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Abstract.  For a laser gyro with a four-mirror square resonator 
(with a perimeter of 20 cm) we have calculated, on the basis of the 
previously developed [see Bondarenko E.A. Quantum Electron., 41, 
824 (2011)] model, the dependence of the parameters of the syn-
chronisation zone of the frequencies of counterpropagating waves 
on the active-medium gain. The results obtained are in qualitative 
agreement with known experimental data for gyroscopes with 
three-mirror resonators. 

Keywords: laser gyroscope, ring gas laser, frequency locking of 
counterpropagating waves. 

1. Introduction 

Among main types of laser gyros widely used in practice, we 
can single out the device based on a ring gas He – Ne laser (the 
ratio of the isotope concentrations, 20Ne : 22Ne = 1:1) with a 
flat N-mirror (N = 3, 4) resonator ensuring generation of lin-
early polarised radiation in the sagittal plane. The laser, usu-
ally operating at 0.6328 mm, is pumped by a dc parallel dis-
charge obtained by a common cathode and two anodes [1 – 3]. 

According to relations (5.55) – (5.57) from [3] and to expres-
sions (6.45) – (6.47) from [4], when the currents are balanced 
in the discharge arms, the resonator is fine tuned to the centre 
of the emission line and the losses are identical, the system of 
equations describing the dynamics of the dimensionless inten-
sities Ij ( j = 1, 2) and the phase difference y of counterpropa-
gating waves of such a laser gyro can be written as 

I1o  = (a – bI1 – qI2) I1 – 2r2 I I1 2 cos (y + e2),

I2o  = (a – bI2 – qI1) I2 – 2r1 I I1 2 cos (y – e1),	 (1)

yo  = MW  + r2 /I I2 1 sin (y + e2) + r1 /I I1 2 sin (y – e1).

In deriving these equations it was taken into account that 
the wave with j = 1 propagates in the direction of the laser 
gyro rotation. In system (1) a, b, q are the Lamb coefficients 
that characterise the properties of the active medium; M = 
(1 + Ka)Mg is the scale factor of the laser gyro, primarily deter-

mined by the geometrical component Mg = 8pS/( lL) and also 
taking into account the properties of the medium through a 
small parameter Ka (L is the perimeter of the axial contour; 
S is the covered area); W is the angular velocity of the device 
rotation in the inertial space; rj and ej are the moduli and 
arguments of complex integral coefficients rj exp (i ej) of the 
linear coupling of counterpropagating waves, characterising 
their interaction through backscattering, absorption and trans-
mission of radiation on the mirrors. (The relations for calcu-
lating the parameters a, b, q of system (1) can be found, for 
example, in [5], and the parameter Ka – in [6]. An empirical 
formula for calculating Ka is derived in [3]. In addition, a set 
of expressions to estimate the parameters a, b, q, Ka, rj, ej is 
given in [7]. These expressions are applicable for the case 
when the laser gyro operates at total pressures of the He – Ne 
mixture from 1 to 5 – 6 Torr, and its cavity has the shape of an 
equilateral triangle or a square.)

In our paper [8], based on the analysis of (1) we obtained 
the formulas for calculating the parameters of the synchroni-
sation zone of the frequencies of counterpropagating electro-
magnetic waves generated in the laser gyro. These parameters 
are the coordinates W(–) and W(+) of the left and right boundaries 
of the synchronisation zone on the axis of the angular velocity 
W, the coordinate of its centre W(0) = (W(+) + W(–))/2 and the 
half-width of this zone Ws  = (W(+) – W(–))/2. The relations 
obtained in [8] supplement the results of earlier theoretical 
studies [3, 9 – 16] and have the form 

22( )

M

r r r r

1

2
( )

p m

2

2 2 2
2 1

!
!

m

m m
W =

-

+ -
! , 

2 22 2( ) ( )

M

r r r r r r r r

2 1

2 2
( )

p m p m
0

2

2 2 2
2 1

2 2 2
2 1

m

m m m m
W =

-

+ + - - + - -
, (2)

2 22 2( ) ( )

M

r r r r r r r r

2 1

2 2
s

p m p m

2

2 2 2
2 1

2 2 2
2 1

m

m m m m
W =

-

+ + - + + - -
.

