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Abstract.   We consider the simplest process of stimulated emission, 
i.e., evolution of an excited two-level atom interacting with a quan-
tized electromagnetic field being initially in a one-photon state 
under different boundary conditions imposed on the field. We study 
the kinetics of evolution, spectral properties and modal composition 
of the radiation field emerging in such processes. It is shown that in 
the general case this field is only partly composed of doubly occu-
pied modes.

Keywords: two-level atom, photon, spontaneous emission, stimu-
lated emission, cavity, damping, identity of photons.

1. Introduction 

Let us start with the encyclopaedic definition: ‘Stimulated 
emission, induced emission, emission of electromagnetic radi-
ation by quantum systems as a result of interaction with inci-
dent radiation. Photons created in stimulated emission have 
the same frequency, direction of travel and polarisation as the 
photons triggering the emission’ [1]. In the conventional inter-
pretation, stimulated emission occurs when incident radiation 
interacts with quantum systems in excited states (below we 
will consider these systems to have a discrete energy spectrum 
and will call them the atoms). 

The assertion of the second sentence in the quotation may 
be called the central dogma of quantum electronics. It is 
widely known: It can be found in the Nobel lectures (1964) of 
the founders of quantum electronics – Ch.H. Townes 
[2, p. 60], N.G. Basov [2, p. 93], A.M. Prokhorov [2, p. 110], 
– and in today’s on-line encyclopaedias [3, 4], and in popular 
textbooks [5 – 7]. 

The theoretical basis of the central dogma is commonly 
assumed to originate from Dirac’s results presented in his 
paper [8], where he constructed the generally accepted 
Hamiltonian scheme describing the interaction of atoms with 
a quantized electromagnetic field. A specific goal of paper [8] 
was the derivation of expressions for the Einstein coefficients 
A and B of the model in which the electromagnetic field has 
been quantized, i.e., the solution of the same (as that in 
Einstein’s papers [9 – 11]) problem of the kinetics of the prob-
ability distribution over the stationary states of an atom 

under the action of a given broadband electromagnetic field 
(the Einstein – Dirac problem). 

Due to the property of the matrix elements of the photon 
creation operator 

a N N N1 1= + ++t ,	 (1)

in the first order of the perturbation theory the transition rate  
Nr  from the upper energy state to the lower one increases, 
compared with the same rate in the absence of the field W0o , 

W N W1 0= +o r o] g ,	 (2) 

where Wo  is the average number of photons in the field modes 
that are resonant with the transition. Equation (2) coincides 
with the Einstein equation d dW A B tr= +^ h  ( r is the spec-
tral density of radiation at the transition frequency). The 
increase in the transition rate is due to the processes leading to 
the emergence of the field modes, whose occupation exceeds 
unity. Because the photons of the same mode are identical in 
structure, we can draw the following conclusion: An increase 
in the rate of transitions from the excited state by an external 
field is due to the emission of photons that are identical to 
those in the initial state of the field. 

Such a conclusion is correct within the framework of the 
formulated Einstein – Dirac problem about the evolution of 
an atom (in general, a system with a discrete spectrum) under 
the action of a broadband external field, whose spectral den-
sity is continuous and varies little in the intervals of the order 
of the natural linewidth. However, we should remember that 
in deriving formula (2), summation over the field modes is 
replaced by integration, and the value ( )N wr  assumed con-
stant is removed from the integral ([8], see also [12, § 29]). 
Thus, the Einstein – Dirac problem describes not an elemen-
tary process of interaction between a single photon and an 
atom but a more complex process that occurs in the presence 
of many photons with different frequencies. 

By an elementary process of stimulated emission we mean 
the evolution of an atom interacting with a quantized electro-
magnetic field from the initial state in which the atom is 
excited, and the field is in a state with one photon in one of the 
field modes. The aim of this paper is to examine the kinetics 
and spectral properties of radiation of such processes under 
various boundary conditions imposed on the electromagnetic 
field. 

