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Abstract.  Optical fields are studied in a planar channel inside a 
metal layer taking into account a complex dielectric function of the 
metal. An influence of an exit aperture on the incident field propa-
gating along the channel is considered; a mathematical approach is 
developed for analysing the effect. Attention is paid to the fact that 
the incident field should not be assumed a priori known if the wave 
transformation at the exit is neglected. For a chosen dimension of 
the channel and parameters of a metal, the coefficients for the low-
est mode transformation into higher modes are found. The spatial 
field structure at the exit aperture and on the exit surface of a metal 
is studied. Existence of domains possessing an anomalously high 
intensity is revealed.

Keywords: nanoscale slit in a metal, planar waveguide modes, wave 
reflection on an aperture, surface plasmon, singularities of a spatial 
field structure.

1. Introduction

Properties of surface plasmons have been widely discussed 
for last decades. A classical theoretical description of sur-
face plasmons [1] deals with an infinite plane metal – dielec-
tric interface and infinitely wide electromagnetic waves. As 
opposed to the classical scheme, in real conditions there 
always exists an initial light beam originated from an exter-
nal source. In the cases where a wide (as compared to the 
radiation wavelength) light beam is used for exciting [2, 3], 
there is a correspondence between plasmon characteristics 
of real and idealised schemes.

The situation is quite different if the exciting beam cross 
section is comparable to the radiation wavelength. In a 
series of recent investigations, the initiating field was pro-
duced by means of a narrow channel in a metal plate. In [4], 
the cylindrical channel was considered; in [5, 6] the channel 
was planar. We will not discuss a wide range of works orig-
inated from [7], which consider periodical systems of chan-
nels or holes in metal films. The ideas initiated by those 
works influenced numerous studies in nanostructure optics. 
However, our work is not directly connected with periodi-

cal systems, and we will only discuss the cases of single 
channels.

Characteristics of surface plasmons excited by the fields 
formed in channels were theoretically discussed in [8, 9, 
10]. Attention was paid to certain features of plasmon 
behaviour under localised excitation; in particular, the 
character of plasmon attenuation was investigated at large 
distances from the excitation point [9]. It is substantial that 
in most of the works it is assumed that employment of the 
Green tensor (Green function) guarantees obtaining a rig-
orous solution. However, the Green function employed in 
those works does not match field boundary conditions on 
the walls. Thus, the solution is a fortiori approximate and 
completeness of the physical picture resulting from the 
solution is not obvious.

Here we will pay attention to specific features of eigen-
waves for the channel and consider transformation of the 
eigenwaves as they exit from the channel to a free space. 
We will not consider transformation of the initial field on 
an input plane. We assume that a single wave with a lowest 
attenuation survives in the channel, which corresponds to 
the case where the metal plate thickness is not too small. 
The wave at the exit plane transforms into various reflected 
waves that are channel eigenwaves.

Note that formation of the exciting light beam and ori-
gin of surface waves on the output plane are closely inter-
related and should be considered jointly. Such approach 
provides obtaining a detailed picture of the exit field both 
far from the excitation localisation region and at short dis-
tances from the channel, including the output hole itself.

2. Eigenwaves for a channel in the medium 
possessing dielectric characteristics 
of a real metal

Characteristics of eigenwaves in a plane uniform layer are cal-
culated by well-known methods. In particular, such methods 
employed for calculating optical fields in planar waveguides 
are presented in monograph [11]. Below we will briefly discuss 
a method in the form convenient for further employment. 
Consider a uniform layer (air for simplicity) inside a metal. 
The layer thickness is 2a. We assume the dielectric function e 
of the metal constant with a negative real part and positive 
imaginary part. We will consider TM-modes only. In this 
case, there are three field components, namely, H̃y, Ẽx, Ẽz. 
The components Ẽx and Ẽz  can be expressed in terms of the 
component H̃y as follows
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The time dependence is assumed harmonic with the light 
field frequency w, c is the speed of light, and the coordinate 
axes are shown in Fig. 1. We will only consider even modes 
and take the expression for the magnetic field in the form

