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Narrowing of the coherent population trapping resonance under zone
pumping in cells with different characteristics of the wall coating

G.A. Kazakov, A.N. LitVinov,

Abstract. It is shown that when coherent population trapping (CPT)
resonance is excited by a narrow laser beam, the presence of elastic
collisions with the cell wall significantly affects the line shape of the
CPT-resonance. We have constructed a theoretical model, which is
based on averaging over the random Ramsey sequences of the atom
dwell time in the beam and dark zones and takes into account the
probability of elastic bounce of an atom from the wall.
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1. Introduction

Coating the walls of a cell containing vapours of alkali metals
with a special antirelaxation composition is one of the methods
for increasing the duration of coherent interaction of atoms
with the field [1,2]. Investigation of relaxation of rubidium
atoms in a cell with paraffin-coated walls [1] showed that at
least some of the atoms in a collision with the wall ‘stick’ to
it for some time during which there occurs an exchange of
kinetic energy, and after that the atoms return in a cell volume
with a new velocity. At the same time, new wall coating mate-
rials and new technologies for coating deposition are being
actively developed [3]. On these coatings atoms can, generally
speaking, experience elastic collisions during which sticking is
absent.

In this paper we show that the presence of elastic collisions
with the cell wall largely determines the shape of the line of the
coherent population trapping resonance (CPT-resonance) in a
cylindrical cell illuminated by a laser beam of small diameter.

It is known (see, for example, [4—11] and references therein)
that formation of the CPT-resonance in these cells is affected
by the process associated with the displacement of active atoms
from the zone illuminated by a laser beam in the dark zone
and back, during the existence of coherence between the
hyperfine sublevels of the ground state of the atom this dis-
placement occurring repeatedly. In paper [6] and, indepen-
dently, in papers [5,7] the authors constructed a theoretical
model of formation of the CPT-resonance in a cylindrical cell,
based on averaging over the random Ramsey sequences of the
atom dwell time in the beam and dark zones. The key point of
the model was the assumption that atoms stick to the wall in
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each collision with it, and then return to the cell volume with
a new velocity, unrelated to the velocity of an atom before the
collision.

In this paper, we generalise the model to the case when the
atom can also experience elastic collisions with the cell wall.
We assume that in elastic collisions, firstly, all the atomic
velocity components parallel to the wall (and the perpendicu-
lar component changes the sign) are retained, and secondly,
the distribution of the atom dwell time in the beam and dark
zones changes. We introduce the reflective coating coefficient
a, which is the probability of an elastic collision of an atom
with the wall of the cell. We study the influence of this coeffi-
cient on the line shape of the CPT-resonance at various laser
intensities and provided that the width of the emission spec-
trum is much smaller than the Doppler width of the optical
transition.

2. 2. Theoretical model

2.1. The equations for the density matrix

To describe the internal state of the active atoms interacting
with the field, use is made of a three-level model (a lambda-
scheme, Fig. 1). The equation for the density matrix p describ-
ing the internal state of an atom can be written as

. i
Pij =— ﬁ; (Huprj — pacHy) + kzl: Liupu, (D

where H); is the matrix element of the Hamiltonian H = H, +
AV(v., 1) [ Hy is the Hamiltonian of a free atom, A V(v.,?) is the
operator of the dipole interaction of an atom with the laser
field, which depends on the time ¢ and projection v. of the
velocity in the direction of radiation propagation] and Iy, is
the element of the relaxation matrix.

Figure 1. Lambda-scheme of interaction of a three-level atom with the
field.




186

G.A. Kazakov, A.N. Litvinov, B.G. Matisov

The absorption of light in the cell is proportional to the
population ps; of the excited state, which can be expressed in
terms of populations p i, p,> and coherence p, in the ground
state by adiabatic elimination [12]. In weak fields, when
Vi, <<y [V, and V, are the matrix elements of the interaction
operator of atoms with a resonant component of the field
(Rabi frequency), 2y is the rate of spontaneous relaxation of
the excited state], the population ps33 is much smaller than the
populations p; and p,, of the sublevels of the ground state.
We also neglect the Doppler frequency shift of the microwave
transition. This approximation is valid if the longitudinal
dimensions of the cells are small compared with the wave-
length A, of the transition between the states |1) and |2) (Dicke
narrowing [13]).

Using the normalisation condition

prutpn=1 @

and introducing the notation p = {f,R,J} (f=p11—pxn, R=
Rep,, J =Impy,), we can express the evolution equation for
the density matrix of an ensemble of atoms in a laser beam as

) 2 2
F=cV=V_wary—artil2y
y y
R:-GV‘;,/Z—(W+F)R—(Q—A)J, 3)
Vi

J=F

'y',/z f+(Q=A)R—(W+T)J.

