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Abstract.  This paper examines the effect of an intermediate layer 
between the core and periodic cladding of a Bragg fibre on its opti-
cal properties. It is shown that any TE0k mode of a standard Bragg 
fibre can be transformed into the fundamental mode of a Bragg 
fibre with an intermediate layer by adjusting the thickness of the 
first cladding layer. Varying the thickness of the intermediate 
layer, one can tune the mode composition of the transmitted light in 
a periodic manner. The periodic variation of the optical loss with 
the thickness of the intermediate layer is due to resonances and 
antiresonances in this layer. The resonances correspond to two-
mode light propagation through the fibre, whereas the antireso-
nances, to single-mode light propagation.

Keywords: optical characteristics of fibres, Bragg fibres.

1. Introduction

Bragg fibres are multilayer waveguides widely used in optics. 
Their optical properties are governed by Fresnel reflection 
from the interfaces in the multilayer periodic structure of their 
cladding, whereas the optical properties of conventional 
fibres are governed by total internal reflection from the sur-
face of the denser core. For this reason, even hollow-core 
Bragg fibres can have rather low optical losses [1, 2], low bend 
sensitivity [3], large mode area [4] and a number of other 
unique properties.

The properties of Bragg fibres have been the subject of 
extensive studies (see, e.g. Refs [5–10]), most of which were 
concerned with fibres consisting of a core and a periodic lay-
ered cladding around the core. Mizrahi and Schachter [11] 
considered a fibre with a matching layer of a certain thickness 
between a hollow core and periodic cladding and analysed the 
effect of the matching layer on the zero-dispersion region of 
the fibre and the mode field distribution in its core. The thick-
ness of the intermediate layer was chosen so as to maximise 
internal reflection at the interface between the intermediate 
layer and the first layer of the periodic cladding.

This paper examines the effect of parameters of an inter-
mediate layer on the mode composition of propagating light 
and the optical loss in the fibre.

2. Dispersion equation

To assess the optical characteristics of a Bragg fibre with an 
intermediate layer, we use the transfer matrix method. The 
mathematical framework for this method has been described 
in several publications (see, e.g. Refs [12 – 15]).

For an arbitrary homogeneous cylindrical layer, the axial 
and azimuthal components of the electromagnetic field (Ez, 
Ef, Hz, and Hf) can be expressed through a linear combina-
tion of two cylindrical functions: Bessel functions of the first 
and second kinds [5], Hankel functions of the first and second 
kinds [12] and Bessel and Hankel functions of the first kind 
[13]. At an arbitrary azimuthal mode number, m, a pair of 
Bessel functions of the first and second kinds and a pair of 
Hankel functions of the first and second kinds (all of order m) 
are a fundamental system of solutions to the Bessel differen-
tial equation [16]. Using a combination of Bessel functions of 
the first and second kinds, one can determine the mode com-
position of light propagating through a fibre, but an addi-
tional algorithm is needed to calculate the optical loss [10].

For this reason, we use a combination of Hankel func-
tions of the first and second kinds: Hm

(1)(kr) and Hm
(2)(kr). The 

electromagnetic field components in the jth layer can be rep-
resented as follows [where the exp(ibz) factor, common to all 
the field components, is omitted]:
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where nj and kj are the refractive index of and the transverse 
wave vector component in the jth layer; kj

2 = k0
2(nj

2 – b 2/k0
2); 

k0 is the wave vector in vacuum; m is the magnetic permeabil-
ity of the medium; b is the propagation constant of the guided 
mode; b/k0 = neff is its effective refractive index; and Aj, Bj, Cj, 
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and Dj are the amplitude constants of the electromagnetic 
field components in the jth layer.

The longitudinal electromagnetic field components must 
be continuous across the boundaries of the layers. The bound-
ary conditions can be written in matrix form:
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where M(rj) is a 4 ´ 4 matrix consisting of elements mgq (g is 
the number of the line and q is the number of the column).

The matrix elements have the form
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where xj = kj  rj; yj = kj + 1 rj; l0 is the wavelength in vacuum; 
and ej is the relative dielectric permittivity of the jth layer.

The constants A, B, C and D for the ( j + 1)th layer of the 
cladding are related to those for the core by
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Outside the fibre, there should be no reflected wave, so the 
constants BN + 1 and DN + 1 for a fibre having N layers are zero. 
A solution to Eqn (4) at j = N exists provided that

( p23 + p24)(p41 + p42) – ( p43 + p44)(p21 + p22) = 0,	 (5)

where pgq are the elements of the matrix obtained by multiply-
ing all the M(ri) matrices. Equation (5) can be used to find the 
modes of a multilayer cylindrical fibre.