In view of the condition |r2 – r1| << (r1 + r2)/2 (see, for exam-
ple, [3]) implemented in practice, expressions (2) can be writ-
ten as 

W(±) » W(0) ± Ws , 
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where 

22 cosr r r r r2p 1 2 1 2 12e= + + ; 

22 cosr r r r r2m 1 2 1 2 12e= + - ;   e12 = e1 + e2,	
(4)
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Here rp and rm are combinations of the parameters of the 
linear coupling of counterpropagating waves; ap and am are, 
respectively, the inverse relaxation times of the sum and dif-
ference of the intensities of counterpropagating waves; g is the 
unsaturated linear gain of the active medium; G is the resonator 
losses per trip; h is the parameter depending on the total pres-
sure of the He – Ne mixture [17]; m is the quantity characterising 
the effect of the active-medium gain on the parameters of the 
synchronisation zone. Note that expressions (2) and (3) are 
valid under the condition of weak coupling of counterpropa-
gating waves, which suggests that in the entire range of work-
ing discharge currents used in laser gyros, the ratios rp/ap and 
rm/am are much smaller than unity. In modern devices operating 
at sufficiently large excesses of the pump over the threshold [3], 
the above condition is usually satisfied.

Based on the analysis of expressions (2) – (4) in [8], the fol-
lowing conclusions were drawn: 

(i) in the general case of the asymmetric (r1 ¹ r2) linear 
coupling of the counterpropagating waves, the left and right 
boundaries of the synchronisation zone of the laser gyro 
are located at different distances from the coordinate origin: 
W (+) ¹ –W (–). As a result, the centre of the region is shifted 
along the axis of the angular velocity W by the finite quantity 
W (0) ¹ 0; 

(ii) with increasing active-medium gain g, the shift W(0) of the 
centre of the synchronisation zone and its half-width Ws decrease, 
approaching asymptotically the established finite values 
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Restrictions on the amount of work [8] did not allow us to 
present the results of quantitative assessment of the dependence 
of the quantities W(+), W(–), W(0), Ws on the active-medium gain 
g for a particular laser gyro. Therefore, the purpose of this 
paper is to carry out such an assessment for a widely used 
laser gyro with a four-mirror square cavity and to compare 
(qualitatively) the obtained results with experimental data, 
well-known from [18 – 21], typical of three-mirror cavity gyros. 

2. Description of a laser gyro and derivation of 
relations for the calculation of its parameters 

Following [3], as an example we will choose a laser gyro with 
a four-mirror square cavity having a nominal length of the 
arm l = 50 mm and a perimeter L = 4l = 200 mm. According 
to [3], such a device is characterised by the half-width of the 
synchronisation zone, Ws » 0.05 deg s–1. The angular resolu-
tion of the laser gyro is 2.61'', and the geometric scale factor is 
Mg = 496459. The gyroscope operates at a total pressure of 
the He – Ne mixture of 6.5 Torr. 

Using expressions (3), (4) we perform quantitative assess-
ment of the values of W(+), W(–), W(0), Ws for this particular laser 
gyro, provided that the parameter of the relative excitation 
Nrel = g/G  varies from 2 to 8 [3], which corresponds to a 
change in the linear active-medium gain g from 2G to 8G. In 
order not to present (with comments) cumbersome formulas 
for the calculation of the small parameter Ka, as well as 
expressions for the estimates of b and q, we assume M = Mg, 
and in addition, set h = 0.652. 

2.1. Relation for the calculation of the parameter G

In order to make use of expressions (3) and (4), we must first 
calculate the total loss G for a given laser gyro. We assume 
that the resonator of the device is formed by two flat signal 
mirrors (M1, M2) and two spherical mirrors (M3, M4) with a 
radius of curvature R = 1000 mm mounted on piezocorrectors 
(mirrors are numbered clockwise). For flat mirrors M1 and 
M2 we have specified the energy parameters, i.e., the integral 
coefficient of light scattering, K fscat, into the full solid angle 
4p sr; absorption losses, G fabsorp; and useful transmission losses, 
G ftransm. For spherical mirrors M3 and M4 we have specified 
the integral light scattering coefficient, K sscat, and absorption 
losses, G sabsorp. They are K fscat = 5 ́  10–6, G fabsorp = 55 ́  10–6, 
G ftransm = 60 ́  10–6, K sscat = 10 ́  10–6, G sabsorp = 50 ́  10–6. Then, 
neglecting small diffraction losses due to the presence of an 
aperture diaphragm in the laser gyro cavity, the desired for-
mula for the calculation of G can be written in the form 

