
Quantum Electronics  42 (9)  848 – 852  (2012)	 © 2012  Kvantovaya Elektronika and Turpion Ltd

Abstract.  We have solved the problem about the force with which 
an electromagnetic pulse in a liquid (or gaseous) medium at rest 
affects a solid body (also at rest) immersed in it. We have shown 
that under certain conditions (relating to the characteristics of the 
medium and the pulse shape), the formula for the force exerted per 
unit area of a body surface is obtained from the Landau – Lifshitz 
equations for static fields in the same way as, according to 
Pitaevskii, the field stress tensor is obtained from the static field 
stress tensor with the dispersion taken into account. The formula 
for the force acting on the wall, from which an incident quasi-mono-
chromatic plane wave with a given intensity is reflected, differs 
from the corresponding formula for the case when the body is in a 
vacuum by the factor ±n1, where n1 is the refractive index, and the 
upper (lower) sign corresponds to a positive (negative) group veloc-
ity of the wave in the medium. 

Keywords: light pressure, dispersion, negative group velocity. 

1. The solution is known for the force acting on a wall   of a 
flat solid surface – when a plane electromagnetic wave is inci-
dent on it in vacuum (see problem 1 in [1, §  47]). Let us intro-
duce the following notations: S (0) is a vector of the energy flux 
density of the incident wave; N is a unit vector along the nor-
mal to the surface of the wall, directed deep inside the body. 
If the coordinate axes x, y, z are chosen so that Nx = Ny = 0, 
Nz = 1 and S x(0) ³ 0, S y(0) = 0, S z(0) ³ 0, then the components of 
the force, Pu , exerted per unit area of a body surface will be 
determined by the formulas 
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where R is the reflectance and q0 is the angle of incidence 
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We know of no studies in which a similar problem is 

solved for the case when the wave propagates in a medium 
(liquid or gas). We only mention papers [2, 3]: Veselago [2] 
considers the case of normal incidence of a wave on a per-
fectly reflective body, and in [3] he studies the case of normal 
incidence of a wave on a body, completely absorbing radia-

tion. A detailed discussion of these works will be presented 
below (in section 6). 

2. Consider a solid body fully immersed in a liquid (or 
gaseous) medium and held at rest (with the force of gravity 
taken into account) by extraneous (with respect to the liquid) 
forces (for example, using threads on which the solid body is 
suspended). We shall assume that the electromagnetic field in 
the medium can be considered quasi-monochromatic [4, §  80]: 

, , ( )expRe it t tE r E r0 w= -] ]g g ,

, , ( )expRe it t tH r H r0 w= -] ]g g ,	

(2)

where w is the field frequency; the ‘amplitudes’ of the electric 
(E0) and magnetic (H0) fields are slowly [compared to 
exp (– iwt)] varying functions of time: if t0 is the time character-
ising the rate of change in E0 and H0, the parameter 

1 1
0
%wt .	 (3)

The force P exerted per unit area of the surface of a solid 
body at rest is determined by the momentum flux or the stress 
tensor [4, §  16; 5]: 

P Ni ij js=- ,	 (4)

Hereafter the twice repeated indices  i, j, k = x, y, z imply 
summation. The expression for the stress tensor in an isotro-
pic medium with the dispersion taken into account was 
obtained by Pitaevskii [4, §  81; 6]: 
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where the angle brackets denote averaging over the field 
period; P0 is the pressure that would be in the medium in the 
absence of the field at the given values of the density r and 
temperature T; e(w) and m(w) are the dielectric permittivity 
and magnetic permeability of the medium, respectively. 

A remarkable feature of the Pitaevskii tensor (5) consists 
in the fact that, in contrast to the expression for the field 
energy [4, §  80], it [in the zero approximation in the parameter 
(3)] does not contain derivatives ¶e/¶w, ¶m/¶w and is formally 
obtained from the corresponding tensor for the statistical 
field by using the replacement
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Landau and Lifshitz [4, § 16, 35] derived the formulas for 
the total force and the total moment of the force with which a 
statistical field (with constant temperature and density) acts 
on a solid body. As a force exerted per unit area these formu-
las employ [see formula (4)] 
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We can assume (this was indicated to us by Pitaevskii) 
that in the case of a quasi-monochromatic electromagnetic 
field (2), the force Pu  is given by (7), in which it is necessary 
only to make a replacement (6). Let us show that under cer-
tain conditions, this assumption is justified. 

3. As in [4, § 16], we believe that the liquid is at rest in the 
presence of the electromagnetic field, i.e., the total force 
exerted per unit volume of a liquid is f = 0. The force f is rep-
resented as a sum [4, § 75, 81]: 

Pf g f f fH A d
0d r=- + + + + ,	 (8)

where g is the acceleration of gravity; 
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is the Helmholtz power; 
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is the Abraham force; f d is the force associated with disper-
sion, which for a non-magnetic medium (  m = 1) was investi-
gated in [4, § 81; 7 – 9]. For an arbitrary medium (where not 
only ¶e/ ¶w ¹ 0, but also ¶m/ ¶w ¹ 0) we can only assume that 
the force f d (as the Abraham force f A) is of the order of  
|E0|2/(ct0). We will restrict ourselves below to these fields (2), 
for which ct0 >> L0, where L0 is the distance characterising the 
functions |E0(r, t)| and |H0(r, t)|. For these fields the Abraham 
force f A and the force f d are negligible compared with the 
Helmholtz force f H.  

