
Quantum Electronics  42 (2)  111 – 116  (2012)	 © 2012  Kvantovaya Elektronika and Turpion Ltd

Abstract.  A saturated nonresonant two-photon absorption (TPA) 
theory of quasi-monochromatic radiation by an atom is developed 
in a model of a three-level cascade quantum system. It is shown that 
doubled-frequency radiation, arising from a multipole interaction 
of radiation with the dipole-forbidden transition, experiences spa-
tial oscillations at arbitrary intensities of the pump. The influence 
of the total phase of the waves with the initial and doubled frequen-
cies on TPA is considered under conditions of ring frequency mix-
ing in a medium.

Keywords: two-photon absorption, saturation, frequency doubling, 
nonlinear dispersion.

1. Introduction 

One of the fundamental effects of nonlinear optics – two-pho-
ton absorption (TPA) – is used for excitation of highly excited 
states of atoms having the same parity as the ground state. 
Two-photon absorption provides the basis for the develop-
ment of various methods of nonlinear laser spectroscopy 
[1, 2]. For these and other TPA applications, optimal are the 
intensities at which absorption becomes saturated. In atomic 
gases and metal vapours saturation is reached at moderate 
intensities: from tens of kW cm–2 in the case of rarefield gases 
to tens of MW cm–2 in the case of homogeneous line broaden-
ing [3 – 5]. However, the TPA theory, with the exception of the 
last cited work, is based on allowance for the first nonlinear 
terms in the series expansion of medium polarisation in pow-
ers of the field amplitudes and does not describe saturation 
[6 – 8]. 

A three-level model of a medium makes it possible to cal-
culate the polarisation without its series expansion, and thus 
to take into account the TPA saturation. The TPA saturation 
is considered in [3] as applied to a quantum L-system for the 
case of exact resonance of monochromatic radiation to the 
forbidden transition. For many atoms, particularly alkali and 
alkaline earth metals, the TPA is carried out in the X-system 
(cascade or ladder) with the ground (s) and intermediate (p) 
states. This variant of saturated single-frequency TPA is con-
sidered in [5, 9], where we have shown theoretically that in an 

optically dense gaseous media optical rectification appears 
and the second harmonic is effectively generated. Frequency 
doubling is due to the multipole (electric quadrupole and 
magnetic dipole) interaction of radiation with the dipole-for-
bidden transition. However, in [5, 9] we focused our attention 
on the mechanisms of these effects and their applications, 
whereas the saturated TPA properties were not discussed in 
detail. 

These properties, in particular, include nonlinear disper-
sion of a medium, which plays an important role under condi-
tions of saturation of absorption and ring frequency mixing 
of absorbed radiation and second harmonic [10,  11]. Non
linear dispersion determines the phase mismatch of waves in a 
medium (wave asynchronism), which, in the case of the coher-
ent wave mixing, affects the TPA development in space and 
frequency doubling. This physical mechanism leads to a qual-
itative change in the generation of doubled-frequency radia-
tion, namely, to spatial oscillations of its intensity (see 
Section  4). Frequency doubling is considered in [5] under 
optimal conditions of complete wave matching; therefore, the 
evaluation of the efficiency of frequency doubling in a more 
general case of arbitrary asynchronism requires more precise 
definitions. 

In addition, because of the pump depletion due to the sec-
ond harmonic generation radiation emitted in the medium 
will be additionally attenuated, depending on the frequency 
detuning. This can change the profile of the TPA lines as com-
pared with the case when the multipole interaction is weak 
and frequency doubling is absent. This aspect of the TPA has 
not been previously discussed elsewhere. 

The aim of this paper is to construct the TPA theory 
taking into account the above-mentioned physical factors 
and to analyse the effects of absorption saturation, phase 
relations and second-harmonic generation, as applied to 
the profiles of the lines and the effective TPA length. 
However, we will restrict our consideration to the case of 
nonresonant TPA and will take a closer look at it in the 
case of homogeneous line broadening. We will consider 
second-harmonic generation only in the direction of 
absorbed radiation, because the account for the backward 
wave does not introduce any qualitatively new aspects 
related to the mechanisms discussed [12]. 

