмы, иммерсионной жидкости (или воздуха), пленки и подложки соответственно; $H_{\rm i}$ – толщина зазора между пленкой и призмой; $H_{\rm f}$ – толщина пленки; θ – угол падения.

В.И.Соколов, В.Я.Панченко, В.Н.Семиногов. Институт проблем лазерных и информационных технологий РАН, Россия, Московская обл., 140700 Шатура, ул. Святоозерская, 1; e-mail: visokol@rambler.ru

Поступила в редакцию 12 марта 2012 г.

бого градиента, т.е. при $\Delta n_f(z)/n_f \ll 1$. Здесь n_f – среднее значение показателя преломления пленки, а $\Delta n_f(z)$ – вклад в $n_f(z)$, вызванный его модуляцией.

2. Метод НПВО

Принцип возбуждения волноводных мод в диэлектрической пленке методом НПВО иллюстрирует рис.1. Монохроматический коллимированный световой пучок падает на пленку толщиной $H_{\rm f}$ с показателем преломления $n_{\rm f}(z)$ со стороны призмы, имеющей высокий показатель преломления $N_{\rm p}$, под углом θ . Между призмой и пленкой имеется зазор толщиной $H_{\rm i}$, заполненный иммерсионной жидкостью с показателем преломления $n_{\rm i}$ или воздухом. Если угол падения θ превышает критический, имеет место полное внутреннее отражене (ПВО) светового пучка от границы призмы. Однако если толщина зазора мала (типичные толщины $H_{\rm i} < 100-200$ нм), то при некоторых углах падения $\theta_{\rm i}$, для которых выполняется условие синхронизма

$$N_{\rm p}\sin\theta_i = \beta_i, \ i = 0, 1, 2, 3, ..., \tag{1}$$

где β_i – эффективный показатель преломления волновода для моды с номером *i*, условие ПВО нарушается и свет может проникать в пленку, возбуждая в ней соответствующую волноводную моду. Поэтому при выполнении условия (1) в угловой зависимости коэффициента отражения $R(\theta)$ пучка от границы призма – пленка наблюдаются резкие и узкие минимумы.

В случае однородной по толщине пленки значения β_i однозначно определяются ее толщиной H_f и показателем преломления n_f (при заданных n_i и n_s), поэтому по двум экспериментально найденным значениям θ_i можно рассчитать два неизвестных параметра пленки – H_f и n_f [1–5]. Если пленка неоднородна по толщине, т.е. имеется градиент показателя преломления по координате z (рис.1), то задача становится более сложной. Ниже будет изложен метод измерения H_f и $n_f(z)$, который может использоваться при произвольной форме модуляции $n_f(z)$ в пределе слабого градиента ($\Delta n_f(z)/n_f \ll 1$).

3. Дисперсионные уравнения для определения эффективных показателей преломления для ТЕ и ТМ мод в пленке с градиентом показателя преломления

Во многих практически важных случаях градиент показателя преломления $n_f(z) = n_f + \Delta n_f(z)$ в диэлектрических пленках мал. Поэтому ниже мы получим дисперсионные уравнения для ТЕ и ТМ мод методом возмущений по малому параметру $\Delta n_f(z)/n_f \ll 1$ при произвольной форме модуляции $n_f(z)$.

Рассмотрим пленку с модулированной по толщине (вдоль координаты *z*, см. рис.1) диэлектрической проницаемостью

$$\varepsilon_{\rm f}(z) = \varepsilon_{\rm f} + \Delta \varepsilon(z), \ \left| \Delta \varepsilon(z) / \varepsilon_{\rm f} \right| \ll 1,$$
 (2)

