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Abstract.  A method is proposed for simulating optical object 
images formed by oblique or grazing-incidence coherent beams. The 
theoretical approach relies on the solution of a parabolic equation, 
which generalises the Fresnel integral. Our numerical results are 
given for experimental conditions close to those realised when use is 
made of modern soft X-ray lasers. The newly developed method 
may also be employed to simulate X-ray imaging systems developed 
around synchrotron and free-electron laser beams. 

Keywords: X-ray optics, grazing incidence, imaging, parabolic 
wave equation.

1. Introduction

The development and availability of laboratory-scale as well 
as of large-scale X-ray laser facilities [1, 2] have generated 
considerable recent interest in coherent methods of obtaining 
and analysing X-ray images. Important advantages of employ-
ing coherent beams in microscopy and microanalysis are the 
possibilities to reconstruct the wave field at the object without 
the use of optics and to measure the phase of the field in the 
image plane [3, 4].

At the present time, the wavelength range best mastered 
by X-ray lasers is the 10 – 40 nm range*. All materials exhibit 
an extremely low transmittance in this spectral range, and 
layer thicknesses may not exceed tens of nanometres. As a 
consequence, primary emphasis is placed on the methods for 
studying objects in reflected beams (Fig. 1). As the wavelength 
becomes shorter, the grazing angle q must be made smaller to 
obtain a sufficiently high reflection coefficient. 

When an object is illuminated by a coherent beam, the use 
of an optical system between the object and the detector is not 
obligatory. However, the total reconstruction of the wave 
fields (including the phase) at the object (u0) and the detector 
(u) has to rely on algorithms that establish the relationship 
between u0 and u. In the illumination of the object along 
the normal to its surface (q = p/2, Fig. 1), the relationships 

required for analysing the transmitted or reflected beams are 
defined by the Fresnel integral. In the case of oblique radia-
tion incidence on a specimen, especially for small angles q, 
which are of interest for investigations in the X-ray domain, 
the applicability of the Fresnel integral is not substantiated. 

In the present work we consider several properties of the 
coherent beam propagating on oblique reflection from an 
object that are required for determining the fields at the detec-
tor and for solving problems involving the field phase recon-
struction in the image plane. 

2. Source function for normal and oblique 
radiation incidence on an object

The principal instrument of simulations in incoherent optics 
is the Fresnel integral. It defines the wave field u(x, z) by its 
value u0(s) in plane S (Fig. 1): 

3

( , ) ( )
( )

exp
i

d iu x z
z
k u s s

z
k x s

2 20

2

p=
-

3-

; Ey

	
3

( , , ) ( ) ,dK x z s u s s0 0=
3-
y 	 (1) 

( , , )
( )

,exp
i

iK x z s
z
k

z
k x s

2 20

2

p=
-; E

where K0(x, z, s) is the source function, which is the field 
induced by the distribution u0(s, s’ ) = d (s – s’ ). For brevity of 
notation, we restricted ourselves to the two-dimensional case. 
The applicability condition for expression (1) is the perpen-
dicularity of object plane S, in which the field u0(s) is defined, 
to the direction of beam propagation, which we assume to be 
horizontal. When this is not the case, i.e. the plane S makes an 
angle q ¹ p/2 with the z axis, as shown in [8], instead of 
K0(x, z, s), in expression (1) one must use the source function 
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* Operating in the l ~ 1 Å wavelength region is the Linac Coherent 
Light Source (LCLS) [5]. Several other facilities intended for operation 
in this or softer spectral regions are under construction or design [6, 7]. u(x,z) = ?

z

x

s
q

S

Figure 1.  General schematic of image formation with an obliquely inci-
dent beam. 
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where z' = z + s cos q; s' = s sin q. 
Expressions (1) and (2) are the solutions of the parabolic 

wave equation 
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which describe the fields propagating from the plane object 
illuminated by a coherent beam at an angle q £ p/2. Therefore, 
for arbitrary q the analogue of integral (1) is of the form 
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	 x > –z tan q.

It will be assumed that the object is bounded, its right edge is 
located at s = 0, and that optical elements are accommodated in 
the domain z > 0, where the field according to expression (4) 
is defined by the following integral:
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x > – z tan q,  z > 0,	 (5)

u0(s) = 0 при s < 0.	 (6)

Formulas (5) and (6) may be employed to simulate the forma-
tion of the images of inclined objects of finite size. However, 
they possess an obvious disadvantage. The field (5) is defined 
only within some angle, this field being equal to zero on the 
angle side x = – z tan q (i.e. in the object plane) for s < 0. In 
reality the field is determined by diffraction, which accompanies 
the beam propagation from the object into the domain z > 0. 

