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Abstract.  We present the results of the use of resonant ultrasound 
spectroscopy to study changes in temperature of crystals during 
their interaction with high-power laser radiation. To measure the 
nonuniform temperature of a crystal, use is made of the frequency 
(calibrated at uniform temperature q) of the nth mode of the piezo-
electric resonance Rfn(q) and its change DRfn(Pin) upon crystal 
irradiation by laser light with an average power Pin. A spatially 
inhomogeneous distribution of thermodynamic temperature in the 
crystal at a fixed laser power Pin is set in correspondence with 
equivalent temperature qeq(Pin), defined in this paper. A mathemat-
ical model is proposed, justifying the correctness of its introduction. 
This parameter can be used to study any piezoelectric crystals 
interacting with laser radiation. 

Keywords: high-power laser radiation, nonlinear optical crystals, 
equivalent temperature.

1. Introduction 

Nonlinear crystals are widely used to control both the tempo-
ral and spatial parameters of radiation, as well as to convert 
laser radiation frequency in laser and optoelectronic devices. 
High pulse and average radiation powers obtained recently 
make it urgent to study the interaction of radiation with these 
crystals. In this case, it is necessary to examine both changes 
in the properties of the medium and characteristics of the pro-
cess, such as nonlinear optical frequency conversion, for 
which the phase-matching condition is fulfilled in a limited 
temperature range determined by the phase-matching tem-
perature width [1]. 

The process of radiation propagation in material media is 
always accompanied by radiation absorption and, conse-
quently, by changes in the medium temperature; therefore, 
the analysis of the nature and rate of change of the tempera-
ture can provide valuable information about the characteris-
tics of changes and development of the interaction process. 
However, precise methods enabling temperature control of 
the crystals interacting with high-power laser radiation have 
not been developed so far. The absence of the possibility of 
noncontact measurement of temperature of a nonlinear opti-
cal crystal exposed to high-power radiation significantly lim-
its the ability to control the optical power absorbed by the 
crystal. The uncontrolled increase in the absorbed power 
under such conditions makes it difficult not only to study the 
mechanisms of formation and development of defects, but 
also to determine functionally (depending on the incident 
power) the optical damage threshold of crystals. For more 
than forty years of studies of mechanisms of laser damage in 
such crystals as quartz [2 – 4], potassium dihydrogen phos-
phate [5 – 7], lithium niobate [8 – 12], potassium titanyl phos-
phate [13 – 17] and others [18 – 24], it was found that the deg-
radation of any of these crystals is inevitably accompanied by 
its nonuniform heating, nonlinearly increasing with increas-
ing laser power [2 – 24]. 

For the experimental investigation of laser damage thresh-
old of nonlinear optical crystals, use is made of damage detec-
tion methods [25]. But, obviously, the end result of the crystal 
damage during its operation can be determined by the nature 
of changes in properties of the medium, in particular the rate 
of change of temperature. 

The noncontact temperature measurement proposed for 
the study of both traditional and new nonlinear optical crys-
tals will make it possible in some cases to carefully monitor 
the phase-matching conditions, and in other cases – to per-
form early diagnostic tests of the starting point of crystal 
damage. All the more, when changing any parameter of laser 
radiation (power, intensity, pulse duration, wavelength, etc.), 
the study of crystal damage is repeated many times (statistical 
method) [25]. The first step in this direction was made in [24], 
which shows the results of noncontact temperature measure-
ment of solid samples (including DKDP crystals). It should 
be noted that the experiment [24] was carried out under 
extreme conditions in which the central region of the crystal 
was heated by laser radiation to extremely high 
(6000 – 12000 K) temperatures. Naturally, at this temperature 
in this region the crystal atoms are ionised and the ions and 
electrons form a plasma column. 
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Precision measurement of temperature in the interaction 
of laser radiation with a nonlinear optical crystal is necessary 
for another, equally important, reason. The calorimetric 
method for measuring the optical absorption coefficients of 
the crystals (ISO 11551 [26]) is based on traditional measure-
ment of nonuniform temperature of air [27 – 32], surrounding 
a nonuniform heated crystal. The accuracy of this method is 
limited to changes in air temperature at a given spatial point 
and the sensitivity of a sensor (thermocouple, thermistors, 
etc.). In these measurements, it is needed to know the coordi-
nates of the sensor, which is located near the heated crystal, as 
well as to choose correctly the model of heat transfer between 
the crystal and the ambient air. Obviously, the accuracy of the 
calorimetric method will significantly increase in the measure-
ment of the temperature of both the crystal and the ambient 
air. Moreover, with increasing laser power incident on the 
crystal, there appears the effect of nonlinear optical absorp-
tion. Without measuring the temperature of the crystal under 
these conditions, the calculated absorption coefficients and 
coefficients of heat transfer, as well as their dependence on the 
laser power become inaccurate. 