где $\varepsilon_f = n_f^2$ – невозмущенная диэлектрическая проницаемость; $\Delta \varepsilon(z)$ – возмущение, зависящее только от координаты *z*. Приведем выражения для электромагнитных полей $E(\mathbf{r}, t) = E(\mathbf{r}) \exp(-i\omega t)$ + компл. сопр. и $H(\mathbf{r}, t) =$ $H(\mathbf{r}) \exp(-i\omega t)$ + компл. сопр., где $\mathbf{r} = (x, y, z)$, в трехслойном диэлектрическом непоглощающем волноводе, образованном подложкой, пленкой и покровным слоем (иммерсионной жидкостью или воздухом), для ТЕ мод. В покровном слое с диэлектрической проницаемостью $\varepsilon_1 = n_i^2$

$$E^{I}(y,z) = e_{x}A^{I}\exp(i\beta ky + \gamma^{I}z),$$

$$H^{I}(y,z) = -\left(e_{y}\frac{i\gamma^{I}}{k} + e_{z}\beta\right)A^{I}\exp(i\beta ky + \gamma^{I}z),$$
(3)

где e_x , e_y и e_z – единичные векторы по осям x, y и z; A^1 – комплексная амплитуда волны в покровном слое; $k = 2\pi/\lambda$; λ – длина волны света в вакууме; $\gamma^I = k(\beta^2 - \varepsilon_1)^{1/2} \ge 0$. В подложке с диэлектрической проницаемостью $\varepsilon_3 = n_s^2$

$$E^{\mathrm{III}}(y,z) = e_x A^{\mathrm{III}} \exp(\mathrm{i}\beta ky - \gamma^{\mathrm{III}}z),$$

$$H^{\mathrm{III}}(y,z) = \left(e_y \frac{\mathrm{i}\gamma^{\mathrm{III}}}{k} - e_z\beta\right) A^{\mathrm{III}} \exp(\mathrm{i}\beta ky - \gamma^{\mathrm{III}}z),$$
(4)

где A^{III} – амплитуда волны в подложке; $\gamma^{\text{III}} = k(\beta^2 - \varepsilon_3)^{1/2} \ge 0$. В пленке с зависящей от координаты *z* диэлектрической проницаемостью (2)

$$E^{II}(y,z) = e_x \exp(i\beta ky) [A_1e_1(z) + A_2e_2(z)],$$

$$H^{II}(y,z) = -\left\{ e_y \frac{i}{k} \left[A_1 \frac{de_1(z)}{dz} + A_2 \frac{de_2(z)}{dz} \right] + e_z \beta [A_1e_1(z) + A_2e_2(z)] \right\} \exp(i\beta ky),$$
(5)

где A_1 и A_2 – амплитуды волн $e_1(z)$ и $e_2(z)$ в пленке, которые являются линейно независимыми решениями уравнения

$$\frac{\mathrm{d}^2 e_{1,2}(z)}{\mathrm{d}z^2} + k^2 [\varepsilon_{\mathrm{f}}(z) - \beta^2] e_{1,2}(z) = 0. \tag{6}$$

Уравнение (6) может быть решено аналитически в пределе $\Delta \varepsilon(z)/\varepsilon_f \rightarrow 0$ для произвольной формы модуляции $\Delta \varepsilon(z)$ (2). В результате получим

$$e_{1,2}(z) = \exp\left(\pm i\gamma^{II}z\right) \left[1 \pm \frac{ik^2}{2\gamma^{II}} \int_{z_0}^z \Delta \varepsilon(\xi) d\xi \right]$$

$$\mp \frac{ik^2}{2\gamma^{II}} \exp(\mp i\gamma^{II}z) \int_{z_0}^z \Delta \varepsilon(\xi) \exp(\pm i2\gamma^{II}\xi) d\xi, \tag{7}$$

где $\gamma^{\text{II}} = k(\varepsilon_{\text{f}} - \beta^2)^{1/2} \ge 0.$

Принимая во внимание выражения (3)–(7) и проводя сшивку электромагнитных полей на границах пленка–иммерсия (z = 0) и пленка–подложка ($z = H_f$) (рис.1), получаем дисперсионное уравнение для определения эффективных показателей преломления β_i для ТЕ мод волновода