As in [4, § 16], we assume below that the liquid is homoge-
neous in composition and in thermal equilibrium (ÑT = 0). 
Therefore, 
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With (11) taken into account, expression (8) for the force is 
simplified and the equation  f = 0 is reduced to the form 
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Equation (12) is easily solved [4, § 16] if the density of the 
liquid is considered constant (Ñr = 0): 
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where

( )p pr gr0 r= + 	 (14)

is the pressure in the absence of the field and the constant p0 = 
p(0). 

Equation (12) is solved in the other extreme case – a rarefied 
gas. For this medium [4, § 15] 

( ) 1 4 ( ), ( ) 1 4 ( )n np pe w a w m w b w= + = + ,	 (15)

where n is the number of molecules per unit volume;  a(w) and 
b(w) are the electric and magnetic polarisabilities of a mole-
cule. Equation (12) with account for expressions (15) and the 
equation of state (Clapeyron equation) P0 = nT (the 
Boltzmann constant is set equal to unity) is reduced to the 
form: 

( ) ( )T n nm n E Hg
2
1 2 2d d a w b w= + +7 A,	 (16)

where m is the mass of the molecule. The density n of mole-
cules depends on the field. Within the framework of the linear 
electrodynamics (D µ E, B µ H), in (15) and, therefore, in the 
second term on the right hand side of (16) we should replace 
the density n by the density of molecules in the absence of the 
field n0(r) [4, § 15]. After that, the solution of equation (16) 
takes the form 
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For the pressure P0 = nT we obtain the same expression (13), 
but now the pressure p(r) is determined not by (14) but by the 
formula 
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Substitution of P0 (13) into (5) reduces the tensor to the 
form 
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where the tensor ijsu  is actually derived from the tensor (7) by 
using the replacement (6). The first term in the expression for  
ijs  in (20) makes [in view of (4)] the contribution p(r)N, which 
after integration over the entire surface of the solid body 
results in a force equal, as it should be, to the Archimedean 
force –Mg, where M is the mass of a liquid (gas) in the volume 
of a solid body. 
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4. Consider a quasi-monochromatic plane wave in a liquid 
at rest. We repeat the calculations, which are presented in 
[4,  § 83, 86], but without imposing, however, any restriction 
on m(w). For a quasi-monochromatic plane wave the func-
tions E0 and H0 in (2) can be written in the form [4, § 103] 

, , ( )exp it tE r E r kr0 00=] ]g g ,

, , ( )exp it tH r H r kr0 00=] ]g g ,	

(21)

where the amplitudes E00 and H00 are slowly [compared to 
exp(ikr)] varying functions of the coordinates:
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(l = 2p/k is the wavelength). Forces f  A and f  d in (8) can be 
ignored, unless the ratio of the small parameters (3) and 
(22) is
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In the zeroth approximation in the small parameters (3) 
and (22), the amplitudes E00 and H00, the frequency w and the 
wave vector k are related by [4, § 83] 
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For real e(w) and m(w) the vector k can be real [then the field  
E, H ~  exp (ikr) does not decay], only if at a given frequency 
w, we have e(w) > 0 and m(w) > 0, or e(w) < 0 and m(w) < 0  
[10,  11]. If the decay is negligible, it is convenient to introduce 
the unit vector

/ , ( ) / , ( ) ( ) ( )k k n c nl k w w w e w m w= = =

(w > 0) [4, § 83] and write (23) in the form 
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hereafter the upper (lower) sign corresponds to e(w), 
( ) 0 [ ( ), ( ) 0]> <m w e w m w . 
For the energy density we obtain the expression [4, § 83] 
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and for the vector of the energy flux density we obtain the 
expression [10, 11] 
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The expression for the group velocity is derived from (24): 
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where the phase velocity of the wave is 
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It follows from (26) – (28) that, as expected [4, § 80],

WS Vgr= .	 (30)

The tensor ijsu  in (20) for a quasi-monochromatic plane 
wave (2), (21) is reduced to the form 
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We will express the amplitude H00 in (31) through E00 accord-
ing to (25) and use the well-known formula [1, § 86], relating 
the product of two unit antisymmetric tensors of rank 3, eijk, 
with a unit symmetric tensor of rank 2, dij. After simple calcu-
lations, we obtain 

8
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In view of (27) the tensor (32) can be presented in the form: 

PR
ij ji ijs s s= =u u ,

where 

k S1PR
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is the stress tensor introduced by Polevoi and Rytov [12] (see 
also [13]). 