It is well known that nonlinear optical crystals have 
piezoelectric properties. In such crystals due to the inverse 
piezoelectric effect the radiofrequency (RF) field can excite 
acoustic vibrations. When the external RF field frequency 
(fg is the generator frequency) coincides with the eigenfre-
quency of the nth mode of the acoustic oscillations (fg = Rfn) 
piezoelectric resonance is observed. To record piezoelectric 
resonances of nonlinear optical crystals under laser irradia-
tion, we have developed a test bench, which controls the 
temperature of the crystal and the ambient air with an error 
of less than 10 mK [33 – 35]. We have found that the reso-
nance frequencies of nonlinear optical crystals are sensitive 
to absorption of even very weak optical radiation. It should 
be noted that in the 1990s attempts were made to use high 
sensitivity of piezoelectric resonances to optical radiation to 
determine small absorption coefficients of crystals [36, 37]. 
Unfortunately, hasty conclusions of paper [37] restricted the 
applicability of the piezoresonance method for measuring 
the temperature of the crystal irradiated by extremely low 
power output (less than 30 mW). Our studies show that the 
possibility to accurately measure the temperature of nonlin-
ear optical crystals by the acoustic resonance methods under 
laser irradiation is limited only by the powers, leading to 
crystal damage. After preliminary studies we have found an 
opportunity to develop acoustic resonance methods for 
studying laser interaction with crystals. Moreover, there has 
appeared a real possibility of precision noncontact diagnos-
tics of degradation of crystals interacting with high-power 
laser radiation [33, 38]. 

2. Experiment 

A simplified scheme of the test bench is presented in Fig. 1. 
We have experimentally investigated SiO2, KTiOPO4, 
KH2PO4, LiNbO3, LiB3O5 crystals, which confirmed the pos-
sibility of using the bench and the developed method for 
media with different point symmetry groups. 

Detailed description of the bench and the method of sta-
tionary studies are given in [34, 35]. The nonlinear optical 
crystal C rm under study was placed in the centre of a capaci-
tor made of flat metal plates. To control the temperature of 
the electrodes and the air temperature inside the capacitor, 
we placed near the electrodes additional QT1 and QT2 

quartz thermal resonators with small transverse dimensions 
(Fig. 1, right). Piezoelectric resonances of the main crystal 
and thermal resonators were determined by the spectral 
characteristics of the impedance of the circuit comprising a 
capacitor connected in series to the load resistance generator 
Rload = 47  W. The investigated quartz crystal had the shape 
of a cuboid with polished faces (parallel to the crystallo-
graphic axes) with the following dimensions: Lx = 2.9 mm, 
Ly = 2.9 mm, and Lz = 11.4 mm; the dimensions of the ther-
mal quartz resonators were as follows: Lx = 1.0 mm, Ly = 
1.0  mm, and Lz = 11.0 mm. 

Figure 2 shows the RF spectrum of the voltage module 
|Uad| on the load resistance Rload, measured at an ambient 
temperature of qa = 20 °C for the main quartz crystal and 
thermal resonators. The spectrum contains a number of pro-
nounced high-Q resonances; however, in this range 
(1.4 – 2.0  MHz) only a few lines belong to the C rm crystal 
under study, one of which, with the resonance frequency Rf9 
= 1527594 Hz, is investigated in more detail. The selected fre-
quencies of the additional thermal resonators are as follows: 
Rf1(QT1) = 1772000 Hz, Rf1 (QT2) = 1865000 Hz. It should 
be noted that the information content of the spectra depends 
not only on the resonant frequency, but also on the spectral 
line shape |Uad( fg)|. 
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Figure 1.  A simplified scheme of the experimental setup: on the left is 
the electric circuit for measuring the radio frequency admittance (im-
pedance) of a nonlinear optical crystal (E rf is the electric field strength 
in a flat capacitor), on the right is the scheme for measuring nonuniform 
heating of nonlinear optical crystal Cr

