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Abstract.  We study the effect of d-electrons on heating of a gold 
target upon absorption of a femtosecond laser pulse as well as on 
subsequent thermal emission of hot electrons. It is shown that 
neglecting the effect of d-electrons leads to a significant overesti-
mation of the number of the emitted electrons. It is found that the 
approximate description of the heating field in the skin layer with-
out the inhomogeneity of the dielectric constant taken into account 
does not cause a significant change in the maximum temperature of 
the electrons at the metal surface, and has virtually no effect on the 
process of thermal emission. 

Keywords: femtosecond pulse, thermal emission of electrons, non-
uniform heating, d-electrons. 

1. Introduction

Interest in the study of electron emission from a metal is asso-
ciated with the problem of generation of high-density electron 
beams that can be used to solve important applied problems. 
The reason for the emission of electrons from the metal under 
the action of laser pulses can be multiphoton ionisation, 
thermionic emission, or the simultaneous manifestation of 
these mechanisms. It is known when the pulse duration is 
~100 fs or shorter, the thermal emission dominates even at a 
flux density of laser radiation over 109 – 1010 W cm–2 [1]. 
Often, when considering thermionic emission, use is made of 
the Richardson – Dushman formula for jT – the flux density of 
emitted electrons – obtained in the approximation when the 
electron temperature is considered uniform and not changing 
in time [2, 3]. The influence of the electron temperature gradi-
ent, which arises, in particular, during the heating of the metal 
due to absorption of a femtosecond laser pulse, on the value 
of jT is described in [4]. According to [4], for electron tempera-
tures less than the corresponding Fermi energy eF and the 
work function ef, the effect of nonuniformity of the tempera-
ture T on the value of jT is defined by the parameter 

( / ) ( / ) ( ) /l L e k T e k T2 B F BT+ f e fL + , 

where kB is the Boltzmann constant; e is the electron charge; 
lT is the electron mean free path with energy kBT; L is the scale 

of the temperature nonuniformity. Under certain conditions, 
this parameter is not always small. The temperature of elec-
trons varies with time as well. However, because the electrons 
are emitted from the surface layer whose thickness is less than 
the mean free path, and for a time shorter than the inverse 
collision frequency, the authors [5 – 8], using the 
Richardson – Dushman formula, assumed that by the tem-
perature T is meant its current value on the metal surface. In 
this case, the main emission occurs for a limited period of time 
when the electron temperature is close to its maximum value. 

Not all electrons emitted from the metal reach the detec-
tor. Due to the formation of a near-surface space charge, a 
part of slower electrons is localised for a relatively long time 
at the surface and prevents thermal emission. The number of 
electrons Nesc, capable of escaping the space charge field, is 
found in [5]. According to [5], in the case of thermal emission 
under the action of a femtosecond laser pulse, a significant 
deviation from the Richardson – Dushman law occurs when 
Nesce2/Rf ~ kBT (Rf is the radius of the focal spot). With such 
a large number of Nesc their number is proportional to the size 
of the focal spot and to the maximum temperature of the elec-
trons at the surface. At the same time, Nesc is logarithmically 
weakly dependent on the characteristic width of the time 
interval in which the temperature is close to its maximal value. 
It follows from the conclusions of work [5] that, considering 
the thermionic emission upon absorption of a femtosecond 
pulse, more emphasis should be placed on the correct calcula-
tion of the maximum temperature of the electrons at the metal 
surface: Tmax = max[T(z = 0, t)]. 

The main objective of this work – calculation of Tmax, and 
then Nesc – is achieved through the consistent description of 
the structure of the heating field created by a femtosecond 
laser pulse in the metal, and through the numerical solution of 
a coupled system of equations for the temperature of the elec-
trons T and lattice Tlat. Use of the concept of temperature to 
describe the heating of electrons is productive if the tempera-
ture varies over time greater than the inverse electron – elec-
tron collision frequency. In typical experiments, the electrons 
are heated to a temperature of ~1 eV, at which the time of 
their thermalisation is on the order of several femtoseconds. 
Therefore, the consideration given below is commonly used in 
studying the effect of pulses that are not shorter than 10 fs. 
The heating field in the skin layer is found, as before [9, 10], 
using a small ratio of the collision frequency to the carrier 
frequency of the laser pulse with an inhomogeneous dielectric 
constant of the metal slowly varying in time taken into 
account. This approach to the description of the field has 
allowed us to obtain an expression for the absorption coeffi-
cient A and, consequently, for the rate of electron heating, 
differing from that used in [5 – 8]. The authors of these papers 
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derive an expression for A by using heuristic arguments, 
based on the Fresnel formulas to be applied at the interface 
between homogeneous media. 