2. Medium polarisation 

We denote the ground, intermediate and upper states of the 
X-system under consideration as 0, 1 and 2, respectively. The 
equations for the density matrix of the medium in the model 
of relaxation constants are given by [5] 
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Here, rj is the level populations; rjl are the off-diagonal ele-
ments of the density matrix, or up to a factor, the polarisa-
tions of the transitions j ↔ l; ,

( )
0 2
0r  are the equilibrium popula-

tions of the levels; A1 and A2 are the first Einstein coefficients 
for the dipole-allowed transitions 0 ↔ 1 and 1 ↔ 2, respec-
tively; Gc is the constant of the collision broadening of the 
dipole-forbidden transition 0 ↔ 2; g is the rate of decay of the 
excited levels; wjl are the transition frequencies; d1 and d2 are 
the matrix elements of the dipole moment for dipole-allowed 
transitions; E  is the electric field amplitude of light in the 
medium; W is the energy of interaction of the field with a 
dipole-forbidden transition; ћ is Planck’s constant. 

The field in the medium E  and the energy W of its interac-
tion with the 0 ↔ 2 transition is expressed in the form [4, 5, 9] 
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where E1, w, k1 and j1 are respectively the electric field ampli-
tude, frequency, wave number and phase of the radiation, 
experiencing the TPA; E2, k2 and j2 are the electric field 
amplitude, wave number and phase of the second harmonic 
generated in the medium; m and Q are the matrix elements of 
the operators of the magnetic dipole and electric quadrupole 
moments for the dipole-forbidden transition; z is the longitu-
dinal coordinate. 

The solution to equations (1) is expressed as 
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Restricting the summation in (3) by |n| £ 2 allows one to take 
into account the fundamental and doubled frequencies. This 
approximation is quite sufficient, because the intensities of 
the third and fourth harmonics are two orders of magnitude 
smaller than the intensities of the first and second harmonics [5]. 

Substitution of expressions (2), (3) into equations (1) and 
use of the rotating-wave approximation [13] lead to steady-
state equations whose solution is 
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Polarisation of the medium taking into account the inter-
action of the field with a dipole-forbidden transition is defined 
as [4, 5] 

2 [ ( ) ]Re exp iP N d d1 10 2 21 20r r m c r= + +  

º sin cos sin cosP P P P P1 1 2 2s c s c0 1 1 2 2Y Y Y Y+ + + + ,	 (5) 

where N is the concentration of active atoms. Substituting 
expressions (3) and (4) into (5) gives 
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The constant of the medium polarisation, P0, produces opti-
cal rectification of radiation considered in detail in [5]. 

3. Wave equations for the fields 
and the total phase 

From equations (7), given in [11], and formulae (6) we obtain 
a system of coupled equations for the dimensionless intensity 
of absorbed radiation V1, the dimensionless field amplitude 
with a doubled frequency V2 and a total phase of the waves Q 
(4): 
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where c is the speed of light. 
It follows from the third equation in (7) that the rate of 

change of phase in a medium is determined by the popula-

tions of the levels (the first term in the right-hand side) and 
the total (interference) interaction of radiation with frequen-
cies  w and 2w with an atom (the second and third terms, 
respectively). At low and high radiation intensities the level 
populations are constant, and the first term is a constant 
dimensionless wave detuning giving a linear variation of the 
phase along the length. The second and third terms contain 
the phase and determine its complex behaviour when radia-
tion propagates in the medium. The presence of µV 2

–1 in the 
third term determines the phase jumps and positive values of 
the field amplitude with the doubled frequency [11]. 

Equations (7) can be generalised to the case of inhomoge-
neous broadening by making the replacement d ® d – k2v/G (v 
is the absorbing molecule velocity projection onto the z axis) 
and by averaging the right-hand sides of equations (7) over 
the Maxwell velocity distribution. As a result, we obtain 
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where kB is the Boltzmann constant; T is the temperature; ma 
is the mass of the absorbing atoms. The expressions for the 
complex coefficients an and bn in the approximate representa-
tion of the probability integral of the complex argument [14] 
are given in [15, 16]. 

Equations (7) and (8) are a generalisation of equations 
(25) and (26) from [5] to the case when the total phase Q 
changes in the process of wave propagation in the medium. 
To assess the impact of the variable phase on the TPA, we will 
write equation (7) for the case of the constant phase Q = 2j1 
- j2 º F + c (i.e., complete wave matching): 
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A further simplification of the situation is the case when 
the multipole interaction of radiation with the dipole-forbid-
den transition is absent (m, h = 0)  and second harmonic is not 
generated (V2 = 0). Then, we obtain from equations (9) and 
formulae (4) 
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The transcendental solution to equation (10) is 

(1 )
( )

[ (0) ]
(0)

lnV V
V V V

V1
0
1 22

1 1
1 1 1

1

1z d J b= + - + - -; E .	(11) 

At exact resonance (d = 0), formula (11) reduces to an explicit 
expression for the coordinate dependence of the absorbed 
radiation intensity: 
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Equation (12) up to notation coincides with expression (45) 
from paper [3], obtained for TPA in the quantum L-system. 