G = 2(K fscat + G fabsorp + G ftransm) + 2(K sscat + G sabsorp).	 (6)

With the given parameters of the mirrors we find from (6) 
that G = 360 ́  10–6.

2.2. Relations for the calculation of the parameters r1, r2 
and e12 

Now it is necessary to derive expressions for calculating r1, 
r2  and e12. These expressions must ensure the possibility of 
modelling a situation in which the laser gyro under study has 
an asymmetry (r1 ¹ r2) of the linear coupling of the counter-
propagating waves. The asymmetry of the wave coupling in 
this device can be realised, for example, by moving identically 
and controllably the spherical mirrors in opposite directions: 
the mirror M4 moves out of the resonator to a distance w (such 
a direction of the movement is assumed positive), and the mir-
ror M3 – on the contrary – moves into the cavity to exactly the 
same distance. Note that the perimeter of the axial contour, 
L, [22, 23] of the laser gyro resonator remains unchanged and 
equal to its initial value 4l; however, the geometrical shape of 
the contour is changing: from the square one, it almost turns 
into diamond-shaped, elongated along the diagonal connecting 
the mirrors M2 and M4. (Recall that the axial contour of the laser 
gyro cavity is a longitudinal axis of symmetry of the Gaussian 
beam with the TEM00 mode, which determines the centre of 
the light spot of the beam at any arbitrary cross section.) 

As applied to this laser gyro, to calculate complex integral 
coefficients rj exp(iej ) of the linear coupling between the coun-
terpropagating waves we have the expression 

c
L  rj exp(iej) = af  exp expi i

2 2f f1 2! !
p pc j c j- + -` `j j8 8B B$ .

	 + as  exp expi i
2 2s s3 4! !
p pc j c j- + -` `j j8 8B B$ .
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	 + bf [exp (±i j1) + exp (±i j2)] 

	 + bs[exp (±i j3) + exp (±i j4)],	 (7)

which describes the result of summation of integrated local 
coupling coefficients of these waves with respect to all four 
mirrors. (Hereafter the upper arithmetic signs in the formulas 
correspond to j = 1, and the lower ones – to j = 2.) 

Expression (7) differs from the similar-in-structure rela-
tions, well-known from [1 – 4, 10, 12, 14, 16, 21, 24 – 38], by the 
fact that in addition to the integral light scattering coefficient 
of each of the mirrors, mirror losses due to absorption and 
transmission are also taken into account. The second feature 
of this expression is that it predicts a substantially different 
(than as it follows, for example, from [16, 25, 29]) dependence 
of r1, r2 [and, hence, W(+), W(–), W(0), Ws] on the radius of cur-
vature of spherical mirrors (which is in qualitative agreement 
with the experimental data, well-known from [39], obtained 
for a three-mirror laser gyro). 

Consider expression (7) in more detail. In the right-hand 
side of (7) there appear two groups of parameters. The param-
eters of the first group – af, cf, bf and as, cs, bs – characterise 
the individual properties of flat and spherical mirrors, respec-
tively. The parameters of the second group – the phase angles 
jn (n = 1, 2, 3, 4) – describe the influence of the identical oppo-
sitely directed controllable movements of the spherical mirrors. 

To calculate the parameters of the first group in the right-
hand side of (7), we use the phenomenological formulas that 
have been proposed in [7]: 

af = 2
1  qf Kscat

f ,   cf = arcsin Kscat
f ,   

bf = 2
1  qf (G fabsorp + G ftransm),

as = 2
1  qs Kscat

s ,   cs = arcsin Kscat
s ,

bs = 2
1  qs G sabsorp ,   qf = wf /L,   wf = w w( ) ( )

f f
x y ,    	 (8)

qs = ws /L,   ws = w w( ) ( )
s s
x y ,

( )

( )
w l2

4 2 8 3

4 7 2( ) / /

f
z 1 2

2 2

2 2 1 4

p
l

z z

z z
=

- - +

- +
c m = G ,

( )

( )
w l2

4 2 8 3

4 3( )
/ /

s
z

1 2

2 2

2 1 4

p
l

z z

z
=

- - +

-
c m = G . 

