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Abstract.  Basic characteristics of the process of visualisation of 
transparent objects using the phase-contrast method with a photo-
thermal Zernike cell are analysed and evaluated. It is shown that, 
in spite of nonlocality of the process, visualisation is accomplished 
with the resolution close to the diffraction limit. The results of the 
visualisation process analysis in the scheme with a photothermal 
sell are compared with those obtained in a similar scheme with a 
Zernike cell based on the local Kerr nonlinearity.

Keywords: nonlinear optics, thermal self-action, phase contrast. 

1. Introduction

The phase-contrast method, proposed by F. Zernike in 1934, 
is used to detect weak phase perturbations in a light wave 
passed through an investigated object or medium. This 
method provides linear transformation of phase modulation 
into the amplitude one. The Zernike method is used to visu-
alise transparent objects and structures, as well as to analyse 
the wave front of optical beams with weak phase inhomoge-
neities [1 – 3]. The visualisation is implemented by placing a 
Zernike plate (filter) in the focal plane of the objective. The 
role of the Zernike filter is to introduce a selective phase shift 
QZ » ±p/2 between the direct light (also called ‘nondiffracted 
light’, ‘zero diffraction order’, and ‘zero spatial frequency’) 
and diffracted light (the terms ‘diffraction spectrum’ and 
‘higher spatial harmonics’ are also used) [2, 4, 5]. In the non-
linear phase-contrast method this phase shift is implemented 
in a nonlinear medium (nonlinear filter, or Zernike cell) [3, 
6 – 14]. As compared with the schemes using conventional lin-
ear Zernike cells, the nonlinear phase-contrast schemes 
require much less alignment, are easily tuneable, and the 
required phase shift is achieved by choosing an appropriate 
intensity of light, entering the nonlinear medium.

The Zernike filters based on the thermal nonlinearity 
mechanism were implemented in work [8 – 10, 14 – 16]. 
However, in the authors’ opinion, up to date the properties of 
such cells are not analysed in detail. Among nonlinear phase-
contrast schemes the schemes with photothermal Zernike 
cells possess certain advantages. The required level of radia-
tion power in these cells corresponds to the initial stage of 
beam thermal self-action development in the medium. The 

present mechanism possesses the lowest threshold for cw and 
quasi-cw laser radiation in simple, easily available media.

In the present paper we report a numerical analysis of the 
basic properties of the phase-contrast scheme for visualising 
transparent objects using a photothermal Zernike filter based 
on an absorbing medium with a thermal nonlinearity mecha-
nism. The nonlocality of the medium response is taken into 
account. Within the paraxial approximation the transfer 
characteristic function and the spatial resolution of the con-
sidered scheme are determined. Comparative analysis of 
properties of a photothermal Zernike cell and a Zernike cell 
based on inertialess nonlinearity is presented.

2. Setting of the problem

We analysed the phase-contrast scheme for visualising trans-
parent (phase) objects, presented in Fig. 1. The 2f-to-2f image 
transfer was considered, f being the focal length of the objec-
tive lens. The initial field Аin(x, y) was specified in the plane 
where the transparent object was located. The output field 
Аout(x, y) was sought for in the image plane. To calculate the 
output field Аout(x, y), the diffraction Fresnel – Kirchhoff 
integral in the paraxial approximation was used. It was 
assumed that the studied transparent object is illuminated 
with a laser beam having a Gaussian intensity profile and 
plane wave front. In the focal plane of the objective lens ( 1 ) 
the photothermal Zernike filter ( 2 ) was placed. A part of the 
radiation was absorbed in the cell, implemented as a cylindri-
cal solid sample, from which the heat was removed in the 
radial direction, thus giving rise to inhomogeneous heating of 
the cell ( 2 ).

In the analysis it was also assumed that the size and inten-
sity of the beam are constant within the cell, i.e., the absorp-
tion losses are small and the cell is optically thin. Moreover, 
in the calculation of the temperature profile T(r) the light 
intensity distribution within the Zernike cell was assumed to 
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Figure 1.  Analysed phase-contrast scheme for visualising transparent 
objects: ( 1 ) objective; ( 2 ) photothermal Zernike filter.
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be Gaussian. In other words, it was assumed that the presence 
of the transparent object does not practically change the dis-
tribution T(r). The radial stationary distribution of tempera-
ture in the cell was found from the solution of the heat con-
duction equation, which in the cylindrical coordinate system 
takes the form
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Here a is the coefficient of linear absorption; Pin is the power 
of radiation, incident on the cell; K is the heat conduction 
coefficient; vf is the radius of the Gaussian beam (at the e–2 
level of the maximal intensity) in the focal plane of the lens.