Equation (5) takes a simpler form when the azimuthal 
mode number is zero. In the case of ТМ0k modes, where k is 
the radial mode number, we obtain

p21 + p22 = 0,	 (6)

In the case of ТE0k modes, we have

p43 + p44 = 0.	 (7)

The optical loss, g, is defined as a reduction in the inten-
sity of light propagating through the fibre: g = (4pIm neff)/l0, 
or (in dB m–1)

40 lg
Im
e

neff
0

p
g

l
= .	 (8)

At a given fibre geometry, each of the dispersion relations 
(5) – (7) has several possible solutions, which define a set of 
complex values of neff. The different Re neff values will be 
referred to as roots of the dispersion equation. When a fibre 
parameter is varied continuously, the roots also vary continu-
ously. A continuous dependence of any physical quantity on 
a fibre parameter for each root will be referred to as a root 
curve. Changes in Re neff are accompanied by changes in 
Im neff and, hence, in the optical loss in the fibre and its trans-
mission.

3. Modes of Bragg fibres 
with an intermediate layer

Figure 1 shows the radial refractive index profile of a Bragg 
fibre with an intermediate layer. In contrast to that in conven-
tional Bragg fibres, the layer adjacent to the core differs from 
the other layers in the periodic cladding. As an example, let us 
consider the fibre described by Bassett and Argyros [2] and 
vary the thickness of the layer adjacent to the core. Because 
this layer differs from those in the periodic cladding, it will be 
referred to as an intermediate layer.

Calculations were performed for a Bragg fibre having a 
hollow core of radius r1 and a matching layer of thickness dM 
with a refractive index nM = 1.49. The periodic cladding con-
sists of alternating layers of thickness dL = 0.346 mm and dH = 
0.2133 mm with refractive indices nL=1.17 and nH=1.49. The 
number of layers around the core is N = 32.
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Fibres with dM = dH = 0.2133 mm and r1 = 1.3278 (fibre A) 
or 1.8278 mm (fibre B) were examined in a number of studies 
[2, 9, 10, 13]. Such a fibre geometry is nearly optimal for 
1-mm light, and the cladding layers are almost quarter-wave 
thick [13].

Table 1 lists all possible solutions to Eqn (7) and the cor-
responding optical losses [see Eqn (8)] for fibre B, as well as 
the roots of the dispersion equation, numbered in the order of 
decreasing Re neff.

The radial mode number k is determined by the field dis-
tribution across the fibre core. The radial electric and mag-
netic field distributions are proportional to the Bessel func-
tion J1(k1r) [14], where k1 is the transverse wave vector com-
ponent in the core. The value of k is also determined by the 
k1r product. At r = 0, we have J1(k1r) = 0.

The procedure for finding the k of a conventional optical 
fibre can be used to find the radial mode number in a Bragg 
fibre. The magnitude of k is here uniquely determined by the 
field distribution across the fibre core. We have k = 1 in the 
range 0 < k1r < 2.405, k = 2 in the range 2.405 £ k1r < 3.83, 
etc. At r1 = 1.8278 mm, k = 1 corresponds to Re neff from 
0.9427 to 1.0; k = 2, to the range 0.7917 – 0.9427; k = 3, to 
0.4640 – 0.7917; and k = 4, to 0 – 0.4640.

Note that this procedure is inadequate for determining 
modes of a Bragg fibre, because these result from interference 
of the light reflected from different cladding layers.

The arguments of modes with low optical losses at the 
core – cladding interface (r = r1) correspond to nearly zero val-
ues of the Bessel function J1(k1r1). The mode on the topmost 

line in Table 1 has Re neff = 0.9417619, which is only slightly 
less than the Re neff = 0.942699 corresponding to the second 
zero of J1(k1r1). Nevertheless, this mode is thought of as TE01 
[2, 9, 10, 13]. Modes with significant optical losses may have 
k1r1 values far away from the zeros of the Bessel function.