We consider a system with a Hamiltonian 

H H H Va f= + +t t t t ,	 (3)

where Hat  is the Hamiltonian of a two-level atom; 
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H a af 'w= m m m
m

+t t t/ 	 (4)

is the Hamiltonian of the quantized electromagnetic field; the 
subscript m numbers the modes of the electromagnetic field;  
wm is the frequency of the mode m;  a m

+t  and a mt  are the creation 
and annihilation operators of photons in the mode m. The 
interaction operator, following [13, p. 261], is taken in the 
dipole approximation: 

V u u= + m
m

+
mt tt _ i/ .	 (5)

Here 

( )i ad E r
2
V

'
u

p w
=-

m
m m
+

mt tt ;	 (6) 

V  is the volume of the region containing the electromagnetic 
field; dt  is the operator of the dipole moment; ( )E rm  is the 
distribution of the electric field strength in the mode m, nor-
malised by the condition 

( ) dE r r V=m
2y .	 (7) 

2. Elementary process of stimulated emission in 
the cavity (single-mode case, damping is absent) 

Let an atom interact with a single mode of the cavity field. In 
this case, the identity of all the photons is ensured by the con-
struction, but the problem about the kinetics of stimulated 
emission remains open. In the absence of the field decay, this 
model was considered by Jaynes and Cummings [14]. The 
Hamiltonian (3) can be written in traditional form, using the 
rotating field approximation: 

iH a a a a
2 2JC z
0'

' '
w s w s sW

= + + -+
+

+
-

t t t t t t t t^ h,	 (8)

where ist  are the Pauli matrices [ /2ix y!s s s=!t t t^ h ]. To sim-
plify the formulas, we restrict ourselves to the case of exact 
resonance, in which the frequencies of the atomic transition,  
w0, and the photon of the single mode, w, coincide. The vac-
uum Rabi frequency is 

2 d2
V'

z pwW = ,	 (9)

where d is the modulus of the matrix element of the compo-
nent of the dipole moment of transition, and z is a dimension-
less geometric factor that depends on the shape of the cavity, 
mode type and position of the atom in the cavity. For exam-
ple, for the fundamental TM modes of a cylindrical cavity 
and an atom in the antinode of the field (on the axis of the 
cavity) z  = 1.926 [14]. 

If in the initial state the field is in the N-photon state, the 
model becomes a two-level system with the state vector 
| ,K NY = + + L ,N 1- +  (in the basic state ,N+  the 
atom is in the upper state, in the mode of N photons; and in 
the basic state ,N 1- +  the atom is in the lower state, in the 
mode of N + 1 photons). The equations of motion for the 
amplitudes have the form 

,
d
d

d
d

t
K N L

t
L N K1

2
1
2

W W
= + =- + .	 (10)

Solutions of system (10) describe the exchange of energy 
between the atom and the field, occurring at the N-photon 
Rabi frequency N 1W W= +u . For the initial conditions 
K(0) = 1, L(0) = 0, the probability of finding an atom in the 
upper state is 

cosW t N t
2
1 1 1W= + ++] ^g h.	 (11) 

Consider, for example, an ammonia molecule (the transition 
frequency, w0 = 1.50 ́  1011 s–1; the matrix element of the dipole 
matrix, d = 1.47 ́  10–18 CGS units) in a cylindrical cavity of 
length L = 10 cm tuned to the fundamental mode frequency 
w0. Then, for the vacuum Rabi frequency, we obtain from (9)  
W = 62.8 s–1. It is interesting to compare this quantity with the 
rate Gs of spontaneous radiative transition in a free molecule; 
for the selected parameter values we have 

3.41 10 s
c

d
3
4

s 3

2
0
3

7 1
#

'

wG = = - - .	 (12)

The presence of a cavity tuned to the transition frequency 
increases, in our example, the rate of energy transfer from the 
atom to the field by about 108 times. 

3. Elementary process of stimulated emission in 
the cavity (single-mode case, damping is present) 

The cavities of the first masers had Q-factors in the range 
from 1000 [15] to 12000 [16]. Having taken a larger value, 
under the conditions of our example we obtain the rate of the 
field decay 

6.25 10 10s
Q2

6 1 5
# .k w W= = - ,	 (13)

i.e., in this case, the ‘atom’ (a molecule of ammonia) in the 
cavity is a strongly damped system, and the Jaynes – Cummings 
model (8) is not applicable to it even approximately. 