Under the boundary conditions T(r = r0) = 0, where r0 is 
the radius of the Zernike cell, the considered heat conduction 
equation (1) has the rigorous solution [17]:
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E1(X) is the exponential integral function; g = 0.577… is the 
Euler constant [18].

Due to nonuniform heating, a nonuniform profile of the 
refractive index n is induced in the cell, giving rise to phase 
mismatch of spatial harmonics and visualisation of the object 
image. The nonuniform phase Dj(r), introduced into the 
beam by the Zernike cell, is determined by the distribution (2) 
of the temperature DT(r), as well as by a number of parame-
ters that characterise the medium of the Zernike cell and the 
heating beam:
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where L is the length of the Zernike cell; b = dn/dT + (1/L) ´ 
(dL/dT )(n – 1); k0 = 2p/l0; l0 is the wavelength of the incident 
beam;
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Pth is the threshold power of thermal self-(de)focusing of the 
beam in a short-path medium. The visualisation process is 
determined by the phase difference Dj(r) introduced into the 
angular spectrum of the phase object. According to Eqn (3), 
the value of Dj(r) depends on the parameters BT and vf and 
does not depend on the size r0 of the Zernike cell. The latter 
statement is valid, if the angular spectrum of the phase object 
does not spread beyond the limits of the cell, which is implied 
in the following considerations.

Provided that the temperature distribution DT(r) is known 
and, correspondingly, the phase difference Dj(r), introduced 
into the beam by the Zernike cell, is known as well, one can 
use the diffraction integral to evaluate numerically the inten-
sity distribution for simple phase objects in the plane of their 
image. The diffraction integral was evaluated using the fast 
Fourier transform with the resolution 1024 ´ 1024 elements. 
The lens ( 1 ) was assumed to have an infinite aperture in all 
cases except the analysis of the Zernike filter resolution 
power. 

In the experiments [9 – 11, 14] a liquid-based Zernike cell 
was used. The model described above may be applied to the 
analysis of operation of the scheme with a liquid-based 
Zernike cell provided that the convection is absent. Note that 
for the majority of optical glasses dn/dT > 0, while in liquids 
and gases dn/dT < 0 (see, e.g., [19]). In the scheme with the 
corresponding Zernike cell this means a change in the image 
contrast sign.

3. Discussion of results

Let us assume that the transparent low-contrast object intro-
duces a small phase increment j(x, y) into the illuminating 
radiation. In this case the linear phase-contrast Zernike 
method yields the following expression for the light intensity 
distribution in the image plane [2]

Iout(x, y) µ [1 + 2j(x, y) sinQZ].	 (5)

From this expression it follows that the visualisation takes 
place at any nonzero value of the phase shift QZ between the 
zero-order (direct light) and higher-order spatial harmonics 
(diffracted light), and the maximum of sensitivity is attained 
at QZ = ±p/2. In this case the transfer characteristic function 
of the given Zernike cell, i.e., the dependence I(j), is linear 
and has the slope ratio equal to 2. The linear transfer charac-
teristic function guarantees correct visualisation of the phase 
object.

Let us discuss the possible problems arising with nonlin-
ear Zernike cells. If the required phase shift occurs in a non-
linear medium, then even in a local Kerr medium, for which 
Dn = n2I, the attainment of the required phase shift p/2 is 
accompanied by self-action effects. One can expect that they 
will impair the image quality. In the case of a photothermal 
Zernike cell additional problems may arise due to nonlocality 
of the heating process, because of which the temperature dis-
tribution DT(r) in the Zernike cell and, hence, the distribution 
of the phase shift Dj(r) introduced into the beam, do not 
repeat the distribution of the heating light beam. Figure 2 
shows typical distributions of the temperature [curve ( 1 )] and 
the intensity of heating light beam [curve ( 2 )] inside the 
Zernike cell. There are two features of the distribution T(r) 
able to impair the quality of the phase object visualisation. 
First, the distribution of temperature T(r) is broader than the 
distribution of the heating light beam intensity I(r). Second, 
this distribution demonstrates far-spreading slowly-descend-
ing wings. All this means that the photothermal Zernike cell 
not only introduces a phase shift into the zero spatial har-

1

2

T/T(0), I/I(0)
1.0

0.5

0 0.05 0.10 r/cm

Figure 2.  Normalised distributions of the temperature T ( 1 ) and inten-
sity I ( 2 ) inside the photothermal Zernike filter.
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monic, but also changes the phase relations in the angular 
spectrum of the phase object, due to which the quality of visu-
alisation becomes worse.