( )expconst i iH t kzy w= - +u

	 ´  ( ),cos qx
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| |
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x a
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= G.	 (3)

Here the wave vectors and frequency are related by the obvi-
ous relationship
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The magnetic permeability is taken equal to unity for the 
whole system; therefore, the magnetic field component is con-
tinuous on all interface surfaces. The continuity of the field H̃ 
at the channel boundaries is guaranteed by above given 
expression (3). The dependence of the magnetic field on the 
coordinate x (3) may be expressed in terms of the function j 
determined as follows

( ),cos qx
( )

( ) [ (| | )],
| |
| |cos exp

x
qa p x a

x a
x a2
G

j =
- -

= G.	 (5)

We may also introduce the function y for the component Ẽx
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e
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These notations result in the following expressions for the 
field components

( ) ( )expconst i iH x t kzy j w= - +u ,	 (7)

( ) ( )expconst i iE ck x t kzx w y w= - +u ,	 (8)

( ) ( )expconst i i iE c
x

x t kzz 2
2

w y w= - +u .	 (9)

The choice of the functions j and y provides that (1) holds 
and guarantees continuity of the magnetic field and the nor-
mal component of electric induction at the channel boundary. 
Expression (9) should provide continuity of the component Ẽz 
at the channel – metal interface, which imposes a constraint 
on the value of the transversal component of the wave vector 
q, namely, the value of q should satisfy the equation

( ) | ( ) [ (| | )] |sin cos expq qx p qa p x ax a x ae = - -= = .	 (10)

By combining (10) and (4), we obtain the equation for finding 
the parameters q and p. In what follows, we will consider the 
dimensionless parameters

, , ( / ) ,Q qa P pa W c a K ka W Q2 2w= = = = = - .	(11)

In these notations we find from (10) and (4)

tanQ Q Pe = ,	 (12)

( )P W Q12 2 2e= - - 	 (13)

or, combining (12) and (13) we finally obtain

(1 )tanQ Q W Q2 2e e= - - .	 (14)

By solving (14), we obtain the values of the dimensionless 
wave vector in the channel and the exponential power (6) in a 
metal (Q and P). This calculation scheme coincides with the 
traditional scheme known from literature. Differences are 
connected with the dielectric characteristics of the medium 
that will be employed in solving (14) and with the fact that we 
will consider not only real but also complex wave vectors. 
Recall that in the case of an ideal metal (|e|→ ∞), the eigenval-
ues for the wave vectors are real equidistant numbers Qn = np, 
n = 0, 1, 2, . . . . In the case of a real negative dielectric func-
tion, only several first eigenvalues are real numbers and the 
rest are complex values. If we pass to a dissipative metal  
(Re(e) < 0, Im(e) > 0) then all eigenvalues become complex. In 
this case, if Q is an eigensolution, then – Q is eigensolution as 
well. If the imaginary part of the dielectric function equals 
zero, then for every solution Q¢ there exist, in addition to the 
solution –Q¢ , solutions ±(Q¢)*.

However, if the imaginary part of the dielectric function 
e is distinct from zero, then the complex conjugated values 
will no longer be solutions. Here, we consider the solutions 
with a positive real part of Q as main solutions. In the case 
of a real dielectric function e, for the main solution we take 
the solution with Re(Q)Im(Q) < 0. In this case, the wave 
damps with a distance from the channel axis [the inequality 
Re(P)Im(P) > 0) holds]. In addition, in this case the waves 
propagating along the channel damp in the propagation 
direction [Re(K )Im(K ) > 0].

In the case of a complex dielectric function, the situation 
is more complicated. The waves corresponding to eigenvalues 
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Figure 1.  Scheme of a channel in a bulk metal used for calculating 
fields.
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with large numbers (in our example with n > 2) increase in the 
direction of the wave vector. The intensity of the light flux 
calculated in the channel increases in the direction of the 
energy flux along the channel axes. For example, first five 
eigenvalues are presented in Fig. 2 for the case of the complex 
dielectric function e = –10.0 + 0.1i. In what follows, only such 
‘inconvenient’ waves will be considered.