Progress in experimental facilities and methods (use of 
high-Q superconducting cavities, use of Rydberg atoms with 
a large dipole transition matrix element, etc.) made it possible 
to reach the region of small damping k << W. This was first 
done in the microwave range by Meschede et al. (k = 0.18W 
[17]), and in the optical range by Kimble (k = 0.14W [18]). It 
is therefore of interest to study the influence of damping on 
the kinetics of stimulated emission in a cavity in a wide range 
of values of the ratio h = k/W. 

Dynamics of a two-level atom bound to a single mode of 
the quantized electromagnetic field in a cavity with damping 
was first investigated by Sachdev [19]. The model was based 
on an equation for the density matrix of the system 

,i
t

H a a a a a a2JC2
2

'
r

r k r r r=- - - ++ + +t t t t tt tt t t t t^ h7 A .	 (14) 

Hereafter we restrict ourselves to the case of zero temperature 
of the cavity. Instead of considering the equations for the den-
sity matrix elements we can construct a system of equations 
for the moments 

, 0, 1A a a p Ap
p p

0H= =+t t] g ,	 (15)

, 0,B a a p B
2
1

2
1

p
p
z

p
z0Hs s= =+t t t t] g ,	 (16)
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, 0.C a a a a p >p
p p p p1 1s s= ++ -

- +
+ -t t t t t t] ]g g 	 (17)

For spontaneous emission (N = 0), this system takes the form 

, 2
d
d

d
d

t
B C

t
A C A

2 2
0

1
1

1 1kW W
= =- - ,

2 , 2
d
d

d
d

t
B C B

t
C B B C

4 2
1

1 1
1

0 1 1k kW W W W
= - =- - - - 	

(18)

(Ap, Bp, Cp º 0 при p ³ 2). System (18) permits an analytic 
solution [19], but it is cumbersome, and we restrict our con-
sideration to asymptotics for the limiting cases. In the case of 
weak damping ( %k W ), the probability of finding an atom in 
the upper state, W+ = B0 + 1/2, varies according to the law 

( ) coseW t t
2
1

t
. W+

k

+

-

] g,	 (19)

i.e., performs Rabi oscillations (11) with the vacuum fre-
quency, damping at a rate equal to half the rate of decay of 
the field energy without interaction with an atom. This can 
be easily interpreted: On average the system stores energy 
only half the time in a damping field mode. In the case of 
large damping (k >> W), the population decreases exponen-
tially 

( ) expW t t
2

.
k

W
-+

2
c m.	 (20) 

The exponent in (20) can be written as 

4 4c

d Q Q
2 3

4 3 3
V V

s3

2 3

2

2 3

2

2 3

' p pk
w z l z lW G= =

2
,	 (21)

where l = 2pc/w is the wavelength of resonant radiation. This 
result was first obtained by Purcell from the phenomenologi-
cal model in which the geometrical factor had a universal 
value z = 1 [20]. 

The simplest case of stimulated emission (N = 1) is 
described by the seventh-order system that is similar to (18): 

, 2
d
d

d
d

t
B C

t
A C A

2 2
0

1
1

1 1kW W
= =- - ,

2 , 2
d
d

d
d

t
B C B C

t
C B B C

4 2 2
1

1 1 2
1

0 1 1k kW W W W W
= - + =- - - - ,

4 , 4
d
d

d
d

t
A C A

t
B C B

2
2

1 2
2

2 2k kW W
=- - = - ,

2 2 3
d
d
t
C B B C2

1 2 2kW W W=- - - - 	

(22)

 

(Ap, Bp, Cp º 0 at p ³ 3). The general analytical solution of 
system (22) is impossible, but it can be easily solved numeri-
cally. Figure 1 shows the time dependences of the probability 
of finding an atom in an excited state for the spontaneous 
[N(0) = 0] and simplest stimulated [N(0) = 1] cases. 

We define the effective rate of emission G  by the equation 

3

( )dW t t1
0G = +y .	 (23)
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Figure 1.  Time dependences of the probabilities W+ of an initially ex-
cited two-level atom, interacting with a resonant damped mode of the 
electromagnetic field, to reside in the excited state (in units of W – 1) for 
the cases of small damping k = 0.1 W (a) and boundary damping k = W 
(b). The dashed curves show the spontaneous emission (the initial state 
of the field |0ñ), solid curves show the elementary stimulated emission 
(the initial state of the field |1ñ). 
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Figure 2.  Ratio of the effective rate of the elementary stimulated emis-
sion (G1) and spontaneous emission (G0) of a two-level atom with a sin-
gle resonant field mode vs. lg h = lg (k/W). 
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The dependence of the ratio of the effective rate of the sim-
plest stimulated (G1) and spontaneous (G0) emissions on h = 
k/W is shown in Fig. 2. 