The following approach seems to be more natural and 
physically justified. The exact solution (4) is used to determine 
the field in the vertical plane z = 0, which passes through the 
right edge of the object. This causes no difficulties in the domain 
x > 0. At the same time, according to expression (4) the field 
is undefined for x < 0. In the absence of any additional indi-
cations related to experimental condition, we put it equal to 
zero. Therefore, for z = 0 we have 
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 u(x, z = 0) = 0,  x < 0. 

Next, to calculate the field in the right half-space z > 0, we 
take advantage of the Fresnel integral (1) with the initial dis-
tribution defined by expression (7). We perform the integration 
(see, for instance, Ref. [9]) to obtain 

( , )
/( )

cos

exp i
u x z

z

kx z1 22

q
=
2p

6 @
 

	 ´
3 ( )

( ),exp
cos
sind

i
s A
u s s

k s F
2/3 2

0

0

2
2

q
q z z+c my 	 (8)

 ,
2

, ,
cos

tan
i

A
s

B
A
k B z

x1 1
q

z q= + = = +
z

	 ( ) ( ) ( ) ,expF 12 pz z z zF= - + +6 @

	 ( ) ( ) .exp dt t2 2

0p
zF = -

zy 	 (9)

Therefore, there are two approaches to the calculation of 
fields about objects illuminated by obliquely incident beams. 
They are represented by formulas (5), (6) and (8), (9), respec-
tively. The former defines the field only within the angle (5), 
while the latter enables determining the wave field in the half-
space z > 0. In essence, the employment of formulas (8), (9) in 
lieu of formulas (5), (6) signifies a more exact inclusion of dif-
fraction at the edge of the object. 

It is easily verified that formulas (5), (6) and (8), (9) result 
in different field distributions not only in the near-field region, 
but also in the far-field region. In the former case, in particular, 
for the source function in the far-field region we have [10] 
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For q = p/2 this expression transforms naturally into the source 
function corresponding to the Fraunhofer limit of the Fresnel 
integral (1). 

As discussed in the foregoing, the inclusion of the finite-
ness of the object calls for a more exact treatment of diffrac-
tion beyond its edge (in the domain z > 0). This signifies that 
use should be made of expressions (8), (9) instead of expres-
sions (5), (6). We put x, z >> s to obtain 
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One can see that expression (11) transforms into expres-
sion (10) when z >> 1. However, for z << 1, i.e. in the case of 
illumination at a small angle, low apertures, and objects of small 
size, the difference between formulas (11) and (10) may be 
significant and the effects associated with the finiteness of the 
object should be taken into account for oblique illumination. 
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So, we have considered two approaches to the simulation 
of the coherent images of inclined objects of finite size. They 
are represented by formulas (5), (6) and (8), (9). The former 
approach is computationally simpler; however, it is less exact 
in the treatment of diffraction at the edge of the object. 

3. Simulation results

The approach described by formulas (8), (9) was implemented 
in the form of programmes simulating the formation of coherent 
images of obliquely illuminated objects by optical systems. 
We outline the results in the case when the optical system is 
an  ideal lens with a finite numerical aperture NA = sin j 
(Fig. 2). In the field equations, the lens is described by a thin 
phase screen 
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of diameter 2 f tan j, where f is the focal distance. The coherent 
monochromatic radiation is obliquely incident on the object 

of size l, which is located in plane S at a distance a = 2f on the 
left of the lens. The image is constructed in the conjugate 
plane S', which intersects the optical axis at a distance a' = 2f 
from the lens. 

At the first stage, proceeding from the initial field u0(s), 
we calculated the wave field in the plane z = 0. In accordance 
with the approach outlined in Section 2, for x > 0 there applies 
formula (7), and for x < 0 we put u(x) = 0. The subsequent 
calculations of the field at the lens and in the image plane 
were carried out by Fresnel formula (1). The wavelength and 
other parameters were selected in such a way as to correspond 
to the experimental conditions involving laboratory X-ray 
lasers [1]: l = 10 nm, l = 40 mm, q = 90° and 1°, NA = 0.2 and 
0.06. The simulation results given in Fig. 3 suggest that the 
similarity between the object and the image is retained down 
to very small grazing angles (q = 1°) and begins to break down 
when the numerical aperture is decreased from 0.2 to 0.06. 
Qualitatively, this is consistent with the diffraction-limited 
estimate d » l/(NA sin q). 

4. Conclusions

Therefore, we have developed and tested a method for the 
simulation of optical systems which image objects illuminated by 
coherent grazing-incidence beams. The corresponding experi-
ments hold interest for X-ray lasers. When normal incidence 
of the laser beam onto a detector is required, the experimental 
setup may be supplemented with a diffraction grating or an 
asymmetric crystal placed after the optical system. 
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Figure 2.  Imaging with an ideal thin lens. The object is located in plane 
S and the image in plane S'.
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Figure 3.  Spatial field amplitude distributions: at the initial object (a), 
in the intermediate plane (b), at the lens (c), the final image (d). The 
scales on axes are in micrometres.