Below, we use a simplified procedure for determining the 
radial mode number in a Bragg fibre. To this end, we shift the 
lower limit of Re neff for each mode, evaluated from the radial 
distribution, by 1/100 of the range of effective refractive indi-
ces of the (k + 1)th mode, evaluated from the zeros of J1(k1r1). 
Since the magnitude of the down correction is unimportant 
for further analysis, the shift by 1 % is not exact and is only 
used for an arbitrary estimate. Given this, the lower limit of 
Re neff for the first k’s is 0.941198 and 0.787445, and that for 
k = 3 is 0.45933.

It follows from Table 1 that there are five TE03 modes and 
two TE04 modes, which differ in the angle between the beam 
and fibre axis. The optical loss of these modes is very high, 
and they are left out of consideration in the case of standard 
Bragg fibres. Since the optical loss of any transverse or hybrid 
mode far exceeds that of the TE01 mode, the latter is the fun-
damental mode of the fibre under consideration.

Figure 2a shows Re neff (the first two roots) as a function 
of hollow core radius, r1, for the TE01 and TE02 modes of a 
fibre with a periodic structure [2]. With increasing r1, Re neff 
increases, approaching unity. The Re neff of the latter mode is 
always smaller than that of the former mode. The optical loss 
decreases with increasing r1 (Fig. 2b) for both modes, and the 
optical loss of the latter mode is only a few times higher than 
that in the former. For example, at r1 = 9.0 mm, the neff’s of the 
first three modes are 0.99767557 + i0.94900016E – 11, 

n

nM

nH

nL

n1

r1 r1 + dM r

dL dH

Figure 1.  Schematic of a Bragg fibre with an intermediate layer.

Table 1.  Roots of the dispersion equation for a Bragg fibre having 32 
layers in a periodic cladding with dH = 0.2133 mm, dL = 0.346 mm, nH = 
1.49 and nL = 1.17. The radius of the hollow core is r1 = 1.8278 mm, and 
the wavelength is l0 = 1 mm..

Re neff	
Im neff

	
g/dB  m–1

	
m
	

k	 Root

0.94176190 	 0.92087314E-09	 5.0257E-02	 0	 1	 1	

0.81268486	 0.31488555E-04	 1718.4896	 0	 2	 2	

0.78912478	 0.22799474E-02	 124428.2529	 0	 2	 3	

0.75371929	 0.66313973E-02	 361908.8668	 0	 3	 4	

0.70293911	 0.12067946E-01	 658608.8066	 0	 3	 5	

0.63952600	 0.17781726E-01	 970438.6596	 0	 3	 6	

0.56736635	 0.22547231E-01	 1230516.3531	 0	 3	 7	

0.48838666	 0.29939431E-01	 1633946.0685	 0	 3	 8	

0.38222431	 0.50127307E-01	 2735700.4947	 0	 4	 9	

0.21542752	 0.10916140E+00	 5957489.3178	 0	 4	 10
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Figure 2.  (a) Effective refractive index and (b) optical loss as functions 
of hollow core radius for the TE01 and TE02 modes of a Bragg fibre. The 
periodic cladding is composed of 32 layers of thickness dH = 0.2133 mm 
and dL = 0.346 mm with refractive indices nH = 1.49 and nL = 1.17; 
l0 = 1 mm.
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0.99219255 + i0.27438443E – 10 and 0.98353542 + 
i0.48744394E – 10.

The behaviour of Re neff depends significantly on the 
thickness of the layer adjacent to the core. Re neff can reach 
the refractive index of the core and even slightly exceed it. In 
the latter case, TE01 becomes a cladding mode, its optical loss 
increases sharply, and it disappears. 

The corresponding root is then no longer a solution to the 
dispersion equation, and the next root becomes the solution 
with the highest Re neff value.

Figure 3b shows the optical loss as a function of match-
ing-layer thickness for the first five roots. The first root curve 
has the lowest optical loss at a matching-layer thickness of 
0.259 mm. At higher dM values, the optical loss increases as 
long as this root is a solution to Eqn (7). In the second curve 
(corresponding to the second root in Table 1), the optical loss 
first decreases with increasing dM and is equal to that in the 
first root curve at dM = 0.485 mm (point C). A fibre with such 
a geometry will have the highest loss and support two modes 
(the first root curve in this region corresponds to the TE01 
mode, and the second, to the TE02 mode). With a further 
increase in dM, the optical loss in the second root curve con-
tinues to decrease, differing by orders of magnitude from that 
in the other root curves, and the fibre again supports only one 
mode.