Below we present the results of numerical calculations. 
We assumed the focal length of the lens ( 1 ) (Fig. 1) to be f = 
100 cm, the wavelength of the Gaussian beam illuminating 
the object  l = 0.63 mm, its radius v0 = 0.18 cm (sampling 
increment 27 mm), unless particularly specified, the radius of 
the photothermal Zernike cell, placed in the focal plane of the 
lens, r0 = 2.0 cm. Note that the radius of the illuminating 
Gaussian beam in the focal plane of the lens is vf = 111 mm.

Consider a transparent object in the form of a phase slit, 
described by the function
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where erf(x) is the probability integral; dsl is the slit width; verf 
is the distance within which the phase jump by j0 occurs. As 
an example of visualising the phase slit using a thermal 
Zernike cell, Fig. 3a presents the intensity distribution Iout, 
obtained in the image plane. A priori it is known that the illu-
minating beam is Gaussian. This information allows recon-
struction of the phase distribution in the initial phase object: 
Inorm(x) = Iout(x)/fg(x), F (x) = Inorm(x) – 1 [see Eqn (5)], where 
fg(x) = fgin(x) = exp(–2x2/v

0
2), F (x) is the quantity, propor-

tional to the reconstructed phase distribution (phase image). 
If a more precise analysis is desirable, then it is preferable to 
scale Iout to the intensity distribution of the illuminating light 
beam in the image plane in the absence of the phase object 
fgout(x). In most cases the authors used this kind of scaling. 
Below by the term ‘reconstruction’ we mean just the simplest 
mathematical procedure, described here. 

Figure 3b presents the reconstructed distributions of 
phase F (x) in the cross-section plane  y = 0 for a number of 
slits having different widths. The obtained image satisfacto-
rily reproduces the initial phase slit, although some distor-
tions, typical for the edge enhancement effect, are present in 
the image. The data, presented in Fig 3b, confirm the low-
frequency nature of the observed distortions. Their origin is 
associated with the nonlocality of the thermal Zernike cell 
response, due to which the distribution T(r) does not repeat 
the narrow distribution of the heating beam amplitude in the 

focal plane of the lens, where the Zernike cell is located. In the 
distribution T(r) (see Fig. 2) two regions can be specified, 
namely, the central core and the slowly descending wings. If 
the central core of the distribution T(r) is comparable with the 
size of the angular spectrum of the phase object in the focal 
plane of the lens, then low-frequency distortions will be pres-
ent in the reconstructed phase distribution. They are due to 
the phase difference between the low-frequency and high-fre-
quency components of the angular spectrum of the phase 
object, introduced by the thermal Zernike cell. These distor-
tions in the reconstructed image of the phase object formally 
manifest themselves as the edge enhancement effect. In this 
effect, aimed at enhancing boundaries between light and dark 
parts of the image, a small region, adjacent to the boundary is 
made darker from the dark side and lighter from the light one. 
In most cases this effect is implemented by adding either the 
first, or the second derivative to the initial intensity distribu-
tion. In other words, high-frequency distortions are added. In 
the case of thermal Zernike cell the edge enhancement results 
from distortions in low frequency reproduction.

By the example of the phase slit let us analyse a number of 
Zernike cell characteristics. In the curve F (x), presented in 
Fig. 3b, one can select three characteristic points, denoted by 
Fmax, Fmin, and F0. Let us associate the phase jump j0 at the 
original slit with the quantity F0 = Fmin – Fmax, if j0 < 0, and 
with the quantity F0 = Fmax – Fmin, if j0 > 0. The process of 
the object visualisation will be characterised using the coeffi-
cient e = F0 /j0, describing the transfer of the original phase 
into the phase image. As mentioned above, correct reproduc-
tion of the phase object requires using the linear region of the 
transfer characteristic of Zernike cell, where e is independent 
of j0. A characteristic dependence e(j0) is presented in 
Fig. 4a. Within the limits |j0| £ 1 rad one can consider e to be 
independent of j0. Further studies of the thermal Zernike cell 
were performed within the linear part of the transfer charac-
teristic. 