m by laser radiation (QT1 and 
QT2 are quartz thermal resonators). 
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Figure 2.  RF spectrum of the voltage Uad, proportional to the admit-
tance of the capacitor with a quartz crystal Cr

m and quartz thermal reso-
nators QT1 and QT2, measured at uniform temperature of ambient air, 
qa. 
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3. Calculation of equivalent crystal temperature 

Highly temperature sensitive piezoelectric resonances of the 
crystal and thermal resonators are preliminary calibrated 
during uniform heating (without exposure to laser radiation). 
For all these crystals the dependence of the shift of the reso-
nance frequency Rfn on the temperature exhibited linear 
behaviour in the range 290 – 420 K. During the temperature 
calibration the piezoelectric resonance thermal coefficients 
K nprt = ∂Rfn /∂q of the main and auxiliary crystals are deter-
mined [33]. In the investigated temperature range the piezo-
electric resonance thermal coefficients were as follows: 
K 9

prt
(C rm) = – 47.5 Hz  K–1, K 1

prt
(QТ1) = +36 Hz  K–1, 

K 1
prt
(QТ2) = +15 Hz K–1. 
Under the action of laser radiation with power Pin , the 

resonant frequencies of the main and auxiliary crystals 
, ,Rf C Rf QT Rf QT1 2r

m
1 19^ ] ]h g g6 @ are changed. The functional 

dependence of the piezoelectric resonance frequency on the 
power Pin is used to determine peizoresonance optical coef-
ficients ¶ ¶/RfK Ppro

inn n= . The coefficient Kn
pro of the main 

crystal depends primarily on the optical absorption coeffi-
cient of the crystal, a, and on the conditions of heat transfer 
between the crystal and air [33]. At high powers Pin in the 
case of nonlinear conversion the coefficient Kn

pro may depend 
on the laser power. The coefficients K pro of additional sen-
sors QT1 and QT2 are dependent on their proximity to the 
main crystal. The accuracy of determining the temperature 
of nonuniformly heated air with their help increases with 
decreasing size of the sensor. It was found that the spectral 
dependence of the line shapes of piezoelectric resonances in 
quartz during uniform heating in the absence of laser radia-
tion and during nonuniform heating by laser radiation in the 
investigated range of powers (0 – 12 W) are functionally 
identical [34]. Therefore, we propose to characterise nonuni-
form heating of the crystal by laser radiation with the help 
of equivalent heating temperature Dqeq(Pin), defined as fol-
lows [33]: 

( )
( )Rf

P
K
P

eq in prt
in

n

nqD D
= .	 (1)

The equivalent temperature of the crystal is 

( ) ( )P Peq a eq ininq q qD= + .	 (2)

The temperature distribution obeys the heat conduction 
equation 

¶
¶

¶
¶ , 0

x y
I x y2

2

2

2
k q a+ + =d ^n h ,	 (3) 

where k(x, y) is the thermal conductivity of the medium [crys-
tal (kc) or air (ka)]; I(x, y) is the spatial distribution of the 
radiation intensity. We do not take into account here the ten-
sor nature of the thermal conductivity, which, in particular, is 
associated with a significant scatter in the values of various 
components of the tensor for these crystals found in the litera-
ture. It should be noted that this does not affect the general 
conclusions of the work, and the tensor nature of the thermal 
conductivity can be easily accounted for, since equation (3) is 
solved numerically. 

In a standardised method of laser calorimetry the heating 
model used is based on the convective heat transfer at crys-
tal – air interface [27 – 32]. In this (simplified) model, we also 
use the convective heat transfer. The crystal is assumed long 
enough so that we can neglect the effects of temperature on 
the ends and consider the temperature distribution along the 
z axis to be uniform. Equation (3) is supplemented by a con-
vective boundary condition at the crystal – air interface [33] 

¶
¶
n ha

T
in outk q q q- = -] g,	 (4)

where qin is the crystal temperature near the interface; qout is 
the air temperature near the interface; n is the normal to the 
crystal – air interface; hT is the heat transfer coefficient. In 
addition, at the outer boundary of the computational domain, 
which usually coincides with the inner area of the capacitor, 
the boundary condition of the first type q = q0 is applied. 