The optical loss in the second root curve has a minimum 
near dM = 0.6936 (point D) and then increases, intersecting 

the decreasing optical loss in the third root curve (point E), 
and the above situation repeats itself.

Thus, increasing the thickness of the matching layer leads 
to a continuous increase in Re neff for each root in Table 1, 
changing the azimuthal mode number, k, because the core 
radius remains constant. The root curve will correspond not 
to a particular mode with fixed k and m = 0, but different por-
tions of the root curve will correspond to different modes 
with m = 0 and different k values. The horizontal lines in 
Fig. 3a represent tentative boundaries where k changes by 
unity.  Changing the correction used to determine modes will 
slightly shift the boundaries, but the root curve will neverthe-
less intersect them.

Thus, the root curve corresponds to a tunable mode with 
various radial mode numbers. Any TE0k mode of a standard 
Bragg fibre can be tuned to give the fundamental mode of a 
Bragg fibre with an intermediate layer by varying the thick-
ness of the first cladding layer.

4. Optical loss in Bragg fibres 
with an intermediate layer

The optical loss in a standard Bragg fibre with almost quar-
ter-wave thick cladding layers is dominated by the optical loss 
of the fundamental mode because the absorption coefficients 
of the other modes are considerably greater and light can be 
thought to propagate in single-mode fashion. The optical loss 
in a Bragg fibre with an intermediate layer and almost quar-
ter-wave thick periodic cladding layers is determined by the 
minimal optical loss of the corresponding mode at a given 
fibre geometry (for example, the composite curve 
ABCDEFGHI in Fig. 3b). This approximation will be quite 
accurate in the single-mode and quasi-single-mode ranges. In 
the two-mode ranges, which can be thought of as narrow (the 
derivatives of the intersecting curves for the competing modes 
TE01 and TE02 are opposite in sign in the vicinity of points C, 
E, G and I), the resultant curve ABCDEFGHI is distorted 
only slightly. The optical loss calculated for TM0k transverse 
modes using Eqns (6) and (8) is several orders of magnitude 
higher than that corresponding to the resultant curve for any 
thickness of the intermediate layer. Because the optical loss 
calculated for the other transverse and any hybrid modes (1 £ 
m £ 7) using Eqns (5) and (8) considerably exceeds that cor-
responding to the ABCDEFGHI curve, we will think this 
curve to represent the optical loss of the Bragg fibre under 
consideration. For higher order modes (m > 7), we did not 
calculate the optical loss as a function of intermediate-layer 
thickness for each root because such calculations would 
require considerable effort. Calculation results for a number 
of modes with m > 7 at a constant thickness of the intermedi-
ate layer demonstrate that the optical loss increases with 
increasing m.

Figure 4 shows the optical loss g  as a function of Re neff at 
two values of r1. Curves ( 1 ) were constructed in the vicinity of 
point B (see Fig. 3b); curves ( 2 ), in the vicinity of point D; etc. 
It is seen that the optical loss is lowest in a certain Re neff 
range. Each root curve lies in the transmission window at a 
certain thickness of the intermediate layer. The greater the 
number of the root curve, the thicker the intermediate layer.

Since neff is proportional to b, varying the thickness of the 
intermediate layer one can control the field distribution in the 
core and the wave vector direction. The range of angles will be 
determined by the range of Re neff values corresponding to the 
minimum optical loss for a particular root curve.
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Reneff
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Figure 3.  (a) Effective refractive index and (b) optical loss against the 
thickness of the first cladding layer (nM = 1.49), adjacent to the core, for 
roots 1 – 5 of the dispersion equation (see Table 1). The radius of the 
hollow core is r1 = 1.8278 mm, and the wavelength is l0 = 1 mm. The 
periodic cladding is composed of 31 layers of thickness dL = 0.346 mm 
and dH = 0.2133 mm with refractive indices nL = 1.17 and nH = 1.49. The 
horizontal lines in Fig. 3a represent tentative boundaries of the radial 
mode numbers.
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The Re neff (dM) curves in Fig. 5, obtained for different 
core radii,  r1, illustrate the behaviour of Re neff for the lowest 
loss root curves. In the two-mode range, we took Re neff for 
the lowest loss root curve. Sharp changes in Re neff corre-
spond to a situation where a mode of another root curve 
becomes the lowest loss mode. For illustrative purposes, we 
connected branches of different root curves corresponding to 
a given   r1 value. Even though the vertical portions of the 
curves in Fig. 5 do not represent the behaviour of Re neff for 

any actual fibre modes, they can be used to estimate the range 
in which the effective refractive index varies.