There is a remark concerning properties of solutions in the 
case of a complex dielectric function. One may show that Eqn 
(14) has an infinite number of solutions. Indeed, consider a 
case of large values of Q. Let

| | | ( ) |Q W12 2& e- .	 (15)

If (15) holds, then (14) reduces to the following:

( )tan iQ Q Qe =- .	 (16)

This entails
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and we may find the explicit solution

, lniQ n b b
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e

e
= + =
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In the case of e = –10.0 + 0.1i (see Fig.2), we obtain from (18)  
Qn = np – 0.001010 + 0.100325i. Note that the asymptotic is 

only valid at sufficiently large numbers (n ≈ 40). The number 
n in (18) can be infinitely increased: n = nmin + 1, nmin + 2, nmin 
+ 3, . . . We only have to take large numbers (n > nmin = 40) in 
order to satisfy condition (15), which was used in reducing 
Eqn (14) to the form (16). Hence, we obtain an infinite set of 
values Qn that are solutions to the initial equation (14). Each 
root Qn corresponds to the wavenumber Pn in a metal deter-
mined by formula (13) and to the value Kn determined by for-
mulae (4) and (11). Also, to each root Qn we will put in cor-
respondence the function j of type (5) responsible for the 
magnetic field and the function y of type (6) referring to the 
field component Ex. Earlier, by using formulae (11) we passed 
to dimensionless wavenumbers. It will be also convenient to 
introduce the dimensionless coordinates

X = x/a,    Z = z/a.	 (19)

In these coordinates the functions j and y take the form
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Consideration of waves for an infinite planar waveguide is 
only an auxiliary task. Our aim is to study a semi-infinite pla-
nar waveguide having an interface with free space.

3. Waveguide field transformation at an exit 
from a planar waveguide to free space

Let us consider transformation of the wave propagating along 
the channel as it reflects from a metal – free space interface. In 
describing such transformation, we should satisfy boundary 
conditions for the field in the plane Z = 0 (see Fig. 1). For this, 
we need to include into the consideration all waves that may 
propagate across the infinite waveguide. We may present a 
total field in the channel as a linear combination of various 
eigenwaves. For shortness, we drop the time factor exp(–iwt) 
and transfer to the new notations for the field components  
Hy, Ex, Ez related with the previous components H̃y, Ẽx, Ẽz by 
the relationships

H̃y = Hy exp(–iwt), 	

Ẽx = Ex exp(–iwt),	 (22)

Ẽz = Ez exp(–iwt).

We may write the field component Hy in the form

( , ) [ ( )exp iH X Z K Zincy n n
n

0
0

d a=
3

=

/

	 ( )] ( ),exp i K Z X Z 0<n n n na h j+ - .	 (23)

Here 2K W Qn n
2

= - ; dn0 is the Kronecker symbol. This 
means that a wave with the structure of the zero mode and 
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Figure 2.  First five roots of Eqn (14) for the case e = –10 + 0.1i.
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with the amplitude ainc passes to the system from negative 
values of z. Amplitudes of all other waves are unknown and 
should be found. The sign of the product Re(Q)Im(Q) deter-
mines the factor hn. We assume

hn = 1,     Re(Qn)Im(Qn) < 0,

hn = –1,     Re(Qn)Im(Qn) > 0.	

(24)

The choice of the sign is related to the fact that for the 
reflected waves we take the waves that damp with a distance 
from the metal – free space interface. In Section 1, we have 
mentioned that only for a few first modes the wave propaga-
tion direction along the channel axis coincides with the direc-
tion of the wave amplitude damping. Condition (24) means 
that among reflected waves we prefer the direction of damp-
ing rather than the direction of the wave front motion. This 
preference determines the appearance of the reflected waves 
that we have chosen in writing (23). The expressions for the 
field components Ex and Ez are as follows

( , ) [ ( )exp iE X Z W
K K Zincx
n

n n
n

0
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3

=

/

	 ( )] ( ), 0exp i K Z X Zn n n n n Gh a h y- - ,	 (25)
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2 Ga h y+ - -8 B .	 (26)

Now we may write expressions for the field components in 
a free space outside a metal Z > 0. The fields ,E Hout out

x y  should 
be continuations of the fields  Ex and Hy determined by (25) 
and (26).