5. To obtain formulas similar to (1) for the case of vac-
uum, it is necessary to consider the quasi-monochromatic 
plane wave in a liquid at rest, the wave being incident on an 
immobile wall. By E and H in (20) is meant, of course, the 
total field strength in the liquid near the wall, i.e., the intensi-
ties of the incident and reflected waves. We choose the coor-
dinate axes in the same way as in [4, § 86], and in Section 1. We 
assume that the wave attenuation at the frequency w in the 1st 
medium (liquid or gas) is negligible. Then, the expressions for 
the unit vectors and l0 and l1 along the wave vector k0 and k1 
of the incident and reflected waves and for the wave vector k2 
(not necessarily real) of the refracted wave in the 2nd medium 
(solid body) will have the form:

, 0,sin cosl l lx y z0 0 0 0 0! !q q= = = ,

, 0,sin cosl l lx y z1 0 1 1 0! "q q= = = ,	 (34)

, 0,sin sink c n k k
c

nx y z2 1 0 2 2
2

2

2

2 2 1
2 2

0!
w q w e m q= = = -^ h,

where ( ) ( )n1 1 1e w m w= .



851Light pressure on a solid body immersed in a liquid medium

Consider first the case when the incident wave is polarised 
perpendicular to the plane of incidence. Then, [see (23), (25) 
and (34)]
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where k2 = ck2z/w, and Im k2 > 0, in accordance with the fact 
that the wave decays deep into the solid body [4, § 86]. The 
boundary conditions (continuity of the functions Ey and Hx 
at the liquid – solid body interface) have the form 
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These boundary conditions make it possible to find the reflec-
tivity r ==  /E ( )0E ( )
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1
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Using (27) it is easy to show that the power reflectivity has the 
form 
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Similarly, we can consider the case when the incident wave 
is polarised in the plane of incidence [4, § 86]. In this case [see 
(23), (25) and (34)] 
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The boundary conditions (continuity of the functions Hy and 
Ex) have the form 
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From them we obtain the reflectivity /Hr H||
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respect to the amplitude: 
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the power reflectivity 
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The desired force Piu  is obtained from the first formula in 
(7) for Ni = diz and formula (20):
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In view of (27), (29) and (30), expressions (44) and (45) can be 
expressed in one form for both polarisations 
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where, as usual, the upper (lower) sign corresponds to the 
case when the group velocity of the wave in a medium (liquid 
or gas) is positive, i.e., parallel to the phase velocity (negative, 
i.e., antiparallel to the phase velocity). 

Expressions (46) differ from expressions (1) for the vac-
uum only by the factor ± n1(w). Note that in the same way as 
in (1), in (46) there are no terms corresponding to the interfer-
ence of incident and reflected waves. 

If a sold body has the shape of a plate whose thickness in 
the z direction is so great that the wave refracted in it com-
pletely decays, then the total force exerted by a light pulse on 
the body is obtained by integrating the force (46) with respect 
to the face of the plate onto which the light pulse is incident. 

Note that the force (46) can be expressed through the 
stress tensor (33) related to the incident wave by the expres-
sion: 

(1 ) ( , ), (1 )P R i x y P R( ) ( )PR PR
i iz z zz

0 0s s=- - = =- +u u .	 (47)

6. In Section 1 we have already mentioned papers [2, 3], 
concerning only the force Pzu  at normal incidence (q0 = 0). 
Veselago [2] considers the wave incident normally on a per-
fectly reflective body. The author proceeds from the following 
assumptions: (i) the direction of the force with which the inci-
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dent and reflected waves act on the body is the same as the 
direction of the momentum of the incident wave, and (ii) the 
momentum (or rather the momentum density) of the wave 
coincides with the direction of the wave vector k and phase 
velocity Vph of the wave*. Therefore, when the group velocity 
in the medium is positive (k0−−á S0 ñ), ‘light pressure’ takes 
place, and when the group velocity is negative (k0−̄ á S0 ñ), 
‘light pressure’ is replaced by ‘light attraction’. The initial 
assumptions are wrong: the power is determined not by the 
momentum but by its change per unit time, or the momentum 
flux (or, by the stress tensor differing from it in the sign); the 
direction of the momentum density of the field coincides with 
that of the energy flux density (differs from á S ñ by the factor 
1/c2, see [4, § 75]). However, the sign of the force Pzu  predicted 
in [2] is correct [see (46) for q0 = 0 and R = 1]. 

Veselago [3] also considers the case of normal incidence of 
the wave on a body completely absorbing radiation. The 
author rejects both assumptions, which he used in his previ-
ous work [2]. He agrees that the force is determined not by the 
momentum but by the momentum flux. The momentum flux 
density of one (only incident) wave is written in [3] without 
any justification as the ratio of the energy flux density to the 
phase velocity of the wave. Veselago apparently does not 
notice that this ratio coincides with the component   ( )PR

zz
0s-  

of the Polevoi – Rytov tensor [see (47) at q0 = 0 and R = 0], 
which he discusses at the end of his article. 
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* Veselago [2] refers to [12]. As for papers [12, 13], we note only that 
their authors believe that in an isotropic medium the group velocity of 
the wave Vgr has always the same direction as the phase velocity Vph 
(Vgr−−Vph), referring to the first edition of book [4] and not noticing 
that the existing proving is presented from the very beginning in [4, § 84] 
for media with m = 1.