In correspondence with Eqn (5) the transfer constant e is 
determined by the phase difference QZ between the direct and 
the diffracted light, introduced by the thermal Zernike cell. 
The analysis of Eqn (3), describing the phase difference Dj, 
introduced by the thermal Zernike cell, shows that in the case 
of slit visualisation the quantity e depends on three parame-
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Figure 3.  Visualisation of the phase slit using a photothermal Zernike filter. Distribution of the intensity in the image plane Iout, obtained upon vi-
sualisation of the phase slit having the width dsl = 0.44 cm with the phase jump j0 = – 0.1 rad; the parameter BT = 0.15 (a). Reconstructed distribu-
tions of phase F (x) in the cross-section plane y = 0 for slits having the width 0.04 ( 1 ), 0.1 ( 2 ), 0.17 ( 3 ), 0.24 cm ( 4 ) and the phase jump j0 = 
– 0.1 rad; the parameter BT = 0.15 (b).
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ters, BT, t0 = v0 /verf, and t1=dsl /verf. The results of numerical 
calculations indicate a very weak dependence of e on the 
parameter t1 within the studied interval of t1 values from 7 to 
44. In the first approximation one can consider e to be inde-
pendent of t1 within this interval. The dependences on two 
remaining parameters are presented in Fig. 4b Curve ( 1 ) is 
obtained at v0 = 0.18 cm, verf = 55 mm (t0 = 32.9). The dia-
monds label the values of e, obtained with the same t0 = 32.9, 
but for different values of v0  and verf. It is seen that these 
data perfectly fit with the curve ( 1 ), which confirms the func-
tional dependence of e not upon the variables v0  and verf 

separately, but upon their ratio t0 = v0 /verf. It follows from 
Fig. 4b that using the thermal Zernike cell one can approach 
the transfer constant values close to the theoretical limit  e = 2.

Besides the transfer constant e, the error arising in the 
visualisation process is also an important characteristic of this 
process. The process of slit visualising will be characterised by 
the absolute DF and relative dF errors: DF = Fmax + (F0 – 
Fmin) = (Fmax – Fmin) + F0, dF = DF /(Fmax – Fmin), if  j0 < 0 
(see Fig. 3b), or DF = F0 – (Fmax – Fmin), dF = DF /(Fmax – 
Fmin), if j0  > 0. Similar to e, these errors (both relative and 
absolute) depend on three parameters BT, t0 = v0 /verf, and 
t1=dsl /verf. Numerical calculations show that under the varia-
tion of BT from 0.05 to 0.25 the relative error dF is practically 
independent of the parameter BT. The dependences of dF on 
the parameters t0 and t1 are shown in Fig. 4c. Curve ( 1 ) is 
obtained at v0 = 0.18 cm, verf = 55 mm (t0 = 32.9). Diamonds 
label the values of dF, obtained at the same t0 = 32.9, but with 
v0 = 0.36 cm and verf = 109 mm. It is seen that these points lie 
on curve ( 1 ), which confirms the functional dependence of 
dF on the ratio t0 = v0 /verf. From the presented dependence 
dF (t1) the conclusion follows that the narrower the slit, the 
smaller the relative error and the better the reconstruction of 
the initial object phase. This qualitative conclusion also agrees 
with the data, presented in Fig. 3b. Moreover, from the data 
of Fig. 4c it follows that for the visualisation of phase objects 
using thermal Zernike cells the relative level of low-frequency 
distortions amounts to tens per cent.

The results of processing of the experimentally visualised 
images of some simple phase objects demonstrated the pres-
ence of the edge enhancement effect in all cases [14], which is 
an evidence of correctness of the presented model and numer-
ical calculations. 