When using the two last expressions to estimate the quantities 
w ( )f
z , w ( )s

z , it is needed to follow the rule: if the superscript is 
z = x, then z = x = pl, where p = 2( 2/R); if the superscript 
is z = y, then z = h = ql, where q = 2/R. Here p and q are 
the  optical powers of the spherical mirrors, respectively, in 
axial and sagittal planes; and x and h are the small dimension-
less parameters introduced for brevity.

In formulas (8) af and as are the moduli of local complex 
dimensionless coefficients of the counterpropagating wave 
coupling through backscattering of radiation, respectively, on 
flat and spherical mirrors; cf and cs are the ‘angles of scattering 

losses’ on these mirrors; bf are the moduli of local complex 
dimensionless coefficients of the counterpropagating wave 
coupling through absorption and transmission of radiation 
by flat mirrors; bs are the moduli of local complex dimension-
less coefficients of the wave coupling through absorption by 
spherical mirrors; wf and ws are the effective half-widths of the 
Gaussian beam of the working laser gyro mode in its cross 
sections, where the flat and spherical mirrors are, respectively, 
placed; w ( )f

x , w ( )s
x  and w ( )f

y , w ( )s
y  are the half-widths of the 

Gaussian beam in the axial plane xz and sagittal plane yz in 
the above cross sections; qf and qs are half the angles at which 
one can see the light spots (of diameter 2wf and 2ws) of a 
Gaussian beam on the surface of flat and spherical mirrors, 
provided that they are observed from the centres of the same 
mirrors at a distance equal to L, in a situation when the axial 
contour of the laser gyro cavity is expanded in a straight line. 
With the given parameters of the mirrors expression (8) yields the 
following numerical estimates: p = 0.0028 mm–1, q = 0.0014 mm–1, 
x = 0.14, h = 0.07, af = 1.15 ́  10–6, as = 1.72 ́  10–6, cf = 461'', 
cs = 652'', bf = 5.91 ́  10–8, bs = 2.72 ́  10–8, wf = 0.205 mm, ws 
= 0.218 mm, w ( )f

x  = 0.186 mm, w ( )s
x  = 0.202 mm, w ( )f

y  = 0.227 
mm, w ( )s

y  = 0.235 mm, qf = 212'', qs = 225''. 
To calculate the parameters of the second group in the 

right-hand side of (7), we use the relation 

4 Sn n
pj
l

= ,	 (9)

where Sn (n = 1, 2, 3, 4) is the distance measured along the 
axial contour (clockwise) between the reference plane (located 
at the origin of the coordinates) and the centre of the mirror 
Mn. The origin of the coordinates is chosen on the surface of 
the mirror M1 at a point, where the centre of the light spot of a 
Gaussian beam is located (at this point the axial contour 
touches the surface of the mirror M1 and is reflected from it). 

To estimate Sn (n = 1, 2, 3, 4), we use the formula 

sinS t L( )
n n n m

m

m

n

1
1

q=- + -
=

/ ,	 (10)

where L0
(1) = 0 and L( )

m
m

1-  is the length of the laser gyro cavity 
arm between the mirrors Mm – 1 and Mm (which is the distance 
measured along the axial contour between the centres of light 
spots of the Gaussian beam on the surfaces of these mirrors); 
tn is the displacement of the centre of the light spot of the 
Gaussian beam at the surface of the mirror Mn relative to its 
centre (which is measured in the axial plane to the right); qn is 
half the angle between the arms of the laser gyro resonator at 
the mirror Mn (in our case, qn = p/4). It follows from (10) that 
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The methods for calculating the quantities L( )
m
m

