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Abstract.  We present new specific analytic solutions of a system of 
nonlinear Schrödinger equations, corresponding to elliptically 
polarised cnoidal waves in an isotropic gyrotropic medium with spa-
tial dispersion of cubic nonlinearity and second-order frequency 
dispersion under the conditions of formation of the waveguides of 
the same type for each of the circularly polarised components of the 
light field. 

Keywords: cubic nonlinearity, spatial dispersion, nonlinear 
Schrödinger equations, elliptic polarisation, cnoidal waves. 

Possible emergence of elliptically polarised cnoidal waves, 
whose orthogonal components of the electric field vector are 
expressed in terms of Jacobi elliptic functions, is widely dis-
cussed in solving various problems of nonlinear optics (see, 
for example, [1 – 7]). For isotropic optically active media with 
local cubic nonlinearity, this possibility was discussed in [7]. 
In this case, however, nonlocal component of the nonlinear 
optical response, whose magnitude is very significant in gyro-
tropic media, was not taken into account. Nonlocality essen-
tially affects the nature of self-focusing of beams [8, 9], pulse 
compression [10, 11], and other regimes of propagation [12] of 
elliptically polarised laser radiation in optically active media. 
Due to the nonlocality of the nonlinear response in media 
with anomalous frequency dispersion, consideration of the 
effects of self- and cross-modulation in the system of trun-
cated equations for slowly varying amplitudes of circularly 
polarised waves [8 – 12], which form a system of nonlinear 
Schrödinger equations (NSE), leads to solutions in the form 
of elliptically polarised solitary waves [12]. At the same time, 
the problem of existence of periodic analytical solutions of 
this system, i.e., elliptically polarised cnoidal waves, remains 
virtually uninvestigated. This is primarily due to the noninte-
grability of the NSE system describing nonlinear propagation 
of waves in media with spatial dispersion of cubic nonlinear-
ity [13]. 

In this paper, we present for the first time the derived spe-
cific solutions of the NSE system describing propagation of 
laser radiation in an isotropic medium with spatial dispersion 

of cubic nonlinearity and second-order frequency dispersion. 
The solutions have the form of elliptically polarised cnoidal 
waves with the amplitudes of the two circularly polarised 
components A±(z, t) = Ax ± iAy being connected by some 
relation. We discuss the physical meaning of this relation and 
present the dependence of the intensity I (z,  t) =   (|A+|2 + 
|A–|2)/2 of cnoidal waves of these types, degrees of ellipticity 
M (z, t) = (|A+| 2 – |A–| 2)/(2I ) and angle of rotation Y (z, t) = 
0.5arg(A+A–

* ) of the major axis of the polarisation ellipse on 
the longitudinal coordinate z and time t in the intrinsic (run-
ning) coordinate system. We also determine the conditions 
for the existence of these solutions. 

In the absence of diffraction, self-action of laser radiation 
in a nonlinear isotropic gyrotropic medium with spatial dis-
persion of cubic nonlinearity and second-order frequency dis-
persion is described by the NSE system [9 – 12]: 
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Here, s1,2 = 2pw2 c1,2/(kc 2); k2 = d2k/dw2 is a constant charac-
terising the frequency dispersion of the medium; r0,1 = 
2pw2 g0,1/c 2;  c1 = 2c (3)xyxy ; c2 = c 

(3)
xxyy. In these relation, ct

(3)

(w; –w, w, w) is a local cubic nonlinearity tensor symmetric 
with respect to permutation of two last indexes. Pseudoscalar 
constants of linear and nonlinear gyration g0 and g1 define the 
nonzero tensor components of nonlocal linear and nonlinear 
optical susceptibilities, respectively. 

Because in the general case system (1) is nonintegrable, we 
impose an additional constraint on the desired solutions in 
the form of a second-order integral, i.e., a linear relationship 
between the intensities of the two circularly polarised compo-
nents of the propagating wave: 

d+ |A+(z, t)|2 + d–|A–(z, t)| 2 = d0,	 (2)

where the constants d0,± will be defined below. Note that 
when condition (2) is fulfilled, expressions in square brackets 
in (1) are also linearly related. In fact, they describe changes in 
the refractive index due to local and nonlocal cubic nonlinear-
ity. Therefore, when the waves described by the required solu-
tions propagate in the medium, for each of the components 
A±(z, t) there will be formed, due to nonlinearity, nonlinear 
waveguides of the same type, whose profiles differ only in 
scale factors. 