As mentioned above, a specific feature of the thermal 
Zernike cell is the nonlocality of its response to the action of 

light. Probably, the best version of a nonlinear Zernike cell 
could be the one using a nonlinear medium with instanta-
neous local response. The example of such medium is, e.g., a 
medium with cubic nonlinearity. In such a medium the depen-
dence of the refractive index n on the intensity of light I has 
the form

n(r, t) = n0 + n2I(r, t).	 (7)

Let us compare the characteristics of Zernike cells with 
cubic and thermal nonlinearity. Consider a Zernike cell with 
cubic nonlinearity. We shall characterise it with the parame-
ter QZ = k0n2I0L = B [compare with Eqn (4)], where I0 is the 
intensity of the illuminating Gaussian beam in its centre, B is 
the break-up integral. The distribution of intensity Iout in the 
image plane, obtained in the case of phase slit visualisation, is 
presented in Fig. 5a [curve ( 1 ), QZ = B = p/2]. For compari-
son, the same figure shows the distribution of intensity fgin of 
the illuminating Gaussian beam in the absence of the slit and 
Zernike cell [curve ( 2 )]. Note that the presence of the Zernike 
cell leads to a decrease in the intensity in the centre of the 
distribution and its growth at the edges. Here we meet a man-
ifestation of self-action. When using a thermal Zernike cell 
the visualisation with the transfer constant e ~ 1 is imple-
mented at the parameter BT ~ 0.1, when the self-action of the 
illuminating beam is inessential. Figure 5b presents the nor-
malised distribution of intensity Inorm(x) = Iout(x)/fgin(x), 
where fgin(x) = exp(–2x2/v

0
2). The visualisation of the trans-

parent object using the Zernike cell with cubic nonlinearity is 
better than that using the thermal cell (see Fig. 3b). The curve 
Inorm(x) in Fig. 5b is characterised by two intensity values, the 
maximal Imax and the minimal Imin. The difference of Imax 
from unity is due to the self-action of radiation in the Zernike 
cell. The greater the B, the stronger the self-action and the 
smaller Imax. Such a behaviour is reflected by the dependence 
Imax(B), presented in Fig. 5c [curve ( 1 )]. The quantity F0 = 
(Imin – Imax) characterises the phase jump j0 in the initial 
object, it depends both on the parameter B of the cell and on 
the phase jump j0 at the initial slit. The dependence F0(j0) at 
|j0| < 1 is close to linear with the slope ratio e depending on B. 
The determined dependence e(B) is presented in Fig. 5c [curve 
( 2 )]. From this dependence it follows that the maximal 
response e » 1 is attained at B = 0.8p. 

Resolving power is one more important characteristic of 
an object visualisation system. Let us study the resolution in 

0 0

0.5

0.1 0.2

0.5

1.0

1.0
e e

0

1

2

1 1

3

3

2

2

1 2 20 40

dF

j0/rad BT t1
a b c

Figure 4.  Characteristics of the photothermal Zernike filter. Dependence of the transfer constant e on the phase jump j0 at the original phase slit 
having the width dsl = 0.1 cm for BT = 0.15, verf = 55 mm (a). Dependence of the transfer constant e(BT) (b) and the relative error of the visualisation 
process dF (t1) (c), obtained at t0 = 32.9 [( 1 ); v0 = 0.18 cm, verf = 55 mm], t0 = 16.5  [( 2 ); v0 = 0.18 cm, verf = 109 mm] t0 = 8.2  [( 3 ); v0 = 0.18 cm, 
verf = 219 mm]. Diamonds label the values of e, obtained at t0 = 32.9, v0 = 0.36 cm, and verf = 109 mm.
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the thermal Zernike cell. The Rayleigh criterion is commonly 
accepted for this aim [2, 4, 5], following which two objects are 
considered as resolved if the following condition is satisfied

0.61z
d

rlen0q l
= = .	 (8)

Here d is the separation between the objects; z is the distance 
between the objects and the lens; q0 is the angular separation 
between the objects; rlen is the aperture radius of the lens. This 
criterion is valid under the incoherent illumination of objects. 
In the case of two holes in a non-transparent screen, illumi-
nated with incoherent light, condition (8) means that in the 
image plane the ratio of the central intensity I0 to the maximal 
intensity Imax in the characteristic double-peak light distribu-
tion amounts to 0.735. If the two holes are coherently illumi-
nated with a plane wave normally incident on the screen, the 
resolution is worse, provided that all other conditions are 
similar. Let us accept the condition I0/Imax = 0.735 as a crite-
rion of resolution. Then for coherent illumination the resolu-
tion condition (8) will be replaced with the condition [2] 

0.82z
d

rlen0q l
= = .	 (9)