1-  and tn 
for plane N-mirror misaligned (i.e., with displaced mirrors) 
laser gyro resonators of arbitrary (flat) form, containing, in 
the general case, plane-parallel plates in the arms, have been 
proposed in [40] and [41], respectively. Based on these tech-
niques, as applied to this laser gyro resonator for the situation 
under study, when the spherical mirrors move identically and 
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controllably in opposite directions to a distance w, for the 
mentioned values we can obtain the expressions 
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taking into account these expressions we derive from (11) 
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In order to simplify the final formulas, we assume that an 
integer of wavelengths l fits the length l of each arm of the 
laser gyro cavity. Then, in (13) the quantities l can be omitted 
and the relations for jn

j1 = j2 = jf,   j3 = j4 = js,	 (14)

can be written with the help of (9), where 

2 , 2w w
8 3
4 2

8 3
4 2 2

f sp pj
x
x

l
j

x
x

l
=

-

-
=-

-

-
	 (15)

are the phase angles, which depend both on the oppositely 
directed movements w of the spherical mirrors and on the param-
eter x, proportional to their optical power p in the axial plane. 

In view of (7), (8), (14), (15) the expressions for the quanti-
ties rj, ej ( j = 1, 2) take the form 

, ,arctanr
L
c A B

B

A
2

2j j j j
j

j2 2 p
= + = -e 	 (16) 

Aj = af sin ( cf " jf ) + as sin ( cs "  js) + bf cos jf + bs cos js, 	
(17)

Bj = af cos ( cf " jf ) + as cos ( cs " js) ± bf sin jf ± bs sin js.

Then, by substituting (17) into (16) we obtain the follow-
ing expanded relations for the calculation of the parameters 
rj and e12: 

rj = rj (j) = 2L
c {af

2 + as
2 + bf

2 + bs
2 + 2 [af bf sin cf

	 + as bs sin cs + bf bs cos j + af as cos ( cf – cs " j)

	 + af bs sin ( cf " j) + as bf sin ( cs ± j)]}1/2,	 (18)

e12 = e12(j) = p – arctan  ( )
( )

D

N

j
j
,	 (19)

N(j) = af
2 sin 2cf + as

2 sin 2cs + 2(af bf cos cf + as bs cos cs)

	 + 2 [af as sin( cf + cs) + af bs cos cf + as bf cos cs ] cos j,

D(j) = af
2 cos 2cf + as

2 cos 2cs – 2(af bf sin cf + as bs sin cs)

	 – bf
2 – bs

2 + 2 [af as cos( cf + cs) – af bs sin cf 

	 – as bf sin cs – bf bs ] cos j,

where

j = jf – js = 2p ( 2w/l)	 (20)

is the phase angle, which depends only on the oppositely 
directed movements w of the spherical mirrors.

It follows from the analysis of expressions (18) – (20) that 
the values of r1, r2 and e12 are periodic functions of w with a 
period wperiod = ( 2/2) l. The latter means that the parameters 
W(+), W(–), W(0), Ws of the synchronisation zone of the frequen-
cies of the counterpropagating waves of the laser gyro under 
study will also be periodic functions of w with the specified 
period. In addition, the analysis of (18), (20) implies that in 
this device the linear coupling of the counterpropagating waves 
will be symmetrical (r1 = r2) only in two particular cases: w = 0, 
j = 0 (the maximum degree of coupling) and w = ( 2/4) l, 
j = p (the minimum degree of coupling). 

The relations (6), (8), (18) – (20) obtained in this section for 
calculating the parameters G, r1, r2, e12 of the laser gyro under 
consideration allow us to proceed to quantitative assessment 
of the dependence of W(+), W(–), W(0), Ws on the active-medium 
gain g. 