For the past 50 years calculations of the resonance fre-
quencies of piezoelectric crystals have been an independent 
problem of mathematical physics. Fundamental works in this 
area belong to the 1970s. First, we should mention the work 
of Eer Nisse [39], Tiersten [40], Holland [41], Demarest [42] 
and Ohno [43]; a review of variational methods for such prob-
lems is given elsewhere [44]. For the numerical analysis use is 
made of the variational formulation of the problem. Tiersten 
offers a method of elimination of initial and boundary condi-
tions by adding the existing constraints (written in the form of 
equations), multiplied by the undetermined Lagrange multi-
pliers. This method with some modifications is often used for 
such tasks. Below it is presented in abbreviated form (a 
detailed computational procedure of the piezoelectric reso-
nance frequencies and the temperature dependence of these 
frequencies under conditions of uniform heating is given in 
[38, 45] and PhD theses [46, 47]). The eigenmodes of the crys-
tal piezoelectric resonances are found by varying the 
Lagrangian of the system [43] 

,L u c u u u u
4
1

, , , ,i ijkl i j j i k l l k0 j = + +^ ^ ^h h h8yyy

	 de u u u2 , , , , ,ijk i j j i k ij i j i
2 2j e j j rw W+ + - -^ h B/ .	 (5)

Here cijkl is the tensor of elastic constants of the sample; eijkl is 
the tensor of piezoelectric modules; eij is the dielectric tensor; 
r is the density of the sample; w = 2pRfn is the intrinsic vibra-
tion frequency of the sample points that is determined; ui (x, y, z) 
are the components of mechanical displacement of the sample 
points; j is the electric potential; W is the crystal volume. F, j = 
¶F/ ¶xi is the most commonly used method of writing the 
derivatives. To solve numerically problem (5), the unknown 
functions ui (x, y, z), j(x, y, z) must be expanded in some set 
of basis functions {yp}. As a result, the Lagrangian is depen-
dent on the expansion coefficients Cp

i, and the equations for 
the eigenmodes are obtained by its differentiation in the com-
ponents: 
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After finding the eigenfrequencies and spatial distribu-
tions of the functions ui, j, the piezoresonance thermal coef-
ficients are calculated at a known temperature dependence of 
the elastic constants. 

The calculation of the piezoelectric resonance frequency 
during nonuniform heating of the crystal requires additional 
approximations (constraints). We will consider this problem 
in more detail. The nonuniform temperature distribution 
inside the crystal leads to an additional shift of its resonance 
frequencies, because this heating leads to the spatial depen-
dence of the elastic constants. Let 

, , , ,c x y z c c x y zijkl ijkl ijkl
0 1 dq= +^ ^h h,	 (7)

where the superscript ‘0’ denotes the value of the parameter at 
a uniform temperature q0, and the superscript ‘1’ denotes the 
temperature derivative of the corresponding parameter; 

, , , ,x y z x y z 0dq q q= -^ ^h h .	 (8)

The elastic tensor in (6) can be written as 

¶
¶

¶
¶
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ik ,ik 0 ] gyyy .	 (9) 

We can calculate that in the case of a maximum order of 
the decomposition polynomials N = 20, the number of basis 
functions is about 1800. In this case, for each pair of sub-
scripts j, l, the number of integrals to be calculated in (9), is 
more than three millions, which is practically hard to imple-
ment. 