We may introduce the Fourier transforms of functions  jn 
and yn:

3
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3
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3
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n n

0p yY Z Z= y ;	
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note that j(X ) and y(X ) are even functions. The component  
E outx  in a free space is written in the form:

3
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At the boundary Z = 0 the fields Ex(X ) and )(XE outx coincide; 
the field E outx  comprises only outgoing or damping waves as 
Z → ∞. Using the expression for Ex

out(X, Z ), in accordance 
with the Maxwell equations, we may derive the expression for 
the field Hy

out(X, Z ):

3
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Now we may write the equality condition for the fields  Hy
out 

and Hy at Z = 0:

( ,0) ( ,0) .H X H Xinner out
y y= 	 (31)

Here, the superscript ‘inner’ refers to a field in the channel. 
Taking into account (23) and (30) we may rewrite (31) in the 
form

3
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Since equality (32) holds for all X we may multiply its both 
sides by an arbitrary function of X and the equality would 
remain valid. Then we may integrate the result over X, the 
equality still remaining valid. We will perform these proce-
dures using the functions y*

m. Reasonability of such approach 
was established in our previous works in similar subject [12, 
13], in which, however, we considered different geometry and 
material constants. After performing the above procedures 
we obtain

*
3
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In view of (28) for the Fourier transforms we may write
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By using (36) we may write (33) in the form
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The values of *jy  and functions Y included in (33) can be 
directly calculated; the calculations give
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For shortness, we may introduce the following notations:
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In these notations, formula (37) takes the form

[ ( , ) ( , )] [ (0, ) (0, )]C n m B n m B m C mincn n
n 0

a h a+ = -
3

=

/ .	(42)

The equality obtained (42) is an infinite set of equations  (m = 
0,1,2, . . .) for an infinite number of variables (a0, a1, a2, . . .). 
After the values (a0, a1, a2, . . .) are found, one may construct 
the distribution of fields in the channel, free space, and, 
surely, on the metal – free space interface.

4. Calculation results: filed features at the exit 
from the channel to a free space

The system of equations (42) was solved numerically. The 
dielectric function was chosen with a large negative real part 
and a small dissipation (e = –10.0 + 0.1i); the channel width 
was taken so that 2a = 0.8l, i.e., W = 0.8p (l is the radiation 
wavelength). In the calculations, we assumed ainc = 1. A trun-
cated system of equations was solved. Variants with various 
numbers of unknowns an (and the corresponding numbers of 
equations) were tested, the maximal value was n = 96. A rela-
tive difference for an calculated by solving the sets of 48 and 
of 96 equations did not exceed 0.01. Absolute values and real 
and imaginary parts of the coefficients an are shown in Fig. 3 
versus number n. One can see that the absolute values of the 
coefficients an decrease with the number n as 1/n. In the strict 
sense, the accuracy of this dependence requires additional 
study. It is possible that at higher precision of solving the sys-
tem of equations (42) this dependence may change; we admit 
that an asymptotic law of the type n ( )

n
1\a m- + , may be 

obtained, where & 01 >m . Here, we will take m = 0. One 
should note phase jumps are obtained in the coefficients  an 
for neighbouring numbers.

The obtained coefficients an give complete information 
about the field structure in space [formulae (23), (25), (26)]. 
The far-field zone picture is determined by the Fourier trans-
form of a field, which for every particular mode is given by 

formula (39). With the parameters chosen in our case, there 
exists a single maximum in the far-field zone, which corre-
sponds to the zero angle. Its half-height half-width found 
from numerical estimates is ∼30°. At the channel width greater 
than 0.8l, we obtained additional side maxima around the 
central peak.