$$\left\{ \gamma^{\mathrm{II}}(\gamma^{\mathrm{II}} + \gamma^{\mathrm{III}}) \cos(\gamma^{\mathrm{II}}H_{\mathrm{f}}) + [\gamma^{\mathrm{I}}\gamma^{\mathrm{III}} - (\gamma^{\mathrm{II}})^{2}] \sin(\gamma^{\mathrm{II}}H_{\mathrm{f}}) \right\}$$
$$+ \mathrm{Im} \left\{ \frac{k^{2}(\gamma^{\mathrm{II}} + \mathrm{i}\gamma^{\mathrm{I}})}{2\gamma^{\mathrm{II}}} \left[(\gamma^{\mathrm{III}} - \mathrm{i}\gamma^{\mathrm{II}}) \exp(-\mathrm{i}\gamma^{\mathrm{II}}H_{\mathrm{f}}) \right]$$
$$\times \int_{0}^{H_{\mathrm{f}}} \Delta \varepsilon(z) \, \mathrm{d}z - (\gamma^{\mathrm{III}} + \mathrm{i}\gamma^{\mathrm{II}}) \exp(\mathrm{i}\gamma^{\mathrm{II}}H_{\mathrm{f}})$$
$$\times \int_{0}^{H_{\mathrm{f}}} \Delta \varepsilon(z) \exp(-\mathrm{i}2\gamma^{\mathrm{II}}z) \, \mathrm{d}z \right] = 0. \tag{8}$$

Первый член в фигурных скобках в уравнении (8) описывает вклад невозмущенного волновода с постоянным показателем преломления, а второй член связан с модуляцией показателя преломления $n_f(z)$ по толщине пленки. Уравнение (8) справедливо для ТЕ мод трехслойного непоглощающего волновода при произвольной форме модуляции $n_f(z)$ в пределе малого градиента ($|\Delta \varepsilon(z)/\varepsilon_f| \ll 1$).

Аналогично запишем выражения для электромагнитных полей для ТМ мод трехслойного волновода. В покровном слое с диэлектрической проницаемостью $\varepsilon_1 = n_i^2$

$$H^{I}(y,z) = e_{x}B^{I}\exp(i\beta ky + \gamma^{I}z),$$

$$E^{I}(y,z) = \left(e_{y}\frac{i\gamma^{I}}{k\varepsilon_{1}} + e_{z}\frac{\beta}{\varepsilon_{1}}\right)B^{I}\exp(i\beta ky + \gamma^{I}z);$$
(9)

в подложке с диэлектрической проницаемостью $\varepsilon_3 = n_s^2$

$$H^{\text{III}}(y,z) = e_x B^{\text{III}} \exp(i\beta ky - \gamma^{\text{III}}z),$$

$$E^{\text{III}}(y,z) = \left(-e_y \frac{i\gamma^{\text{III}}}{k\varepsilon_3} + e_z \frac{\beta}{\varepsilon_3}\right) B^{\text{III}} \exp(i\beta ky - \gamma^{\text{III}}z);$$
(10)

в пленке с зависящей от координаты *z* диэлектрической проницаемостью (2)

$$H^{II}(y,z) = e_x \exp(i\beta ky) [B_1h_1(z) + B_2h_2(z)],$$

$$E^{II}(y,z) = \left\{ e_y \frac{i}{k\varepsilon_f(z)} \left[B_1 \frac{dh_1(z)}{dz} + B_2 \frac{dh_2(z)}{dz} \right] + e_z \frac{\beta}{\varepsilon_f(z)} [B_1h_1(z) + B_2h_2(z)] \right\} \exp(i\beta ky),$$
(11)

где B^{I} и B^{III} – амплитуды TM волн в покровном слое и подложке соответственно, а B_1 и B_2 – амплитуды волн $h_1(z)$ и $h_2(z)$ в пленке, которые являются линейно независимыми решениями уравнения

$$\frac{d^{2}h_{1,2}(z)}{dz^{2}} - \frac{1}{\varepsilon_{f}(z)} \frac{d\varepsilon_{f}(z)}{dz} \frac{dh_{1,2}(z)}{dz} + k^{2}[\varepsilon_{f}(z) - \beta^{2}]h_{1,2}(z) = 0.$$
(12)