3. Quantitative estimation of the dependence 
of the synchronisation zone parameters of  
the counterpropagating wave frequencies  
of the laser gyro on the active-medium gain 

3.1. Symmetric linear coupling of counterpropagating waves 

Consider first the particular case of symmetric (r1 = r2) linear 
coupling of counterpropagating waves provided that it mani-
fests itself to the maximum extent. Such a situation would occur 
in the case of the initial geometry of the laser gyro cavity, 
when w = 0 and j = 0. In this case, we derive from expressions 
(18), (19) [7] 

r1 = r2 = rj (0) = 2L
c {af

2 + as
2 + 2 [ af as cos ( cf – cs)

	 + (af sin cf + as sin cs) (bf + bs)] + (bf + bs)2}1/2,	 (21)

e12 = e12(0) = p – arctan  ( )
( )

D

N

0

0
,	 (22)

N(0) = af
2 sin 2cf + as

2 sin 2cs + 2 [af as sin( cf + cs) 

	 + (af cos cf + as cos cs) (bf + bs )] ,

D(0) = af
2 cos 2cf + as

2 cos 2cs + 2 [af as cos( cf + cs) 

	 – (af sin cf + as sin cs) (bf + bs )] – (bf + bs )2,

which, under the given above parameters of the mirrors, yield 
the following numerical estimates: r1 = r2 = 8616 s–1, (L/c)r1 = 
(L/c)r2 = 5.74 ́  10–6, e12 = 176.24°. 

The dependence of the quantity Ws on the relative excita-
tion parameter Nrel = g/G (at G = 360 ́  10–6), constructed on 
the basis of expressions (3), (4), (6), (8) with account for the 
values of r1, r2 and e12 found by formulas (21), (22), is shown 
in Fig. 1. One can see that with increasing active-medium gain 
g = G Nrel from the minimum (2 ́  360 ́  10–6) to the maximum 
(8 ́  360 ́  10–6) value, the half-width Ws of the synchronisation 
zone of the counterpropagating wave frequencies of the laser 



469A laser gyro with a four-mirror square resonator

gyro under consideration decreases (approximately by the 
hyperbolic law), asymptotically approaching an established 
finite value Ws

asymp = 0.065 deg s–1 (the lower horizontal dashed 
line), which was calculated by formula (5). This behaviour 
of Ws is in qualitative agreement with experimental data of 
[18, 19] and, in particular, [20] (see Fig. 1 in [20]), which were 
obtained for laser gyros with three-mirror equilateral cavities. 

3.2. Asymmetric linear coupling of counterpropagating waves 

Consider now the general case of asymmetric (r1 ¹ r2) linear 
coupling of the counterpropagating waves. This situation in the 
laser gyro will take place at w ¹ 0 and w ¹ ( 2/4) l. Figure 2 
shows the dependences plotted on the basis of formulas (3) 
taking into account relations (4) – (6), (8), (18) – (20). These 

figures illustrate the dependence of the parameters W(+), W(–), 
W(0), Ws, and Ws

asymp (lower dashed curve) on the value of w, 
varying in the range 0 – wperiod. The dependences in Fig. 2a cor-
respond to the minimum value of the relative excitation param-
eter Nrel = 2, when the active-medium gain g is 2 ́  360 ́  10–6. 
The dependences in Fig. 2b correspond to the maximum value 
of the parameter Nrel = 8, when the active-medium gain is 
8 ́  360 ́  10–6. 

The analysis of the dependences shown in Fig. 2 implies 
the following: (i) in the general case of the asymmetric linear 
coupling of the counterpropagating waves of the laser gyro 
under study, the left and right boundaries of the synchronisa-
tion zone of the frequencies of these waves are located (rela-
tive to the origin of coordinates) at different distances, so that 
the centre of the zone is shifted along the axis of the angular 
velocity W; (ii) the coordinates of these boundaries and the 
coordinate of the centre of the zone are periodic functions of 
the identical oppositely directed controllable movements of the 
spherical mirrors. These two facts agree qualitatively with 
the  experimental data [21] (see Fig. 6 in [21]), which were 
obtained for a laser gyro with a three-mirror equilateral cavity. 
In addition, it also follows from the analysis of the dependences 
that with increasing active-medium gain, the shift of the centre 
of the synchronisation zone and its half-width decrease. 