Here, G = G(v.) and F = F(v.) are the real and imaginary
parts of the expression y'/[y' — 1(€2; — kv.)], respectively;
k = wlc is the wave number of optical radiation; Q; and Q
are the optical and two-photon (Raman) detuning; A=
F(V—-V3)ly'is the light shift; W= G(V{ + V3)ly'is the opti-
cal pumping rate; y' =y + I;/2 [14] is the relaxation rate
of optical coherences p 3 and p,s; I is the spectral width of
laser radiation; I' is the relaxation rate of the ground state.
Expressed in terms of f, R and J, the excited state popula-
tion is

G

2oV = VI + 4KVAR). )

P33=;V—V+

The linear system of equations (3) can be written symbolically
in the matrix form:

P., 1) = Aw)p(v-,1) + B(v.), (5)

and expression (4) — in the form

p3(v-1) = UT(0)p(v., 1) + V(v.). (6)

Here, the quantities with a hat denote the column vectors,
and with two hats — matrices, the superscript “T” denotes
transposition. Below, for the sake of brevity, we will not write
the argument v, in A, B, Uand V.

Evolution equations for the density matrix of atoms out-
side the laser beam can be obtained from equations (3), by
setting V; = V, = W= A= 0. Symbolically, this system can be
written as

ﬁ(v:, 1) = fi’,[)(v_,, 1). (7

Note that A’ is independent of v..

Thus, the density matrix describing the internal state of
the atom obeys equation (5) when the atom is in the beam
zone, and equation (7) when the atom is in the dark zone. The
solution to equation (5) can be written in the form

p(0) = {1 - explA(t — 1)1} ps + explA(t - 1)1 p(10),  (8)

where [ is the identity matrix; p;, = —A~'B is the stationary
solution to equation (5). Similarly, the solution to equation
(7) can be written as

(1) = explA(t - 1) pl10). ©)

2.2. Motion of an atom in the cell

Consider a cylindrical cell, irradiated by a cylindrical laser
beam propagating along the cylinder axis. Let us suppose first
that the atom moving in the cell experiences only elastic colli-
sions with the walls. Then, during each pass through the cell it
either crosses the beam zone, as shown in Fig. 2a, or is outside
it (Fig. 2b). In the first case, the atom is in the beam passing
regime, and in the second case, — in the dark regime. Obviously,
only atoms in the beam passing regime will contribute to the
formation of the resonance. Let the atom be in the beam zone
during the time 7' at the moment of observation #,. Before
entering the beam zone the atom during the time v’ was in the
dark zone. Before this the atom during the time 7 was in the

Figure 2. Trajectory of a single atom in a cell in the beam passing regime
(a) and in the dark regime (b), as well as time dependence of the optical
pumping rate W (depending on the atomic velocity due to the Doppler
shift of laser radiation) (c). Crosses show the moments of elastic collisions
of the atom with the wall of the cell, and asterisks — inelastic collisions.
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beam zone, and again before that during the time z'it was in
the dark zone, etc. Using equations (8) and (9) we can easily
obtain the expression

p(t) = [ — exp(A")] ps + exp(At')exp(A'z)

X { - exp(Ar) . + exp(ﬁr) exp(ﬁ’r')

x{[1 ~ exp(AD)] o, + exp(Ar)exp(A'T)[..]}}

= {[f - exp(fit’)] + exp(fit’) exp(ﬁ'r')

X[ — exp(Ar)exp(A'T)] ! [] - exp(A0)]} (10)

Now we suppose that the atom can experience not only
specular collisions with the wall, but also collisions, changing
its velocity. After such a collision the atom, initially in the
dark regime, can either dwell in it (which does not affect the
equations for the density matrix), or switch to the beam pass-
ing regime. The atom, which before the collision was in the
beam passing regime can either pass to the dark regime, or
again to the beam passing regime, but with different values of
the projection of the velocity vector and the angle of collision
with the cell wall (and, consequently, with different values of
7 and t'). For definiteness, the time of entry of the atom into
the beam zone after an inelastic collision with the wall we
agree to call the onset of the beam passing regime, and the
time of its exit — the end of the regime. Thus, if in the beam
passing regime the atom undergoes N elastic collisions with
the wall, it passes N times through the dark zone and N + 1
times through the beam zone (Fig. 2c).

The density matrix of the atom p. at the time of exit from
the beam passing regime can be obtained as expression (10),
with the only difference being that the number of terms is now
finite:

pe = {1 +exp(Ar)exp(A’1') + ... + [exp(Ar) exp(A’T)V}

x [1 — exp(An)] p, + [exp(Ar) exp(A't)Vexp(Av)

A
A

=[] - exp(Ar)exp(A'z")] 1 {1 - [exp(Ar) exp(A'r/)]V* 1}

x [ - exp(A)] p, + [exp(Ar) exp(A'z")]Vexp(Ar) py. (11)
Here, py, is the density matrix of the atom at the time of its
entry into the beam. This matrix, in turn, can be related to the
density matrix of the atom p. () at the time of the previous
(as indicated by the superscript ‘—1°) exit from the beam passing
regime with the help of expression (9):

Pv = exp(A’Tg) Pe (1) (12)

where 74 is the dwelling time of the atom in the dark regime.
Similarly to (11), we can obtain an expression for the density
matrix of the atom at the moment of observation ¢,:

plt) = exp(Ar’)exp(A'T)[] — exp(Ar)exp(A'r')] !