We expand the calculated temperature distribution in the 
basis functions, which are assumed to be orthonormal: 
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Then, the addition of the right-hand side of (9) has the 
form 
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Let us also denote 
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After determining G, we calculate (for example, by pertur-
bation theory) the resonance frequency shift corresponding to 
the given radiation power Pin. This shift can be associated 
with a uniform temperature change, which gives the same 
shift in magnitude. This temperature change is what we call 
an equivalent temperature of crystal heating. Calculations 
using perturbation theory give the expression for the equiva-
lent temperature of heating: 

C
P
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eq in

in

ijkl p n
i

pq
jl

q n
k

ijkl r r p n
i

pqr
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q n
k

1

1
x yq

dq
D =] ]g g

.	 (13) 

The possibility of calculating the equivalent crystal tem-
perature leads to an algorithm determining the coefficients a, 
hT (initially unknown). To find them, it is necessary to solve 
the inverse problem of successive refinement of the coeffi-
cients yielding a temperature distribution in the crystal and 
the ambient air, at which the equivalent temperatures of the 
main and auxiliary crystals coincide (with the required accu-
racy) with those measured. It must be emphasized that the 
solution of the inverse problem is more of academic interest. 
In practice, the coefficients a, hT are obtained from kinetic 
measurements of the equivalent crystal temperature by calori-
metric methods (our experiments on the kinetics of the equiv-
alent temperature of the nonlinear optical crystals under con-
ditions of unsteady heating are described in [47]). 

We calculated the equivalent temperature for different 
modes of the same main quartz crystal (at different focusings 
of laser radiation) and for other nonlinear optical crystals. 
Calculations show that the equivalent heating temperature 
calculated by formula (13) and the equivalent temperature 
itself, qeq = qa + Dqeq is always between the minimum (qmin) 
and maximum (qmax) values of the thermodynamic tempera-
ture of the main quartz crystal (Figs 3, 4). The difference 
(observed in Fig. 4) in the plots of the equivalent heating tem-
perature of thermal resonators QT1 and QT2 is determined 
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Figure 3.  Thermodynamic (calculated) nonuniform temperature of the 
main crystal Cr

m and temperature of the air surrounding the crystal. 
Calculations are carried out for radiation of a collimated laser beam 
[diameter 1.5 mm, parameter M2 = 1 (Gaussian distribution)]. 
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by the impossibility of their exact (symmetric) installation 
near the main crystal, which once again proves the necessity 
of measuring the equivalent temperature of the main crystal. 
For the crystal under study the found values of a, hT in the 
range Pin = 0 – 12 W do not depend on Pin and are as follows: 
a = 0.7 ́  10–3 cm–1, hT = 55 W m–2 K–1. Traditional calorimet-
ric measurement of these coefficients (within experimental 
errors) gave similar results. 

4. Conclusions 

Thus, the experimentally measured change in the piezoelectric 
resonance frequency of a nonlinear optical crystal makes it 
possible to characterise the nonuniform temperature of the 
crystal exposed to high-power laser light. The equivalent tem-
perature found by us, as shown by calculations, lies in a nar-
row range between the maximum and minimum values of the 
thermodynamic temperature. It should be emphasized that 
the error in the values of the parameters obtained experimen-
tally is determined not by accuracy of measuring the piezo-
electric resonance frequency, which remains extremely high, 
but by the accuracy of determining the shape, dimensions and 
some (necessary) physical parameters of the sample. 
Unfortunately, in the literature the necessary parameters of a 
quartz crystal (not to mention other nonlinear optical crys-
tals) are not accurate enough (K1 %). 

It should be emphasized that many (well-known from the 
literature) mechanisms of degradation of nonlinear optical 
crystals, leading to their damage [2 – 24], define the extraordi-
nary complexity and perhaps impossibility to construct a gen-
eral, common for all crystals, theoretical model of nonuni-
form temperature distribution inside each heated crystal. At 
the same time, there is a principle possibility of searching for 
such piezoresonance modes of a nonuniformly heated crystal 
(with a large temperature gradient within it) that would allow 
this gradient to be experimentally measured. Our experiments 
show that in piezoelectric crystals, there are plenty of both 
volume and surface acoustic modes. If these modes are suc-
cessfully selected and properly identified [39], it will be possi-
ble to choose those that perform the averaging of the thermo-
dynamic temperature only in a limited spatial region of the 
crystal. 

Note also that the field of application of the research 
results presented in this paper is not limited to scientific and 
academic problems, such as studies of the mechanisms of 
laser damage of the crystals. For a number of practical appli-
cations, the obtained results aimed at determining optical 
absorption and heat transfer coefficients between the crystal 
and ambient air in real time are used in some devices of non-
linear frequency conversion of laser radiation [46, 47]. 
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