We will use below a standard procedure of separation of 
variables, assuming A±(z, t) = R±(t)exp(izk±). We emphasise 
that the phases of circularly polarised components of the field 
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increase linearly with increasing coordinate z, whereas the 
amplitudes R±(t) are real and depend only on time. Due to 
(2), the constants k± become the eigenvalues of two indepen-
dent equations, following directly from (1): 
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All possible real periodic solutions to the two obtained ordi-
nary differential equations can be expressed in terms of Jacobi 
elliptic functions [2, 14]: sn(vt, m), cn(vt, m) and dn(vt, m), 
where v is an arbitrary real scale factor, and m is a modulus of 
the elliptic functions. The relations between the elliptic func-
tions [15] allow us to express d0,± via six quantities: k±, v, m 
and the maximum values of R±. Two of them are free param-
eters of problem (3). As latter ones, it is convenient to choose 
v and m because it is the square of the Jacobi elliptic function 
that defines the profile of the nonlinear waveguide for each of 
the circular polarised waves. Note that a similar situation 
occurred for stable orthogonally polarised multicomponent 
cnoidal waves in photorefractive media [3]. All possible pair-
wise combinations of elliptic functions produce a family of 
physically different specific solutions of problem (1) – (3) in 
the form of nine cnoidal waves. For convenience, we denote 
them by first letters of Jacobi elliptic functions entering into 
the expressions for A+(z, t) and A–(z, t), i.e., ss, cc, dd, sc, cs, 
sd, ds, cd and dc. 

The solutions sc, cs, sd and ds are possible if the inequali-
ties  r1 > 0, k2( r1

2 + s1s2 + s2
2) < 0  and – r1 < s2 < r1  or 

inequalities r1 < 0, k2( r1
2 + s1s2 + s2

2) > 0 and  r1 < s2 < – r1 
are fulfilled. If the parameters of a nonlinear gyrotropic iso-
tropic medium satisfy the conditions s2 > 0, – s2 < r1 < s2 and 
k2( r1

2 + s1s2 + s2
2) > 0 or the conditions s2 < 0, s2 < r1 < – s2 

and k2( r1
2 + s1s2 + s2

2) < 0, the solution ss is realised. Finally, 
the solutions cd, dc, cc and dd are possible if the inequalities 
s2 > 0, k2( r1

2 + s1s2 + s2
2) < 0 and – s2 < r1 < s2 or inequal-

ities s2 < 0, k2( r1
2 + s1s2 + s2

2) > 0 and s2 < r1 < – s2 are 
valid. 

In the optical frequency range the size of the region of 
manifestation of the optical response nonlocality is signifi-
cantly smaller than the wavelength, and | r1| << |s1,2|. 
Therefore, the solutions sc, sd, cs and ds cannot be realised. 
Below we present the expressions for the components A±(z, t), 
corresponding to physically realisable (in the case of gyro-
tropic media) solutions to problem (1), (2), as well as for the 
intensities (which correspond to these solutions) of the propa-
gating cnoidal waves, degrees of ellipticity of their polarisa-
tion ellipses and angles of rotation of the major axes of these 
ellipses. For the solutions such as cd and dc we have: 
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In formulas (4) – (8) the upper sign corresponds to the solu-
tion cd, lower – to dc. Note that the linear dependence of Y 
on the coordinate z contains both linear and nonlinear char-
acteristics of the medium.

Solutions of problem (1), (2) in the form of the three 
remaining functions (ss, cc and dd) are degenerate, i.e., they 
contain in the expressions for A+(z, t) and A–(z, t) identical 
elliptic functions 
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For each of these solutions, the degree of ellipticity is con-
stant: M (t) = – r1/s2 and the angle of rotation of the major 
axis of the polarisation ellipse depends linearly on the coordi-
nate z and the coefficient of linear gyration: Y (z) = r0z. The 
time dependence of the intensities of cnoidal waves, corre-
sponding to solutions of (9) – (11), are obtained by substitut-
ing sequentially the functions –sn2(vt, m), cn2(vt, m) and dn2(vt, 
m)/m2 instead of F into the general expression –m2v 2k2s2F´ 
(r1
2 + s1s2 + s2

2)–1. 
Note in conclusion that we failed to find in the literature 

any references that the condition for formation of nonlinear 
waveguides, of the same type for the two components of the 
field, in a medium (i.e., waveguides, whose profiles differ only 
in scale factors) is equivalent to introducing a linear relation-
ship between the intensities of these components (i.e., the 
second-order integral). The obtained new types of specific 
periodic solutions of the NSE system seem to be of interest 
not only for the applied problems of fibre optics and optics of 
media with spatial dispersion of cubic nonlinearity, but also 
for solving a sufficiently wide class of problems from other 
areas of physics [16]. All the mentioned specific periodic solu-
tions have soliton asymptotics in the limit m = 1. In this case, 
the solutions cd, dc, cc and dd are transformed into a pair of 
‘bright’ solitons, whereas the solutions ss – into a pair of 
‘dark’ solitons, which coincide with solitary solutions 
obtained in [12]. This is a direct consequence of the fact that a 
linear relationship between the wave amplitudes considered in 
[12] is equivalent to condition (2) used by us at m = 1. 
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