One can see that in the case of small damping, the stimu-
lated emission occurs slower than the spontaneous emission; 
at a vanishingly low damping the ratio G1/G0 tends to 0.75. If 
h > 0.28, the stimulated emission is faster than the spontane-
ous emission. The maximum ratio G1/G0 is achieved at h = 
0.65 and equals 1.23. 

4. Elementary process of stimulated emission in 
the cavity (two-mode case, damping is absent) 

Consider now the problem in which the atom can interact 
with two modes of the cavity (without damping). Let one of 
them have the frequency w1 = w0, equal to the transition fre-
quency, while the second atom has a small detuning, 
2 0w w D= + , 0% wD . We will call them the resonant and 

nonresonant modes, respectively, and the vacuum Rabi fre-
quencies W for them are assumed the same. Then, in the 
approximation of the rotating field the system can be regarded 
as being in a superposition of the five states closest in energy: 

|Y  ñ = A |+10ñ + B | + 01ñ

	 + C | – 20ñ + D | – 02ñ +E | – 11ñ.	 (24)

The system of equations for the amplitudes has the form 

d
d e
t
A C E2

2 2
i tW W

= +
D- ,    

d
d e
t
B D E2

2 2
i tW W

= +
D- ,

d
d
t
C A2

2
W

=- ,     d e
dt
D B2

2
i tW

=-
D ,	 (25)

d
d e
t
E A B

2 2
i tW W

=- -
D .

The initial conditions corresponding to the simplest process 
are as follows: A(0) = 1, and all the other amplitudes at the 
initial moment of time are equal to zero. In this problem, we 
consider the appearance of states with two photons as a pro-
cess of copying of the initial photon. The solution of system 
(25) is of quasi-periodic character (without definite final 
state), and of greatest interest are the time-average probabili-
ties. The control parameter of system (25) is b = |2D|/W  –  the 
detuning of the nonresonant mode, referred to the half of the 
vacuum Rabi frequency. 

We introduce the notation p C 2
= , q E 2

= , r D 2
=  

for the time-average probabilities of the states in which the 
field contains two photons. The dependences of these vari-
ables on the logarithm of the parameter b are shown in Fig. 3. 

At b ® 0, when the mode frequencies approach each other, 
the field consisting of two photons, on average, with a prob-
ability of 3/8 contains two photons, which are identical to the 
initial photon; with a probability of 1/4  –  two photons in dif-
ferent modes; and with a probability of 3/8  –  two photons in 
a mode, which differs from the initial one. Thus, if the detun-
ing is negligible, then the time-average probability ¡ of find-
ing a field with two photons in a state with a doubly occupied 
mode is ¡(2) = 0.75. With the growth of b the quantity p, pro-
portional to the probability of finding two photons that are 
identical to the initial one, mostly increases, tending to the 

limiting value 1/2, which is characteristic of the single-mode 
case [see (11)]. The value of q at small b increases, reaching a 
maximum maxq = 0.204 at b = 1.0, and then generally 
decreases at b  >> 1 as q ≈ b–2. The value of r ( b) monotonically 
decreases: at large detunings r ≈ b–4. It is interesting to note 
minor violations of monotonicity p ( b) and r ( b) at b ≈ 2. 

The average frequency can be used as a measure of the 
frequency deviation of photons from the initial value. Then, 
the relative frequency error of copying will be given by the 
expression 

,F F p r q
q r

2
2

0
d b

w
b b bW

= =
+ +
+

w^ ^ ^h h h .	 (26)