Аналитическое решение уравнения (12) в пределе $\Delta \varepsilon(z)/\varepsilon_f \rightarrow 0$ для произвольной формы модуляции $\Delta \varepsilon(z)$ (2) можно представить в виде

$$h_{1,2}(z) = \exp\left(\pm i\gamma^{\Pi} z\right) \left\{ 1 \pm \frac{ik}{2\gamma^{\Pi}} \int_{z_0}^{z} \left[k\Delta\varepsilon(\xi) \mp \frac{i\gamma^{\Pi}}{k\varepsilon_{\rm f}} \frac{d\Delta\varepsilon(\xi)}{d\xi} \right] d\xi \right\}$$

$$\mp \frac{ik^2}{2\gamma^{\Pi}} \exp(\mp i\gamma^{\Pi} z) \int_{z_0}^{z} \left[k\Delta\varepsilon(\xi) \mp \frac{i\gamma^{\Pi}}{k\varepsilon_{\rm f}} \frac{d\Delta\varepsilon(\xi)}{d\xi} \right] \exp(\pm i2\gamma^{\Pi}\xi) d\xi. (13)$$

Проведя сшивку электромагнитных полей (9)–(13) на границах пленки z = 0 и $z = H_f$ (рис.1), получим дисперсионное уравнение для ТМ мод:

$$\begin{cases} \frac{\gamma^{\mathrm{II}}}{\varepsilon_{\mathrm{f}}} \left(\frac{\gamma^{\mathrm{II}}}{\varepsilon_{\mathrm{I}}} + \frac{\gamma^{\mathrm{III}}}{\varepsilon_{\mathrm{S}}}\right) \cos(\gamma^{\mathrm{II}}H_{\mathrm{f}}) + \left[\frac{\gamma^{\mathrm{II}}}{\varepsilon_{\mathrm{I}}} \frac{\gamma^{\mathrm{III}}}{\varepsilon_{\mathrm{S}}} - \left(\frac{\gamma^{\mathrm{II}}}{\varepsilon_{\mathrm{f}}}\right)^{2}\right] \sin(\gamma^{\mathrm{II}}H_{\mathrm{f}}) \\ - \mathrm{Im} \frac{\mathrm{i}\gamma^{\mathrm{II}}}{\varepsilon_{\mathrm{f}}} \left[\left(\frac{\gamma^{\mathrm{III}}}{\varepsilon_{\mathrm{S}}} - \frac{\mathrm{i}\gamma^{\mathrm{II}}}{\varepsilon_{\mathrm{f}}}\right) \frac{\Delta\varepsilon(z=0)}{\varepsilon_{\mathrm{f}}} + \left(\frac{\gamma^{\mathrm{I}}}{\varepsilon_{\mathrm{I}}} - \frac{\mathrm{i}\gamma^{\mathrm{II}}}{\varepsilon_{\mathrm{f}}}\right) \frac{\Delta\varepsilon(z=H_{\mathrm{f}})}{\varepsilon_{\mathrm{f}}} \right] \\ \times \exp\left(-\mathrm{i}\gamma^{\mathrm{II}}H_{\mathrm{f}}\right) + \mathrm{Im}\left(\frac{\gamma^{\mathrm{I}}}{\varepsilon_{\mathrm{I}}} - \frac{\mathrm{i}\gamma^{\mathrm{II}}}{\varepsilon_{\mathrm{f}}}\right) \frac{\mathrm{i}k}{2\gamma^{\mathrm{II}}} \left\{ \left(\frac{\gamma^{\mathrm{III}}}{\varepsilon_{\mathrm{S}}} - \frac{\mathrm{i}\gamma^{\mathrm{II}}}{\varepsilon_{\mathrm{f}}}\right) \\ \times \exp\left(-\mathrm{i}\gamma^{\mathrm{II}}H_{\mathrm{f}}\right) \int_{0}^{H_{\mathrm{f}}} \left[k\Delta\varepsilon(z) + \frac{\mathrm{i}\gamma^{\mathrm{II}}}{k\varepsilon_{\mathrm{f}}} \frac{\mathrm{d}\Delta\varepsilon(z)}{\mathrm{d}z} \right] \mathrm{d}z - \left(\frac{\gamma^{\mathrm{III}}}{\varepsilon_{\mathrm{S}}} + \frac{\mathrm{i}\gamma^{\mathrm{II}}}{\varepsilon_{\mathrm{f}}}\right) \\ \times \exp\left(\mathrm{i}\gamma^{\mathrm{II}}H_{\mathrm{f}}\right) \int_{0}^{H_{\mathrm{f}}} \left[k\Delta\varepsilon(z) + \frac{\mathrm{i}\gamma^{\mathrm{II}}}{k\varepsilon_{\mathrm{f}}} \frac{\mathrm{d}\Delta\varepsilon(z)}{\mathrm{d}z} \right] \exp\left(-\mathrm{i}2\gamma^{\mathrm{II}}z\right) \mathrm{d}z \right] = 0. (14)$$