4. Conclusions 

In this paper we have considered a laser gyro with a four-
mirror square cavity having a perimeter of 20 cm. Using 
expressions (3), (4) given in [8] and additional relations (6), (8) 
(18) – (22) obtained in Section 2, we have presented a quanti-
tative assessment of the dependence of the parameters W(+), 
W(–), W(0), W s of the synchronisation zone of the counterprop-
agating wave frequencies on the active-medium gain g for the 
laser gyro in question. This estimate is in qualitative agree-
ment with well-known experimental data [18 – 21] obtained 
for three-mirror cavity gyroscopes. 
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Figure 1.  Dependence of the quantity Ws on Nrel at w = 0. The horizontal 
dashed line is the asymptote Ws

asymp.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
–0.5

0

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 w/l

–0.02

0

0.02

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
–0.10

–0.05

0

0.05

0.10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
–0.010

–0.005

0

0.005

0.010

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

0.05

0.10

W(+), W(–)/deg s–1

W(0)/deg s–1

Ws, Ws
asymp/deg s–1 Ws, Ws

asymp/deg s–1

W(0)/deg s–1

W(+), W(–)/deg s–1

a b

2

w/l2

w/l2

w/l2

w/l2

w/l2

Figure 2.  Dependences of the quantities W(+), W(–), W(0), Ws (solid curves) and Ws
asymp (dashed curves) on w at Nrel = 2 (a) and 8 (b).



	 E.A. Bondarenko470

References 
  1.	 Chow W.W., Gea-Banacloche J., Pedrotti L.M., Sanders V.E., 

Schleich W., Scully M.O. Rev. Mod. Phys., 57, 61 (1985).
  2.	 Wilkinson J.R. Prog. Quantum Electron., 11, 1 (1987).
  3.	 Aronowitz F., in Optical Gyros and their Application (Neuilly-sur-

Seine, France, RTO AGARDograph 339, 1999).
  4.	 Menegozzi L.N., Lamb W.E., Jr. Phys. Rev., 8, A2103 (1973).
  5.	 Aronowitz F. Appl. Opt., 11, 2146 (1972).
  6.	 Aronowitz F., Killpatrick J.E., Callaghan S.P. IEEE J. Quantum 

Electron., QE-10, 201 (1974).
  7.	 Bondarenko E.A. Dokl. VII Mezhd. Nauchn.-Tekhn. 	

Konf. ‘Girotekhnologii, navigatsiya, upravlenie dvizheniem 	
i konstruirovanie aviatsionno-kosmicheskoi tekhniki’ (Proc. 	
VII Int. Conf. ‘Gyrotechnology, navigation, movement control 
and aerospace technic engineering’) (Kiev, 2009) pp 115 – 124. 

  8.	 Bondarenko E.A. Kvantovaya Elektron., 41, 824 (2011) 	
[ Quantum Electronics, 41, 824 (2011)]. 

  9.	 Landa P.S., Lariontsev E.G. Radiotekhn. Elektron., 15, 1214 
(1970). 

10.	 Andronova I.A., Bershtein I.L. Izv. Vyssh. Uchebn. Zaved., Ser. 
Radiofiz., 14, 698 (1971). 

11.	 Landa P.S. Opt. Spektrosk., 32, 383 (1972).
12.	 Zeiger S.G., Klimontovich Yu.L., Landa P.S, Lariontsev E.G., 

Fradkin E.E. Volnovye i fluktuatsionnye protsessy v lazerakh 
(Wave and Fluctuation Processes in Lasers) (Moscow: Nauka, 
1974). 

13.	 Landa P.S. Avtokolebaniya v sistemakh s konechnym chislom 
stepenei svobody (Self-oscillations in Systems with a Finite 
Number of Degrees of Freedom) (Moscow: Nauka, 1980). 

14.	 Rodloff R. IEEE J. Quantum Electron., QE-23, 438 (1987).
15.	 Khromykh A.M. Elektron. Tekhn., Ser. Lazer Tekhn. Optoelektron., 

2 (54), 44 (1990). 
16.	 Azarova V.V., Golyaev Yu.D., Dmitriev V.G. Kvantovaya 

Elektron., 30, 96 (2000) [ Quantum Electron., 30, 96 (2000)]. 
17.	 Birman A.Ya., Petrukhin E.A., Savushkin A.F. Kvantovaya 

Elektron., 6, 2626 (1979) [ Sov. J. Quantum Electron., 9, 1557 
(1979)]. 