For small and large radiation intensities at the entrance to 
the medium equation (12) simplifies to: 
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It follows from expression (13) that in the case of single-
frequency TPA slow hyperbolic attenuation of radiation 
takes place. In the case of TPA of two waves with different 
frequencies, attenuation is exponential. This difference was 
noted previously for unsaturated TPA [7]. The fact that when 
passing from small to large intensities the behaviour of the 
absorption does not change is caused by an increase in the 
absolute values of the effective frequency detuning d1 (4) due 
to the dynamic Stark effect and the escape of radiation from 
resonance. 

Dimensionless length (optical thickness) z1/2, at which the 
radiation intensity decreases by half compared with the inten-
sity at the entrance to the medium, is determined from the 
expression (12): 
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The minimum length z1/2 is reached at a saturation parameter  
/V 2opt J= , and for V1(0) = Vopt  have .2/1 2z J=  

4. Numerical experiment 

Numerical calculations are performed for sodium vapours in 
a buffer gas. As the states 0, 1 and 2, we take respectively the 
states 3s, 3p and 3d. The wavelengths of the transitions 0 ↔ 1, 
1 ↔ 2 and 0 ↔ 2 are, respectively, equal to 5889.9, 8194.8 and 
3426.88 Å [17]. Assume N = 5 ́  1014 cm3, d1 = 9.1 ́  10–18, d2 = 
1.16 ́  10–17 [18], m = 2.8 ́  10–20 esu, G = 5.65 ́  109 s–1 (the buf-
fer gas pressure is ~30 Torr), g = G/3, A1 = 5.9 ́  107, A2 = 
4.8 ́  107 s–1 [18],  c = p/4, 1, .0( ) ( ) ( )

0
0

1
0

2
0r r r= = =  In this case 

s = 1, x1 = 11.85, x2 = 0.494, b1 = – 0.490, b2 = 0.563, h = 
0.591, G = 0.256 cm–1,  f1 = 0.478, f2 = 0.528, Vopt = 0.407, z1/2 
= 4.92, z1/2 = 19.2 cm. The saturation intensities Is1 and Is2 for 
the absorbed wave and waves with the doubled frequency, 
determined from the equality V1, 2 = 1, are equal to 12.8 and 
21.6 MW cm–2, respectively, under these conditions. 

The coefficient G (7) is directly proportional to the con-
centration N of absorbing atoms, and other parameters 
depend on N only through the additive components of the 
relaxation constants G and g. In the presence of a buffer gas 
with a sufficiently high pressure, these additives are relatively 
small, and therefore the transition to other concentrations 
does not require recalculation of the dependences V1, 2(z) – it 
requires only an appropriate renormalisation of the optical 
thickness z, which does not affect the form of equations (7). 

The dependences V1, 2(z) and Q(z), obtained by solving 
equations (7) numerically at small and large saturation 
parameters V1(0), are shown in Fig. 1. One can see from 
Figs  1b and f that the frequency-doubled radiation experi-
ences spatial oscillations whose period varies only slightly 
with increasing intensity of the absorbed radiation: for  V1(0) 
= 0.001 the period is 13.3, whereas forV1(0) = 5, it is some-
what smaller and is equal to 10.3. Note that in the case of 
three-wave stimulated Raman scattering (SRS), spatial oscil-
lations of the wave amplitudes (mainly anti-Stokes waves) 
also take place at certain values of the wave mismatch [11]. 
Oscillations in a low-intensity field are observed at the wings 
of the gain line of the doubled-frequency field, and its genera-
tion is maximal at zero frequency detuning d. As the intensity 
increases, the generation maximum V2(z) is displaced from 
the line centre to the wings (Fig. 1e) and is asymmetric for 
positive and negative frequency detunings. This asymmetry is 
due to the fact that because of the phase relations the profiles 
of the absorption and gain lines [right-hand sides of the first 
two equations (7)] are the sum of the Lorentzian and disper-
sion profiles, and the effective detuning d1 (4) depends on the 
intensities of the fields. 

It follows from equations (7) and (9) that at V1 >>V2 the 
TPA coefficient is proportional to 2

1V . Therefore, weak-field 
absorption (Fig. 1a) varies considerably slower than that of 
saturated TPA (Fig. 1d). However, the ratio V2 /V1 is higher 
for the weak field. Upon saturation the intensity V1 experi-
ences weakly pronounced spatial oscillations in the line wings 
(Fig. 1d). 