Note that, with increasing core radius, the range of 
allowed wave vector directions decreases. Varying the param-
eters of the intermediate layer, one can change the wave vec-
tor direction within the allowed range.

As pointed out by Abeeluck et al. [8], varying the pitch of 
the layered cladding may lead to two light propagation 
regimes, depending on wavelength. The long-wavelength 
transmission spectrum is determined by Bragg reflection from 
several high index/low index cladding layers. When the pitch 
exceeds the wavelength in vacuum, the spectral features of the 
structure can be understood in terms of an antiresonant 
model as the thickness of the structure increases further.

Studies concerned with antiresonance effects in Bragg 
fibres examined simultaneous variations in the thicknesses of 
all identical layers in a periodic cladding [8, 13, 17, 18]. The 
position of resonances was shown to be most sensitive to the 
high-index cladding layer adjacent to the core.

Varying the parameters of the adjacent layer at a fixed 
core diameter and fixed thicknesses of the layers in the peri-
odic cladding also influences the optical properties of the 
fibre. For example, a linear decrease in the dimensions of the 
matching layer (dM >> l0) along the fibre axis leads not only 
to periodic optical loss oscillations but also to periodic oscil-
lations in light scattering by the lateral surface of the fibre [19].

Figure 6 shows the optical loss as a function of matching-
layer thickness, dM, for a Bragg fibre at  l0 = 1 mm and differ-
ent r1 values. The optical loss (calculated according to the 
resultant curve ABCDEFGHI in Fig. 3b) is a periodic func-
tion of dM. Both the lowest and highest loss values in each 
period are slightly lower than those in the preceding period. 
Moreover, the difference between the highest and lowest loss 
values decreases with increasing dM.

The resonance or antiresonance condition for the interme-
diate layer can be written in the form [13]

k2 dM = ps,	 (9)

where k2 is the transverse wave vector component in the inter-
mediate layer and s is an integer for resonances and a half-
integer for antiresonances. For curve ( 3 ) (r1 = 1.8278 mm), 
the optical loss is highest at dM = 0.488, 0.926, 1.364 and 
1.801 mm, with Re neff = 0.988, 0.983, 0.980 and 0.977, respec-
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Figure 4.  Minimal optical loss as a function of effective refractive index 
at different values of r1. The numbers of the curves correspond to the 
numbers of the roots of the dispersion equation. In Fig. 4a, curve ( 1 ) 
was constructed in the vicinity of point B (see Fig. 3b); curve ( 2 ), in the 
vicinity of point D; etc. The parameters of the periodic cladding are the 
same as in Fig. 3; l0 = 1 mm.
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thickness for the lowest loss modes: r1 = ( 1 ) 1.3278, ( 2 ) 1.525, ( 3 ) 
1.8278 and ( 4 ) 9.0 mm. The vertical portions of the curves connect dif-
ferent roots of the dispersion equation at equal optical losses and are 
drawn as a guide to the eye to differentiate between fibres with different 
cores. The parameters of the periodic cladding are the same as in Fig. 3.
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tively. The changes in Re neff lead to slight changes in k2: 
7006639.575, 7035515.209, 7052018.392 and 7068432.673 
m–1. Substituting these values into Eqn (9), we obtain s = 
1.088, 2.074, 3.062 and 4.052. For the loss minima, we have 
s = 1.597, 2.596, 3.603 and 4.602. 

The loss extrema in curve ( 4 ) (r1 = 9.0 mm) correspond to 
s = 1.079, 1.587. 2.079, 2.587, 3.079, 3.588 and 4.072. 
Neglecting the slight variations in k2 between neighbouring 
resonances, we obtain a spacing between them DdM = p/k2. 
For the average k2 of an intermediate layer with r1 = 
1.8278 mm, the calculated spacing is DdM = 446.1 nm. 
According to Fig. 6, the average spacing between the loss 
maxima in curve ( 3 ) is 437.7 nm.

The above estimates lead us to conclude that the periodic 
variation of the optical loss with layer thickness is due to the 
resonances and antiresonances in the intermediate layer. The 
slight discrepancy between the above DdM values may arise 
from the following: (1) Bessel functions are not strictly peri-
odic. (2) The spacing can be influenced by the resonances of 
the cladding as a whole and by those of the constituent lay-
ered resonators.