Figure 4 shows the plot of the function F( b). One can see that 
it reaches a maximum, equal to 0.97, at b = 2.82. Therefore, 
when an atom interacts with two modes of the field with close 
frequencies in the cavity the frequency error of copying a pho-
ton dw can reach ~W / 2w0. Under conditions of the example 
used above dw = 2.09 ́  10–10. Note also that because the con-
sidered modes can have fields with a completely different 
structure, there can be no simple relationship between the 
field distributions in the modes of triggering and induced 
photons. 
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Figure 3.  Average probabilities of population of the modes vs.  lg b = 
lg (|2D|/W). Curve p shows two photons in the resonant mode, q – one 
photon in each of the modes, r – two photons in the nonresonant mode. 
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Figure 4.  Dependence of the function F (26), proportional to the fre-
quency error of copying, dw, on lg b = lg (2D/W). 
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5. Elementary process of stimulated emission 
in free space 

Consider now the scattering of a photon (we will call it initial 
and denote as |10ñ, and its frequency – as w) by an excited 
atom in free space. As usual, we assume that the field is in a 
cube with edge length L (L V3

= ) and obeys the periodic 
boundary conditions on the faces of the cube, and at the end 
of calculations passes to the limit V " 3. For a virtual cavity 
cube the distribution of the electric field Em(r) is given by the 
function exp ie k r-m m^ h, where em is the unit vector of the 
polarisation of the mode m, and km  is its wave vector; how-
ever, in the dipole approximation used by us we can simply 
put  Em(r) = em. 

In the first order of the perturbation theory, the process of 
emission of a photon with a frequency w1 by an excited atom 
in the presence of an initial photon with a frequency w is 
described by a standard Weisskopf – Wigner solution [21] (see 
also [22], § 18): The dynamic interaction of the incident pho-
ton and atom is absent, and the combinatorial interaction 
increases the transition matrix element by 2  times for a 
single mode. In the limit V " 3, this matrix element becomes 
infinitesimally small and introduces changes neither in the 
kinetics of the transition, which is exponential, 

( ) expW t tsG= -+ ] g,	 (27)

nor in the spectral distribution of radiation, which is 
Lorentzian, 

( )G 1
1

0 1
pw

w w g
g

=
- +2

2] g
	 (28)

(here g = Gs /2 is half the rate of spontaneous emission), and is 
independent of the initial photon frequency w. 

The observable effects, in which the incident photon inter-
acts dynamically with the atom, causing a transition in it, are 
described by the third order of the perturbation theory. As 
the two-level atom can undergo only a sequence of transitions  
|+ñ ® |–ñ ® |+ñ ® |–ñ, then in the rotating field approximation a 
process is possible, in which an atom emits a photon into 
mode m in the presence of the initial photon, and then absorbs 
the initial photon with frequency w, and, finally, emits a sec-
ond photon in mode v. The process in which the second tran-
sition is accompanied by absorption of the photon emitted 
with frequency wm, will not depend on the characteristics of 
the initial photon; it describes the radiative correction to the 
spontaneous emission of an atom. By the law of conservation 
of energy, the frequencies of the transition and photons are 
related by 

0w w w w+ = +m n .	 (29)

In the future we will be interested only in processes involving 
photons with frequencies close to the resonance frequency 
( 0 0%w w w-m ), so that everywhere except the resonance 
denominators, we assume the frequencies of all three photons 
to be identical and equal to w0. Taking into account the line-
width finiteness, the third-order composite matrix element 
has the form 

i
i

V
ade2 1 1 1

V

/

,

v

v

3 0
3 2

0
#

'p w
w w g

=
- +

- +m n n m

m

+t
u

t
b

^

]
l

h

g
=/

	 ´ 
i

a ade de1 1 1 1 1 1

0

0 0 0 0 0

w w g- +

+ - - +

m

m m m m m
+t tt t

^ h
= G.	 (30) 

The rate of the transition process in the elementary inter-
val on the energy surface is constant and is given by the for-
mula 

2d dW V Ek
3

'
p r=

2o u ]
]

g
g ,	 (31)

where dr(Ek) is the differential of the density of final states in 
an elementary interval of the integrals of motion (which differ 
from the energy) on the energy surface [8]. 