The equations for T and Tlat are solved numerically to 
described the effect of a femtosecond pulse on a target made 
of gold. In this case, as in [6] (see also [8]), these equations 
take into account the effect of d-electrons on the electron heat 
capacity Ce, chemical potential m and parameter G, which 
characterises the energy exchange between the electrons and 
the lattice. Simple interpolation formulas for  Ce, m and G are 
obtained using the data of [11] devoted to studying the effect 
of d-electrons on these parameters in the electron temperature 
range of ~1 eV. The dependence of Nesc on the flux density of 
the heating pulse is found. 

2. Field in a metal 

Consider the interaction of a femtosecond laser pulse with a 
metal occupying the half-space z > 0. We assume that the 
pulse propagates along the z axis, and the field strength in it is  
Ei (z, t) = (Ei (z, t), 0, 0): 

( , ) exp i iE z t E t c
z t kz

2
1

i 0 w= - - +` ]j g + c.c.,	 (1)

where w is the carrier frequency; k = w/c is the wave number; 
c is the speed of light; the amplitude E0(t – z/c) for time ~1/w 
and at a distance ~1/k varies slightly. The field strength of the 
reflected pulse is written in the form  Er (z, t) = (Er (z, t), 0, 0): 

( , ) exp i iE z t RE t c
z t kz

2
1

r 0 w= + - -` ]j g + c.c.,	 (2)

where R is the complex reflection coefficient. The electric field 
in the metal has the form 

( , ) ( ( , ),0,0)z t E z tEm m= ,

( , ) ( , )exp iE z t E z t t
2
1

m w= -] g + c.c.,	

(3)

where E(z, t) slightly changes during the time ~1/w. Then, in 
accordance with Maxwell’s equations for E(z, t) we have 

¶
¶ ( , ) ( , ) ( , ) 0
z
E z t k z t E z t2

2
2e+ = ,	 (4)

where the dielectric constant e(z, t) depends on the coordi-
nates and time through the corresponding dependences of the 
effective electron collision frequency n(z, t). Considering the 
conditions under which the frequency w is much greater than 
n(z, t), for e(z, t) we use the expression

( , )" z t( , ) iz te e e= +l ,	 (5)

where e' = e'0 (w) – wp
2/w2 < 0; e0"(z, t) = e0"(w) + wp

2 n(z, t)/w3; e0(w) 
 = e'0 (w) + ie0"(w) is the contribution to the dielectric constant 
from the bound electrons and the lattice; wp is the electron 
plasma frequency. In pure normal metals, the frequency 
n(z, t) can be represented as a sum of the frequencies of elec-
tron – phonon [nep(z, t)] and electron – electron [nee(z, t)] colli-
sions: 

( , ) ( , ) ( , )z t z t z tep een n n= + ,	 (6)
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T z t

ep ep
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0
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ee
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'
n e= .	 (8)

Equation (7) approximates the frequency of collisions 
between electrons and phonons at lattice temperatures 
Tlat(z, t), lower than the melting temperature but higher than 
the Debye temperature, Tlat(z, t) > T0; nep(T0) is the collision 
frequency before the action of a heating femtosecond pulse. 
In formula (8) ħ is Planck’s constant; T = T(z, t) is the elec-
tron temperature, which is considered smaller than eF/kB; the 
constant a depends on the type of the band structure of the 
metal. Equation (8) describes the scattering of electrons by 
taking into account umklapp processes, and it neglects an 
additive contribution of the form /(4 )F

2 2'+ pw e  [12], which is 
independent of temperature T(z, t). For a given frequency w 
this leads to a slight change in the initial value of the collision 
frequency, which is mainly determined by nep(T0), if the fre-
quency w refers to the visible frequency range, and T0 is the 
room temperature. 