Первый член в фигурных скобках в уравнении (14) описывает вклад невозмущенного волновода с постоянным показателем преломления, а остальные члены связаны с модуляцией показателя преломления $n_f(z)$ по толщине пленки. Уравнение (14) справедливо для ТМ мод трехслойного непоглощающего волновода при произвольной форме модуляции $n_f(z)$ в пределе малого градиента ($|\Delta \varepsilon(z)/\varepsilon_f| \ll 1$).

С использованием дисперсионных уравнений (8) и (14) можно рассчитать эффективные показатели преломления β_i^{th} для ТЕ и ТМ волноводных мод при заданной толщине H_f и показателе преломления $n_f(z)$ диэлектрической пленки, если известны показатели преломления подложки и покровного слоя.

4. Экспериментальное возбуждение ТЕ и ТМ мод в пленке SiO с неоднородным по толщине показателем преломления $n_f(z)$

Диэлектрическая пленка монооксида кремния SiO толщиной $H_f \approx 1.1$ мкм была изготовлена путем термического испарения в вакууме с последующим осаждением на подложку SiO₂. На рис.2 представлены экспериментально измеренные зависимости коэффициента отражения $R(\beta)$ этой пленки для TE и TM поляризованного излучения. Измерения проводились на рефрактометре-профилометре Metricon-2010 [5] при освещении пленки коллимированным пучком гелий-неонового лазера с длиной волны $\lambda = 632.8$ нм через измерительную призму из фианита (ZrO₂)

Рис.2. Экспериментально измеренные зависимости коэффициента отражения R пленки SiO от параметра β для длины волны 632.8 нм в случае TE (1) и TM (2) поляризаций.

с $N_p(\lambda = 632.8 \text{ нм}) = 2.13825$. При измерении эффективных показателей преломления β_i^{exp} для различных мод использовалась минимальная сила, прижимающая пленку к призме, при которой соответствующий минимум в зависимости $R(\beta)$ был еще отчетливо виден. Это делалось для обеспечения условия слабой связи, при которой наличие измерительной призмы с высоким показателем преломления в непосредственной близости к пленке не изменяет существенно угловые положения мод. Измерение β_i^{exp} для каждой волноводной моды проводилось несколько раз и результаты усреднялись с целью повышения точность измерения. По нашим оценкам, экспериментальная точность измерения β_i^{exp} при многократных измерениях с помощью прибора Metricon-2010 составила $\pm 2 \times 10^{-5}$.

Из рис.2 видно, что в пленке SiO наблюдаются четыре TE и четыре TM моды. Экспериментально измеренные эффективные показатели преломления для этих мод представлены в табл.1. Принимая во внимание значения β_i^{exp} и минимизируя функционал

$$\Delta = \sum_{i=0}^{3} |\beta_i^{\exp} - \beta_i^{th}|, \qquad (15)$$

можно рассчитать искомые параметры пленки $H_{\rm f}$ и $n_{\rm f}(z)$.