Let us find the spectral cross section of the photons emit-
ted in this process, which is proportional to the probability 
that the frequency of a photon lies in the range dw1 near w1: 

d d
c
WVs =
o
.	 (32)

Depending on whether the photons are emitted in an occu-
pied mode or in empty modes, the differential of the density 
of final states has a different order in V . The main contribu-
tion is made by processes in which photons are emitted in dif-
ferent modes ( m and n). For them, the differential of the den-
sity of final states is 

d d d d
c c2 2

V V
3

1
2

1 3
2
2

2 1
' '

'
p p

r w w wW W=
] ]

]
g g

g.	 (33)

If a photon of the mode m is emitted to the mode of the initial 
photon, then the matrix element receives a factor 2 , but the 
modes in (30) are summed only over the index of the final 
state of the mode v, 

d d
c2

V
3

1
2

1
'

r
p
w W=

] g
,	 (34)

and the corresponding contribution to the rate of the process 
at  V " 3 becomes vanishingly small. Similarly, negligibly 
small are the contributions from other cases in which combi-
natorial interaction takes place. Thus, statistically over-
whelming cases, in which both photons are emitted in the 
unoccupied modes, make a nonvanishing contribution to the 
spectral cross section of the elementary process of radiation 
upon scattering of a photon by an excited atom at  V " 3. 

The spectral cross section can be easily reduced to an 
expression of form 

, , ,
d
d

c
d G

9
16

1
3 7

6
0
7

0 1
'w

s w w w w g= ^ h,	 (35)

where the function G can be represented as the ratio of the 
fourth- and eighth-order homogeneous polynomials with 
respect to the arguments that have the character of the fre-
quency: 

, , ,
, , ,
, , ,

G
P
P

0 1
8 0 1

4 0 1w w w g
w w w g
w w w g

=^
^

^
h

h

h
.	 (36)

The expression for G, in general, is very cumbersome and we 
omit it here. In the case of the exact resonance (w = w0), the 
function G has a simple form: 

, , ,G 2
0 0 1 2

2
w w w g

gD
=

+
2^ dh n ,	 (37)
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where D = w1 – w0 is the detuning of the transition frequencies 
and of one of the emitted photons. The width of the emission 
line is close to the natural linewidth, but the shape is some-
what different (Fig. 5). For a Lorentzian line with small g, 
half the total spectral power lies in the range |D| G  g, and for 
the line of form (37), half the total spectral power lies in the 
range |D| G  0.442g. 

Note that the Mollow model [23], which describes the 
scattering of monochromatic radiation of frequency w by a 
two-level system relaxing with the resonant frequency w0, 
leads to the same form of the spectral distribution. For the 
case of exact resonance (w = w0), the power spectrum of the 
radiation in a weak field (W << g) has the form 

P
2

2
2

1 1 0 2 2pw
g

d w w
g

W
D

W
= - +

+
2 2

g2 2

] ]
^

g g
h

> H .	 (38) 

Here, W is the Rabi frequency of the (classical) field incident 
on the system, and the detuning D = w1 – w0. The first term 
describes the elastic scattering of single photons with energy 
conservation (the process is studied in detail by Heitler [22, 
p. 234]), whereas the second term, describing the scattering of 
pairs of photons with the energy exchange between them, has 
the same form as the dependence G(w). 

The total scattering cross section in the case of the exact 
resonance 

3 2

ps l= 	 (39)

is twice as large as the resonance fluorescence cross section 
(see [13, p. 416]). 

When the initial photon detunes from the resonance, the 
line shape (36), preserving the symmetry with the relative fre-
quency 20w w w= +r ] g , broadens, and at sufficiently large 
detunings splits roughly into two Lorentzian lines with inten-
sity maxima at the frequencies of the transition and initial 
photon (Fig. 6). 

The error of the spectral copying of the initial photon dw 
in the simplest process of stimulated emission in free space is 
determined by the ratio of the natural linewidth 

/2 2 /(3 )d cs
2

0
3 3'g wG= =  [see (12)] to its central frequency w0. 

This relation can be written in the form 

at

3 0
2

+d w
g

a w
w

=w b l ,	 (40) 

where a = e2/ћc is fine-structure constant;  wat =  me 4ћ –3  = 
4.13 ́  1016 s–1 is the atomic frequency scale. In the optical 
range the error of frequency copying, dw ~ 3 ́  10–9, is very 
small. On the contrary, the spatial characteristics of the initial 
photon are copied badly: The errors of copying the wave vec-
tor and polarisation vector are large, 1, 1k e+ +d d . Two rea-
sons lie behind this phenomenon. On the one hand, the atom 
that is a point one in the dipole approximation does not feel 
the spatial structure of the field  –  the dynamic interaction in 
free space is independent of the wave vector. On the other 
hand, the combinatorial interaction, leading to a small (by 
2  times) increase in the matrix element for the emission of a 

photon in an occupied mode, in free space is suppressed by 
reducing the number of possible final states. 