As shown earlier [19, 20], the periodic variation in optical 
loss due to variations in the thickness of the intermediate 
layer fits well with predictions of the antiresonant model. An 
antiresonance in the intermediate layer reduces the optical 
loss of radiation propagating through the core, while a reso-
nance increases it. The above mode analysis clearly shows 
that the resonance condition corresponds to two-mode light 
propagation through the fibre, whereas the antiresonance 
condition, to single-mode light propagation (Fig. 3b).

In this study, major attention was paid to variations in the 
thickness of the intermediate layer, but variations in its refrac-
tive index give similar results. It is worth noting that antireso-
nance properties of the intermediate layer are more pro-
nounced when its refractive index exceeds that of the layers in 
the periodic cladding.

5. Conclusions

We examined the mode composition of light and the optical 
loss of the modes in a hollow-core Bragg fibre with an inter-
mediate layer between its core and periodic cladding. The 
optical characteristics of the fibre were calculated using the 
transfer matrix method. Numerical calculations for a Bragg 
fibre with a variable intermediate-layer thickness demonstrate 
that both single- and two-mode transmission regimes are pos-
sible. The major modes of the fibre are TE01 and TE02. Any 
TE0k mode of a standard Bragg fibre can be transformed into 
the fundamental mode of a Bragg fibre with an intermediate 
layer by varying the thickness of the intermediate layer. The 
intermediate-layer thicknesses that correspond to loss max-
ima and minima in the fibre and have been determined 
numerically using transfer matrices and in an antiresonance 
model agree well. Two-mode fibre excitation corresponds to a 
resonance in the intermediate layer, and the single-mode 
regime corresponds to an antiresonance.

References
  1.	 Xu Y., Lee R.K., Yariv A. Opt. Lett., 25, 1756 (2000).
  2.	 Bassett I.M., Argyros A. Opt. Express, 10, 1342 (2002).
  3.	 Aleshkina S.S., Likhachev M.E., Uspenskii Yu.A., Bubnov M.M. 

Kvantovaya Elektron., 40, 893 (2010) [ Quantum Electron., 40, 893 
(2010)].

  4.	 Likhachev M.E., Semjonov S.L., Bubnov M.M., et al. Kvantovaya 
Elektron., 36, 581 (2006) [ Quantum Electron., 36, 581 (2006)].

  5.	 Yeh P., Yariv A., Marom E.J. J. Opt. Soc. Am., 68, 1196 (1978). 
  6.	 Martijn de Sterke C., Bassett I.M., Street A.G. J. Appl. Phys., 76, 

680 (1994).
  7.	 Kawanishi T., Izutsu M. Opt. Express, 7, 10 (2000).
  8.	 Abeeluck A.K., Litchinitser N.M.,  et al. Opt. Express, 10, 1320 (2002).
  9.	 Argyros A. Opt. Express, 10, 1411 (2002).
10.	 Guo Sh., Albin S., Rogowski R.S. Opt. Express, 12, 198 (2004).
11.	 Mizrahi A., Schachter L. Opt. Express, 12, 3156 (2004).
12.	 Sakai Jun-ichi, Nouchi P. Opt. Commun., 249, 153 (2005).
13.	 Biryukov A.S., Bogdanovich D.V., Gaponov D.A., et al. 

Kvantovaya Elektron., 38, 620 (2008) [ Quantum Electron., 38, 620 
(2008)].

14.	 Chew W.C. Waves and Fields in Inhomogeneous Media (New 
York: Van Nostrand, 1990).

15.	 Kaliteevskii M.A., Nikolaev V.V., Abram R.A. Opt. Spektrosk., 
88, 871 (2000).

16.	 Jahnke E., Emde F., Losch F. Tables of Higher Functions (New 
York: McGraw-Hill, 1960; Moscow: Nauka, 1964).

17.	 Litchinitser N.M., Abeeluck A.K., Headley C. Opt. Lett., 27, 1592 
(2002).

18.	 Litchinitser N.M., Dunn S.C., Usner B., et al. Opt. Express, 11, 
1243 (2003).

19.	 Kulchin Yu.N., Zinin Yu.A., Nagornyi I.G., Voznesenskii S.S. 
Opt. Spektrosk., 111, 858 (2011).

20.	 Kul’chin Yu.N., Zinin Yu.A., Nagorny I.G. Pis’ma Zh. Tekh. 
Fiz., 37, 58 (2011).