Предположим сначала, что показатель преломления постоянен по толщине пленки. Тогда, минимизируя по $H_{\rm f}$ и $n_{\rm f}$ функционал (15), для ТЕ мод получим $H_{\rm f}$ = 1076.1 нм и $n_{\rm f}$ = 1.84033, а для ТМ мод – $H_{\rm f}$ = 1081.6 нм, $n_{\rm f}$ = 1.84187. Соответствующие этим значениям $H_{\rm f}$ и $n_{\rm f}$ эффективные показатели преломления волноводных мод $\beta_i^{\rm th}$ приведены в табл.1, а минимальные значения $\Delta_{\rm min}$ функционала (15) – в табл.2.

Табл.1. Экспериментально измеренные и теоретически рассчитанные эффективные показатели преломления β_i^{exp} и β_i^{th} для ТЕ и ТМ мод в пленке SiO.

Номер моды <i>і</i>	Поляри- зация	β_i^{\exp}	$eta_i^{ ext{th}}$			
			$\varepsilon_{\rm f}(z) = n_{\rm f}^2 = {\rm const}$	$\varepsilon_{\rm f}(z) = n_{\rm f}^2 + a_1 z + a_2 z^2$		
0	TE	1.82309	1.82232	1.82309		
	TM	1.82236	1.82150	1.82236		
1	TE	1.76653	1.76762	1.76653		
	TM	1.75917	1.75974	1.75917		
2	TE	1.67435	1.67435	1.67435		
	TM	1.65530	1.65531	1.65530		
3	TE	1.54102	1.54102	1.54102		
	TM	1.51281	1.51281	1.51281		

Мода	Диэлектрическая проницаемость	$arDelta_{\min}$	H_{f} (нм)	$n_{\rm f}$	a_1	a_2
TE TM	$\varepsilon_{\rm f}(z) = n_{\rm f}^2 = {\rm const}$	1.86×10^{-3} 1.44×10^{-3}	1076.1 1081.6	1.84033 1.84187		
TE TM	$\varepsilon_{\rm f}(z) = n_{\rm f}^2 + a_1 z + a_2 z^2$	$< 1 \times 10^{-5}$ $< 1 \times 10^{-5}$	1079.6 1085.5	1.86021 1.86027	-1.12×10^{-3} -8.38×10^{-3}	1.282×10^{-6} 9.4×10^{-7}

Табл.2. Минимальные значения Δ_{\min} функционала (15) и соответствующие им параметры пленки SiO, рассчитанные из анализа угловых положений ТЕ и ТМ мод.

Из табл.1 и 2 видно, что в предположении постоянства показателя преломления по толщине пленки минимальные значения функционала (15) ни при каких $H_{\rm f}$ и $n_{\rm f}$ не опускаются ниже 1×10^{-3} и что имеет место сильное несоответствие экспериментально измеренных эффективных показателей преломления для волноводных мод их теоретически рассчитанным значениям. Причина такого несоответствия может заключаться в том, что показатель преломления $n_{\rm f}(z)$ непостоянен по толщине пленки. В табл.1 и 2 представлены также значения $\beta_i^{\rm th}$, $\Delta_{\rm min}$, $H_{\rm f}$ и $n_{\rm f}(z)$, рассчитанные в предположении наличия градиента показателя преломления в пленке с диэлектрической проницаемостью

$$\varepsilon_{\rm f}(z) = n_{\rm f}^2 + a_1 z + a_2 z^2, \tag{16}$$

где a_1 и a_2 – константы. Значения, представленные в двух нижних строках табл.2, получены путем минимизации функционала (15) по H_f , n_f , a_1 и a_2 . Из табл.1 и 2 следует, что учет градиента $n_f(z)$ обеспечивает существенно более низкое значение Δ_{\min} и отличное согласие экспериментально измеренных и теоретически рассчитанных значений β_i . При этом толщины $H_f = 1079.6$ и 1085.5 нм, найденные из угловых положений ТЕ и ТМ мод в случае градиентной пленки, несколько больше соответствующих толщин, полученных в предположении $n_f = \text{const}$, и различаются на 5.9 нм. Таким образом, ошибка в определении толщины градиентной пленки методом возбуждения волноводных мод не превышает ±0.3%.