6. Conclusions 

The above calculations show that the two features inherent in 
the Einstein – Dirac problem (namely, an increase in the tran-
sition rate and the emergence of multiply occupied modes of 
the quantized radiation field) are present to variable degrees 
in the elementary processes of stimulated emission. When 
interacting with a single field mode in the cavity, copying of 
the photon is exact [the time-average probability of finding a 
field with two photons in a state with a doubly occupied mode 
is ¡(1) = 1], but in the presence of field decay the rate of the 
atomic transition to the lower state for stimulated emission 
may be either higher or lower than the transition rate for 
spontaneous emission. It follows from the problem with two 
cavity modes that copying of the initial photon is, in general, 
approximate, and its efficiency depends on the detuning of 
the second (nonresonant) mode. If the detuning is negligible, 
then the time-average probability of finding a field with two 
photons in a state with a doubly occupied mode is ¡(2) = 0.75 
(see Section 4). The calculations, which are not presented 
here, show that for the three resonant modes ¡(3) = 0.556. 
There is no doubt that with a further increase in the number 
of resonant modes the probability of double occupation of 
the modes will continue to fall. In the limiting case of an infi-
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Figure 5.  Shapes of the spectral distributions of the spontaneous emis-
sion (dotted curve) and the simplest stimulated emission (solid curve) in 
the case of resonance of the frequencies of the initial photon and transi-
tion. Half-width of the spontaneous emission line is g = 0.1. 
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Figure 6.  Shape of the spectral distribution of the simplest stimulated 
emission in the nonresonant case (w0 = 1, w = 0.7, g = 0.1).
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nite number of modes, corresponding to emission in free 
space, the scattering of a photon by an excited atom does not 
lead to double occupation of the modes, although the spectral 
copying of the initial photon takes place with high accuracy. 

Hence, it is necessary to clarify the definition of stimu-
lated emission (such a need, based on other considerations, 
was already noted in [24]). We can start with a trivial fact: The 
presence of the initial photon alters the evolution of the 
atomic system, its kinetics and the mode composition of the 
emerging radiation. 

If we follow Einstein and consider the change in the kinet-
ics of the transition to be a defining characteristic of stimu-
lated emission (the original term   –   Zustandsänderungen 
durch Einstrahlung, changing the state under irradiation 
[9 – 11]*), then the reference to the emission of identical pho-
tons should be removed from the definition of stimulated 
emission, because such emission may occur in part (see 
Section 4) or not occur at all (see Section 5). In addition to 
historical continuity, such a kinetic definition is more prefer-
able as it describes the phenomenon in the terms of observ-
ables and is not tied to a specific model. In particular, it 
admits the possibility of describing stimulated emission with 
the help of classical models, which was known to Einstein 
[9 – 11] and found widespread use in the scientific literature 
(see, for example, [27 – 29]). 

On the other hand, we can formally follow the central 
dogma and define stimulated emission as a process of emis-
sion of photons into occupied modes. In this case, the identity 
of the emitted photons to the initial photons will be guaran-
teed. But then, the change in the spectral properties of radia-
tion of an excited atom in free space in interacting with an 
external photon (see Section 5) will be described as a new, 
third process, because it will be neither spontaneous nor stim-
ulated emission. Occam’s razor eliminates this approach. 

It should also be noted that a completely incorrect state-
ment about the exact copying of a single photon upon its scat-
tering by the excited atom is everywhere (from school [30, 31] 
to university [5 – 7] textbooks) used to explain the high spatial 
directivity and quasi-monochromacity of laser radiation. 
Something must be done about it. 
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*The translators of papers [9 – 11] for a collection of Einstein’s papers 
[25] translated Einstrahlung (irradiation) everywhere as ‘induced emis-
sion’. First, it immediately led to physically incorrect assertions  –  for 
example, that ‘it can cause equally a decrease or increase in energy’ 
(p.  390). Secondly, it is an anachronism: the term ‘induced emission’ 
was introduced by Van Vleck only in 1924 [26], and the equivalent term 
‘stimulated emission’  –  by Dirac in 1927 [8].