For the analysis of resolution of a thermal Zernike cell we 
will rely on criterion (9). As an object we take two ‘phase 
holes’, illuminated with a Gaussian beam. Within the phase 
holes the phase of the illuminating beam experiences the jump 
j0 = – 0.1p, while outside the holes the phase is zero. The 
object is assumed to be located at the distance z = 400 cm 
from the lens having the focal length f = 100 cm. The radii of 
the holes are r0 = 0.014 cm, the separation between the holes 
is d = 0.056 cm, the radius of the illuminating Gaussian beam 
is v0 = 0.09 cm, and the sampling increment is 35 mm. The 
thermal Zernike cell with the parameter BT = 0.15 is placed in 
the focal plane of the lens. The image function of the phase 
object F (x, y), reconstructed following the procedure 
described in the beginning of Section 3, takes both positive 
and negative values. In order to plot the image F, let us com-
plete it with a constant: Y = F – min(F), Y ³ 0. Figures 6a 
and b present the distributions Y (x, y), obtained at rlen = 
0.184 and 0.276 cm, respectively. At rlen = 0.184 cm the 
Rayleigh resolution criterion is rigorously fulfilled, while the 
value rlen = 0.276 corresponds to weakening of the criterion by 

50 %. In Figs 6c, d (rlen = 0.184 and 0.276 cm, respectively) the 
solid curves present reconstructed distributions of the phase 
F (x) in the cross-section plane y = 0. The dashed curves in 
these figures correspond to the distribution of the original 
phase object. Based on the analysis of Fig. 6 one can arrive at 
the following qualitative conclusion: the thermal Zernike cell 
allows phase object reconstruction with the resolution, close 
to the Rayleigh one.

The problem of resolving the considered phase object is 
more complicated than the traditional problem with a non-
transparent screen with holes (amplitude object). The reason 
is the difference in image contrast. Phase objects produce less 
contrast images than the amplitude screen. The image con-
trast for a phase object depends on the phase jump j0. The 
greater is this jump, the easier is the solution (at least, visual) 
of the resolution problem. However, the value of j0 is limited 
by the linear part of the transfer characteristic (see Fig. 4). In 
the numerical experiment carried out by us j0 = – 0.1p and 
stays within the linear part of the transfer characteristic. In 
spite of the problems listed, one can state that the observed 
resolution of the transparent object visualisation system with 
thermal Zernike cell is close to the resolution, corresponding 
to the Rayleigh criterion (9). 

4. Conclusions

The analysis of the calculated images shows that, generally, 
the images visualised using the photothermal Zernike cell 
reproduce the structure of small-scale phase objects quite 
well. The nonlocality of the response, typical of thermal non-
linearity, leads to low-frequency distortions (edge enhance-
ment effects) that become reduced as the size of the phase 
object decreases. The transfer characteristic of the cell depends 
on the parameter BT that determines the phase shift intro-
duced by the cell. This parameter allows relatively easy con-
trol by changing the power of the laser beam, illuminating the 
object. Particularly, at BT = 0.1 – 0.25 a quite satisfactory 
dynamical range of the transfer characteristic linear part (|Dj| 
£ 1) is achieved in the cell, the transfer constant (contrast) 
being e ~ 1. In principle, the process of thermal self-action 
can disturb the visualisation process, but at (|Dj| £ 1) their 
manifestations are minor. The thermal cell demonstrates high 
resolution in imaging of small-scale details. Its resolution 
power is near to the Rayleigh one. 
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Figure 5.  Characteristics of the process of the phase slit visualisation using a Zernike cell with cubic nonlinearity. Intensity distributions in the im-
age plane, obtained upon visualisation of the phase slit Iout  (slit phase jump j0 = – 0.1 rad, width dsl = 0.04 cm, parameter B = p/2) ( 1 ) and in the 
absence of the phase slit and the Zernike filter fgin ( 2 ) (a). Normalised intensity distribution Inorm(x), obtained upon the phase slit visualisation with 
the slit width dsl = 0.04 cm, the phase jump j0 = – 0.1 rad, and the parameter B = p/2  (b). Dependences of the maximal intensity value Imax ( 1 ) and 
the transfer constant e ( 2 ) on the parameter B (c).
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Figure 6.  Resolution of a photothermal Zernike filter. Visualisation of two phase holes using a finite-aperture lens. Distributions of the ‘displaced’ 
image of the phase Y (x, y), obtained at rlen = 0.184 (a) and 0.276 cm (b). Distributions of the reconstructed phase F (x, y = 0) (solid curve) and the 
initial phase (dashed curve), obtained at rlens = 0.184 (c) and 0.276 cm (d).