N»

x {1 ~[exp(Ar) exp(A'T")]"} [ - exp(A)] s

+ [1 - exp(Ar")] p, + exp(Ar') [exp(A'T') exp(AD)]" o, (13)

and the expression for the population p;; of the excited state:

P33 = UT{exp(ﬁt') exp(fi'r')[[ﬁ - exp(ﬁr) exp(fi'r')]*1
x {1 - [exp(Ar) exp(A'T"} [T - exp(At)] p

+ [ —exp(At")] ps + exp(Ar’) [exp(A'T') exp(A)]" pu} + V, (14)
where n is the number of collisions with the walls which the
atom experiences during its continuous dwelling in the beam
passing regime up to the moment of observation #,. Averaging
(14), (11) and (12) in atoms in the beam zone, we obtain the
average population {ps3) of the excited state, which determines
the absorption of radiation in the cell.

3. Results of calculations

We have performed calculations of the line shape and param-
eters of the dark resonance in vapours of three-level lambda-
atoms in a cylindrical cell of radius R = 0.5 cm. The mass of
the atoms m was assumed equal to the mass myy, of the 3’Rb
isotope, the temperature was 7 = 20°C, the relaxation rate
of the ground state was I'= 300 s™!, and the relaxation rate of
optical coherences was y’' = 1.8x 107 s!. The Rabi frequencies
V', and V, were considered equal (V; = V, = V), and the opti-
cal detuning was €; = 0. As a main quantitative characteristic
of the radiation intensity, use was made of the optical pumping
rate W, averaged over v. and the volume of the cell:

W= 272
v'R?

G 6= " M0 G2y do.. (15)

Here, M,(v.) = (mv;)Pexp(-v¥v?) is the Maxwell distribu-
tion function for the velocity v.; r is the beam radius; vy =
(2kgTImgy,)"? is the most probable velocity of atoms. For the
parameters used in the calculation, G ~ 0.0168. The value of
W depends on the ratio of the radiation power to the cross-
sectional area of the cell [6].

The spectral structure of the CPT-resonance with the
probability of an elastic collision & = 0 (a broad pedestal of
width of several tens of kilohertz and a narrow central peak)
was discussed in [4—7]. The broad pedestal is due to atoms
that have passed through the beam zone only once, whereas
the central peak is formed due to multiple passages. At non-
zero values of « in a wide range of values of r and W there
appears another ‘intermediate’ peak, whose width is greater
than that of a narrow central peak, but lower than that of the
broad pedestal (Fig. 3).This peak is due to atoms that have
repeatedly passed through the beam zone, elastically bounc-
ing off the walls of the cell. It is important to note that their
longitudinal velocity v. remains constant, in contrast to atoms
that have once crossed the beam zone in the beam passing
regime. The ‘intermediate’ peak appears when the character-
istic dwelling time of the atom in this regime is sufficient for
pumping in the dark state. Figure 4 shows the calculated
CPT-resonance in a weak field (W =10s"). The peak appears
when the probabilities of elastic collision are equal to & = 0.75
and 1, whereas for smaller values of « it is absent, because the
atoms have too little time to dwell in the beam passing regime.

Finally, we note the emergence of the ‘intermediate’ peak
when the diameter of the laser beam coincides with the diam-
eter of the cell (Fig. 5). This is due to the fact that the atoms,
whose longitudinal velocity v, is small compared with the
heat velocity, mainly contribute to the formation of the CPT-
resonance. Thus, in elastic collisions with the wall the atom
for a long time is in a ‘resonant’ velocity group of atoms inter-
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p33/107 4. Conclusions
30F

= We have constructed a theory of the formation of CPT-
2.5} B resonances under conditions of zone pumping in a cylindrical
7 cell with the antirelaxation wall coating on the assumption
2.0 1K that the atoms can experience, with some probability, elastic
: collisions with the wall. We have shown that the presence of
L5F Vi these collisions leads to a distortion of the line shape of the
1 CPT-resonance, namely, to the appearance of an additional
LoF a=0 peak that is narrower than the ‘pedestal’, formed by a single
\ 2 0.5 passage of the atoms through the beam zone, and is wider

0.5r Ly il |- 1 than the narrow central peak.
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Figure 3. Shape of the CPT-resonance line at different  for r = 1.5 mm
and W =100 s"". The inset shows the central part of the resonance.
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Figure 4. Shape of the CPT-resonance line (central part) at different «
forr=0.5mmand W=10s".
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Figure 5. Shape of the CPT-resonance line at different & for r = 5 mm
and W=200s".

acting with the field (and hence contributing to the formation
of the CPT-resonance), whereas in inelastic collisions it leaves
this group. The ‘intermediate’ peak, in this case, is due to atoms
in a ‘resonant’ velocity group.
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