The structure of the near-field picture is more compli-
cated. Consider fields in the plane Z = 0. The absolute value 
of the component Ex versus coordinate X is shown in Fig. 4. 
In plotting the curves we assume the amplitude of the inci-
dent wave field component Ex unity, hence ainc obeys the 
condition

1.W
K

inc
0a = 	 (43)

A sharp amplitude spike is seen in Fig. 4 at X = ±1, i.e., at 
the channel exit edge. For example, at  X = 1, Z = 0, the cal-
culated absolute value of Ex is 12 times greater than that of 
the field passing from infinity along the channel. Recall that 
the field amplitude is discontinuous at the point X = 1. 
Approaching this point from the right gives the field ampli-
tude less than the mentioned value by a factor of |e|. Due to 
such behaviour of the field amplitudes, we may speak of 
localised plasmons arising in the system under consideration. 
If we turn to the range X > 1, we can see a series of noticeable 
peaks at points X = ±3, ±5, ±7, . . . Intensity of the peaks falls 
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Figure 3.  Real and imaginary parts (a) and absolute value (b) of the 
coefficients a(n).
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with a distance from the channel. Such a series of peaks cor-
responds to wave reflection from the channel walls. Consider 
the behaviour of fields near the mentioned specific points in 
more detail. A thorough investigation requires taking into 
account a contribution from modes with higher numbers (n ³ 
96). However, we may draw some conclusions without per-
forming additional calculations by using the asymptotic 
behaviour found for the coefficients.

5. Singular points in the spatial structure 
of a field

In plotting the curves in Fig. 4, we have made allowance for a 
contribution of waves with numbers n < 96. As was men-
tioned above, at high mode numbers the coefficients of mag-
netic field expansion obey the dependence an ∼ n –1. Hence, the 
expansion coefficients for the x-component of electric field 
(Ex) have an asymptotically constant absolute value [see (11) 
and (18) for the wave vectors and (25) for the field]. It is clear 
that nondecreasing coefficients in the field expansion would 
result in unlimited amplitudes of the field at some points of 
space. In further analysis of specific features of field struc-
tures, it will be convenient to use expansion coefficients for 
the field component Ex. For this purpose, we introduce new 
coefficients bn instead of an

.W
K

n n
n

nb h a=- 	 (44)

The dependence of | an| on n mentioned above and the phase 
characteristics for these coefficients obtained make it possible 
to present bn at 1n &  in the form

bn = – b∞(–1)n.	 (45)

As for the initial parameter binc, we will, in a similar manner 
[see (43)], assume that the incident wave passing along the 
channel from negative Z values has the component Ex of 
unity amplitude, that is,

1.W
K

inc inc
0/b a = 	 (46)

For this value of  binc the calculations give 0.05 0.05 .i.b +3

Now we may estimate the field basing on an infinite set of 
coefficients bn. For shortness, we will only consider the range  
|X | £ 1, Z < 0. We may transfer formula (25) by replacing the 
coefficients  an with  bn according to (44) and using expres-
sions of type (21) for the spatial dependence of functions yn at 
|X | £ 1 and dividing the infinite sum into two sums. Then we 
obtain

( , ) [ ( )exp iE X Z K Zx n n
n

N

0
0

d=
=

/

	 ( )] ( )exp cosi K Z Q Xn n n nb h+ -

	 ( ) ( ) .exp cosi K Z Q X
1
n n n n

n N

b h+ -
3

= +

/ 	 (47)

Now we pass to approximate calculations: in the second sum 
in (47), we may replace the parameters bn, Qn and Kn = 
i Q Wn

2 2
-  with their asymptotic values. In this case, the 

exact equality (47) transfers to the following approximate 
expression

( , ) ( ) .E X Z ( ) ( ) ( )
x N

E E
N
Ex x xs sS= + -3 	 (48)

Here the finite sum from (47) is denoted by ( )
N
ExS  (no approx-

imations are made):

( ) [( ) ] [( ) ]cos expn b X n b Z1( )E n

n 0

x p ps b= - + +3 3

3
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/ ;	 (49)