Распределение показателя преломления $n_f(z)$ по толщине пленки, при котором достигается наилучшее согласие экспериментальных и теоретических значений β_i , представлено на рис.3.

Из рис.3 следует, что отклонение показателя преломления $n_{\rm f}(z)$ от его средних значений 1.8309 для ТЕ мод и 1.8365 для ТМ мод не превышает 4%, т.е. выполняется условие малого градиента ($\Delta n_{\rm f}(z)/n_{\rm f} \ll$ 1). Из рис.3 так-

Рис.3. Распределения показателя преломления n_f по толщине *z* пленки SiO, при котором достигается наилучшее согласие экспериментальных и теоретических значений β_i для TE (*I*) и TM (*2*) мод.

же видно, что показатель преломления $n_f(z)$ минимален в центральной части пленки и увеличивается к ее границам с подложкой и воздушным зазором. По нашему мнению, такая форма профиля $n_f(z)$ может быть обусловлена напряжениями в пленке, вследствие чего атомы кремния диффундируют к ее границе с подложкой. Это приводит к уменьшению стехиометрического параметра x оксида кремния SiO_x и повышению показателя преломления пленки вблизи ее границы с подложкой. Поскольку напряжения, как правило, максимальны вблизи этой границы, диффузия атомов кремния происходит наиболее сильно из ближайших к подложке областей пленки. Это объясняет, почему показатель преломления пленки на границе с воздухом выше, чем в ее середине.

5. Заключение

Разработан метод измерения градиента показателя преломления $n_{\rm f}(z)$ в диэлектрических пленках. Метод может использоваться для произвольной формы модуляции $n_{\rm f}(z)$ по толщине пленки в пределе слабого градиента $(\Delta n_{\rm f}(z)/n_{\rm f} \ll 1)$. Согласно предложенному методу диэлектрическую проницаемость пленки представляют в виде степенного ряда $\varepsilon_{\rm f}(z) = n_{\rm f}^2 + \sum_i a_i z^i$ с неизвестными коэффициентами а_i. С использованием призмы НПВО экспериментально измеряют эффективные показатели преломления для волноводных мод β_i^{\exp} (*i* = 0, 1, 2, ...), по которым рассчитывают коэффициенты а_i. Метод можно применять при возбуждении в пленке по крайней мере трех мод с одинаковой поляризацией. При этом точность определения профиля $n_{\rm f}(z)$ возрастает по мере увеличения количества учитываемых волноводных мод. Использование данного метода для анализа характеристик градиентной пленки SiO, в которой возможно возбуждение четырех ТЕ и четырех ТМ волноводных мод, показало, что точность определения толщины пленки составляет ±0.3%, а точность определения ее показателя преломления равна $\pm 2 \times 10^{-5}$.

Авторы выражают признательность В.Н.Глебову и А.М.Малютину за изготовление пленок SiO, И.В.Соколовой за проведенные измерения на рефрактометре-профилометре Metricon-2010 и Е.В.Хайдукову за полезные обсуждения.

Работа поддержана грантом РФФИ № 10-07-91751-АФ_а.

- 1. Tien P.K., Ulrich R., Martin R.J. Appl. Phys. Lett., 14, 291 (1969).
- Дерюгин Л.Н., Марчук А.Н., Сотин В.Е. Изв. вузов. Сер. Радиоэлектроника, 13, 973 (1970).
- 3. Tien P.K. Appl. Opt., 10, 2395 (1971).
- 4. Ulrich R., Torge R. *Appl. Opt.*, **12**, 2901 (1973).
- 5. www.metricon.com.
- 6. White J.M., Heidrich P.F. Appl. Opt., 15, 151 (1976).
- 7. Chiang K.S. J. Lightwave Technol., 3, 385 (1985).
- Chiang K.S., Wong C.L., Chan H.P., Chow Y.T. J. Lightwave Technol., 14, 827 (1996).
- 9. Mathey P., Jullien P. Opt. Commun., 122, 127 (1996).