18.	 Aronowitz F., Collins R.J. J. Appl. Phys., 41, 130 (1970).
19.	 Aronowitz F., Lim W.L. IEEE J. Quantum Electron., QE-13, 338 

(1977).
20.	 Chao S., Lim W.L., Hammond J.A. Proc. SPIE Int. Soc. Opt. Eng., 

487, 50 (1984).
21.	 Kataoka I., Kawahara Y. Jpn. J. Appl. Phys., 25, 1365 (1986).
22.	 Ishchenko E.F. Zh. Prikl. Spektrosk., 11, 456 (1969).
23.	 Ishchenko E.F. Otkrytye opticheskie rezonatory (Open Optical 

Resonators) (Moscow: Sov. Radio, 1980). 
24.	 Aronowitz F. J. Appl. Phys., 41, 2453 (1970).
25.	 Aronowitz F. The Laser Gyro, in Laser Application (New York: 

Acad. Press, 1971) Vol. 1, p. 133. 
26.	 Andronova I.A. Izv. Vyssh. Uchebn. Saved., Ser. Radiofiz., 17, 

775 (1974). 
27.	 Blazhnov B.A. Zh. Prikl. Spektrosk., 21, 990 (1974). 
28.	 Haus H.A., Statz H., Smith I.W. IEEE J. Quantum Electron., 

QE-21, 78 (1985).
29.	 Statz H., Dorschner T.A., Holtz M., Smith I.W., in Laser Handbook 

(Amsterdam: North-Holland Publ. Co., 1985) pp 229 – 332.
30.	 Stedman G.E., Li Z., Rowe C.H., McGregor A.D., Bilger H.R. 

Phys. Rev. A, 51, 4944 (1995).
31.	 Astakhov K.V., Golyaev Yu.D., Makhin P.V., Mel’nikov A.V., 

Tikhmenev N.V. Giroskopiya i navigatisya, No. 2 (9), 25 (1995).
32.	 Astakhov K.V., Batovrin V.K., Golyaev Yu.D., Drozdov M.S., 

Mel’nikov A.V. Giroskopiya i navigatisya, No. 4 (11), 24 (1995).
33.	 Astakhov K.V., Batovrin V.K., Golyaev Yu.D., Drozdov M.S., 

Mel’nikov A.V., Tikhmenev N.V., Yasnov S.A. Trudy IV Sankt-
Peterburgskoi Mezhd. Konf. po Integrirovannym Navigatsionnym 
Sistemam (Proc. IV St. Petersburg Int. Conf. on Integrated 
Navigation Systems (St. Petersburg, 1997) pp 146 – 152. 

34.	 Schreiber U.K., Rowe C.H., Wright D.N., Cooper S.J., Stedman G.E. 
Appl. Opt., 37, 8371 (1998).

35.	 Volk C.H., Gillespie S.C., Mark J.G., Tazartes D.A., in Optical 
Gyros and their Application (Neuilly-sur-Seine, France, RTO 
AGARDograph 339, 1999).

36.	 Molchanov A.V., Morozov D.A., Stepanov A.Yu., Chirkin M.V. 
Trudy XIV Sankt-Peterburgskoi Mezhd. Konf. po Integrirovannym 
Navigatsionnym Sistemam (Proc. XIV St. Petersburg Int. Conf. on 
Integrated Navigation Systems (St. Petersburg, 2007) pp 38 – 40. 

37.	 Vasin I.A., Molchanov A.V., Morozov D.A., Chirkin M.V. 	
Trudy XV Sankt-Peterburgskoi Mezhd. Konf. po Integrirovannym 
Navigatsionnym Sistemam (Proc. XV St. Petersburg Int. Conf. on 
Integrated Navigation Systems (St. Petersburg, 2008) pp 68 – 70. 

38.	 Molchanov A.V., Stepanov A.Yu., Chirkin M.V. Aviakosm. 
Priborostroen., No. 3, 9 (2008). 

39.	 Bogdanov V.V., Mynbayev D.K. Opt. Spektrosk., 31, 101 (1971). 
40.	 Bondarenko E.A. Kvantovaya Elektron., 19, 171 (1992) [ Quantum 

Electron., 22, 154 (1992)]. 
41.	 Bondarenko E.A., in Mechanics of Gyroscopic Systems (Kiev, 

2010) Issue 22, pp 22 – 32. 