( ) [( ) ] [( ) ]cos expn b X n b Z1( )
N
E n

n

N

0

x p ps b= - + +3

=

/ .	 (50)

By summing the series included in (49), we obtain [14]
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Note that we operate with Z < 0, and convergence of the 
series in (49) is guaranteed.
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Figure 4.  The field component Ex in the plane Z = 0 over segment 0 £ 
X £ 1 (at the exit aperture) (a) and at 1 £ X (b).
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Consider a vicinity of point  Z = 0, X = 1. Let X = 1 – x, Z 
= – z, where x, z are positive and x, z << 1. Then we have

lim e
,

( )E bZ

0

xs b=
"

3 3
%x z x

	 ´ ( ) ( )cos sinbX bX1
2 2 2 2p x z

z
x z

x
+

-
+

; E.	 (52)

By presenting the delta-function as the limit of continuous 
functions (see [15]) and taking into account that expansion 
(49) is only valid at |X| £ 1 whereas at other values of X the 
field is given by another expression, we obtain the following 
result. Under the condition  z << x,  x ® 0 formula (52) takes 
the form

eb=lim
,

( )Ex bZ

0
s

"
3 3

%x z x

	 ´  ( ) (1 ) ( )cos sinbX X bX
X2

1 1
1
1

pd - -
-

8 B.	 (53)

Expression (53) presents the component Ex near the singular 
point in the form that will be observed while approaching the 
point along the line Z = 0.

Similar transformations may be performed for the case   x 
<< z, z→ 0, which would give the field while approaching the 
edge along a channel wall. Thus, this is one more evidence 
that the component Ex has a singularity at the point X = 1, Z 
= 0.

Similar transformations allow one to separate singular 
summands in the expressions for the field components #Hy 
and Ez. The forms of these summands show that the compo-
nent Ez has singularities of the same type as Ex, and the mag-
netic field increases in a vicinity of the point X = 1 slower than 
the electric field. Only a vector potential will have no singu-
larities.

The result presented should be compared to known solu-
tions of electrostatic problems [16, 17]. In [16], a field near an 
edge of a perfect conductor is considered, and in [17], a field is 
studied in the case of two edges, i.e, actually at an exit from a 
channel in a perfect conductor. It is shown [16, 17] that in the 
case of normal angles between metal surfaces the electric field 
increases near the edge as (x2 + z2)–1/6, whereas the potential is 
described by (x2 + z2)1/3, where (x2 + z2)1/2 is the distance from 
an observation point to the edge. The distinction is related to 
the fact that in the mentioned monographs the fields were 
forced to vanish at infinity, whereas we do not impose such a 
constraint. Conversely, our scheme includes a wave passing 
along the channel from negative values of z. 

We have considered singular points in the field structure 
in the range |X | £ 1. Analysis of the range |X | > 1 reveals a 
series of infinitely intensive peaks at the metal – free space 
interface at the points X = ±3, ±5, ±7, . . . In real conditions, 
this effect is partially suppressed due to smooth edges and 
surface roughness. If the surface is not perfect, the phase rela-
tionships between spatial harmonics break, which results in a 
spread of maxima. One may take that at the dimension of 
nonuniformities of the order of l/m, only the waves with 
the wavenumbers less than m/l (that is, with the numbers 
n < ma/l) would constructively interfere. In this case, in esti-
mating the field value one should take into account a contri-

bution of a finite number of harmonics with the numbers less 
than ma/l. Our estimation in Section 4 based on the calcula-
tion of a finite sum corresponds to the irregularity scale of the 
order of ∼ l/100.

6. Conclusions

Wavenumbers are obtained for fields in a planar channel 
inside a real metal. For low-number modes (n < 96) the wave-
numbers are found from numerical calculations, and for 
higher-order modes the asymptotic formulae are obtained.

The theoretical description is given for the light field 
transformation at the exit from the channel to a free space. 
The transformation includes possible mode reflection or 
transformation into modes with distinct numbers.