At  V1(0) << 1 the phase Q in the medium changes abruptly, 
starting from small values of z, and then its behaviour estab-
lishes: a jump as the sign of the frequency detuning changes 
and spatial oscillations with a relatively small amplitude 
(Fig. 1c). For positive detunings (d > 0), the phase is negative, 
while for d < 0 it is positive. Increasing the intensity of radia-
tion absorbed qualitatively changes the behaviour of the 
phase (Fig. 1f). At small z, the phase retains its original value; 
then, starting from certain (decreasing in the absolute value) 
optical thicknesses, the phase decreases linearly with distance, 
remaining always negative, and experiences jumps. Spatial 
oscillations of the phase in this case are absent. 

Calculations show that variation of the initial total phase 
of the waves at the entrance to the medium F does not affect 
V1 and V2. Dependences Q(F) for different V1(0) are similar 
in form to those shown in Fig. 2c in work [11]. The main fea-
ture of the behaviour of the phase Q lies in the fact that it 
undergoes jumps at  z = 0 and when F changes in a region of 
some F0, F0 being shifted in a positive direction with increas-
ing initial intensity V1(0). A qualitative explanation of the 
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phase jumps is the same as in the case of three-wave SRS [11]. 
At high intensities there are weakly pronounced spatial oscil-
lations of the phase Q(z). 

Comparison of numerical solutions of approximate equa-
tions (9) and (10) with the solution of equations (7), taking 
into account the phase change in the medium, is shown in 
Fig.  2. It follows from Figs 2a and c that the analytic solution 
to (11) for the extremely simplified equation (10) to within a 

few percent coincides with the solution obtained with the help 
of the exact equations (7). This is explained by relatively small 
amplitude of the generated field V2 with the doubled fre-
quency (Fig. 2d) and by small attenuation of the pump due to 
this generation. In particular, at z = 60 and d = 10 the ratio of 
the wave intensities is I2/I1 = V2

2 /(2hV1) ≈ 0.01. In the case of 
fixed phase Q, solutions to equations (9) for V1 and V2 are 
significantly different from the corresponding solutions to 
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Figure 1.  Behaviour of the dimensionless intensity of absorbed radiation V1 (a, d), the dimensionless field amplitude V2 with the doubled frequency 
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equations (7), i.e., the profile of the TPA lines in Fig. 2b is 
much wider and has a singularity near d = 0. Field generation 
with the doubled frequency (Fig. 2e) is qualitatively different 
from generation in the case of variable phase. The difference 
is that the amplitude of V2 changes the sign (explanation of 
this fact is given in [11]), does not undergo spatial oscillations 
and is several times more at the line wings compared to the 
amplitude shown in Fig. 2d. The intensity ratio I2/I1 in this 
case is 0.25. Thus, neglecting the mutual phase adjustment of 
the waves in a medium leads to an overestimation of the cal-
culated doubled-frequency radiation intensity by more than 
an order of magnitude. 

5. Conclusions 

Thus, this paper develops the most complete theory of non-
resonant TPA of quasi-monochromatic radiation with allow-
ance for saturation of absorption, for generation of doubled-
frequency radiation due to the electric quadrupole and mag-
netic dipole interactions of radiation with the dipole-forbidden 
atomic transition and for a change in the total phase of the 
waves during their propagation caused by nonlinear disper-
sion of a gaseous medium. 

Using numerical calculations we have shown that signifi-
cant TPA occurs when the optical thicknesses of the medium 
exceed z > 20, generation of fields with the doubled frequency 
arises at z > 5, and its amplitude undergoes spatial oscilla-
tions both at small and at high intensities of the absorbed 
radiation. Its effectiveness in the metal vapours is relatively 
small, and the ratio of the intensities of the waves with dou-
bled and initial frequencies do not exceed a few percent. This 
fact (which is not obvious in advance) (‘negative’ result) 
allows one to use a simple analytical expression (11) for the 
quantitative description of saturated TPA applied to the radi-
ation medium. 

In the case when of interest is the second-harmonic gen-
eration, the calculations must take into account the change in 
the total phase during the wave propagation in the medium, 
i.e., use equations (7) or (8). Neglecting this factor in equa-
tions (9) leads to significant qualitative and quantitative dif-
ferences in the behaviour of the waves in comparison with 
their behaviour, reproducible by using a complete TPA 
description. 

It is shown that in contrast to the three-wave SRS [11], the 
intensities of the waves involved in the TPA do not depend on 
the initial phase F. Such a dependence manifests itself only in 
the complex behaviour of the total phase in the medium Q, 
dependent to a large extent on the radiation intensity. 
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