The numerical values of the coefficients are obtained for 
transformation of the incident lower mode into modes of 
higher numbers for a chosen channel width, wavelength, and 
dielectric function.

The calculations relevant to the field transformation on 
the exit aperture are based on the developed mathematical 
approach; it is essential that method applicability does not 
require orthogonality of channel eigenmodes (note that there 
is no orthogonality if medium is absorbing).

Singular points are found in the spatial structure of field 
in the exit plane. The field amplitude exhibits abrupt peaks at 
these points. The most noticeable amplitude discontinuity 
occurs at the exit aperture edge, which corresponds to the 
points ±1 in our notations. Such singular points have an ana-
logue in the electrostatic of ideal conductors. It is important 
that making allowance for real dielectric characteristics of a 
metal does not abandon this effect. In the case of imperfect 
shapes of metal surfaces, the effect weakens and maxima 
spread, however, do not vanish. The field on the exit metal 
plane has a series of equidistant bright points in which the 
field intensity falls with a distance from the output aperture. 
Thus, one may speak about localised plasmons arising on the 
surface.

Acknowledgements.  The work was supported by the Russian 
Foundation for Basic Researches (Grant No. 10-02-00795-a). 
The authors are grateful to V.S. Lebedev, A.V. Masalov, and 
A.G. Vitukhnovsky for useful discussions.

References
  1.	 Raether H. Surface Plasmons on Smooth and Rough Surfaces and 

on Gratings (Berlin: Springer-Verlag, 1988). 
  2.	 Otto A. Z. Phys., 216, 398 (1968).
  3.	 Kretschmann E. Z. Phys., 241, 313 (1971).
  4.	 Laluet J.-Y., de Leon-Perez F., Mauboub O., Hohenau A., 

Ditlbacher H., Garcia-Vidal F.J., Dintinger J., Ebbesen T.W., 
Martin-Moreno L., Krenn J.R. Opt. Express, 16, 3420 (2008).

  5.	 Baudrion A.-K., Drezet A., Genet C., Ebbesen T.W. New J. Phys., 
10, 105014 (2008).

  6.	 Kihm H.W., Lee K.G., Kim D.S., Ahn K.J. Opt. Commun., 282, 
2442 (2009).

  7.	 Ebbesen T.W., Lezec H.J., Graemi H.F., Thio T., Wolff P.A. 
Nature (Ldn), 391, 667 (1998).

  8.	 Dai W., Soukoulis C.M. Phys. Rev. B, 80 (15), 155407 (2009).
  9.	 Nikitin A.Yu., Rodrigo S.G., Garcia-Vidal F.J.,	

Martin-Moreno L. New J. Phys., 11, 123020 (2009).
10.	 Nikitin A.Yu., Garcia-Vidal F.J., Martin-Moreno L. Phys. Stat. 

Sol. RRL, 4 (10), 250 (2010).



	 T.I. Kuznetsova, N.A. Raspopov94

11.	 Adams M.J. An Introduction to Optical Waveguides (New York: 
Wiley 1981; Moscow: Mir 1984).

12.	 Kuznetsova T.I., Lebedev V.S. Phys. Rev. B, 70, 035107 (2004).
13.	 Kuznetsova T.I., Lebedev V.S. Phys. Rev. E, 78, 016607 (2008).
14.	 Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integraly i ryady 

(Integrals and Series) (Moscow: Nauka 1981) Vol. 1, p. 739.
15.	 Korn G.A., Korn T.M. Mathematical Handbook for Scientists and 

Engineers (London: McGraw, 1961; Moscow: Nauka 1970).
16.	 Landau L.D., Lifshitz E.M. Electrodynamics of Continuous Media 

(Oxford: Pergamon Press, 1984; Moscow: Nauka, 1982). 
17.	 Smirnov V.I. Kurs vysshei matematiki (A course in Higher 

Mathematics) (Moscow: Gos. Izd. Tekhniko-Teoreticheskoi 
Literatury, 1953) Vol. 3, Ch. 2.