Equation (4) must be supplemented by boundary condi-
tions. Taking into account the continuity of the electric and 
magnetic fields at the surface z = 0 and assuming that deep 
inside the metal the field is equal to zero, we have two bound-
ary conditions: 

¶
¶ ( , ) ( , ) 2 ( ), ( , ) 0i

k z
E z t E z t E t E z t

z 0
0 " 3- + = =

=
: D .	(9)

Following paper [9], we seek the solution to equation (4) 
in the form 

( , ) ( , ) ( , )exp iE z t E z t z tn
n

n
n0 0
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3 3

= =

= =G G/ / ,

where the subscript n corresponds to the nth order of the per-
turbation theory in the parameter n(z, t)/w. Then, up to terms 
linear in n(z, t)/w, from (4) and (9) we find 
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where ( )d k 1e= - -l  is the characteristic depth of penetra-
tion of the field into the metal; 

3

( ) ( , )exp dt
d

z t
d
z z2 2

0
e e= -ll ll l l lb ly 	 (12)

is the averaged imaginary part of the dielectric constant. 
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In the same approximation in n(z, t)/w, as defined by  R = 
|R|exp(if) and A = 1 – |R|2, for the absorption coefficient A 
and the phase shift f of the reflected pulse, we have 

( ) ( )A t
k d
k d t

1
2

2 2

3 3
- e

+
ll ,	 (13)

arctan
k d
kd

1
2

2 2- pf +
-

c m.	 (14)

3. Heating of the electrons and the lattice 

Absorption of electromagnetic field energy in the skin layer 
leads to heating of the electrons and the lattice. The basis for 
describing the evolution of the electron temperature is given 
by the equation 

¶
¶( , ) ( , ) ( , ) | ( , )|C z t
t
T z t z t E z t

8e
2

p
w e= ll

	 + ¶
¶

¶
¶( , ) ( , ) ( , ) ( , ) ( , )z z t z T z t G z t T z t T z tlatl - -8 6B @,	 (15)

where Ce = Ce(z, t) is the specific heat of electrons; l(z, t) is the 
coefficient of thermal conductivity; G = G(z, t) is the param-
eter describing the energy exchange between the electrons and 
the lattice. In accordance with (10) the power absorbed by 
electrons has the form 

( , ) | ( , ) |z t E z t
8
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Integrating expression (16) over the thickness of the metal, we 
derive the absorption coefficient of the form (13) 

3

( , ) | ( , )| ( ) ( )dz z t E z t A t I t
8

2

0p
w e =lly ,	 (17)

where ( ) ( ) /8I t cE t0
2 p=  is the flux density of the laser pulse. 

Equation (15) is used below to describe the heating of elec-
trons in the interaction of a femtosecond pulse with a gold 
target. Usually, considering the specific heat of electrons, a 
relatively simple expression   ( , ) ( , ) /2C z t Nk T z te B F

2 2- p e  is 
used, where N is the conduction electron density. However, it 
is known that for gold at temperatures of ~1 eV, d-electrons, 
which have a high density of states, make a significant contri-
bution to Ce(z, t). Below, in considering hot electrons we will 
use heat capacity calculated in [11]. For convenience of calcu-
lations, we approximate the curve Ce(z, t), shown in Fig. 4c 
from paper [11], by the function

( , ) ( , ) . ( , )C z t CT z t T z t1 3 37 10e
4

= + -7 A"

	 . ( , )T z t1 28 10 4
- - 27 A ,,	 (18)

where C - 5.25 ́  102 erg cm–3 K–2, and the temperature 
T(z,  t) is measured in kelvins. The plot of function (18) is 
shown in Fig. 1. 

The thermal conductivity coefficient l(z, t) is related to 
the specific heat by the expression 

( , )
( , )

( , )z t
z t

C z t
3

F
e

2

l
n

u
=

l
,	 (19)

where uF is the Fermi velocity, and nl(z, t) is the effective elec-
tron collision frequency, which differs from n(z, t) (6) by the 
numerical values of vep l(T0) ¹ vep(T0) and b ¹ a: 

( , ) ( , ) ( , )z t z t z tep een n n= +l l l ,
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In equation (15) the function G(z, t) depends on tempera-
ture. Processing the data of Fig. 4d from paper [11], obtained 
for gold, we can express G(z, t) in the form 

( , ) ( , ) . ( , )G z t G T z t T z t1 5 10 0 79 104 2 4 4
= + -- -7 7A A# -,	 (21)

where G = 2.7 ́  108 erg s–1 K–1 cm–3. The accuracy of formula 
(21) is slightly lower than that of formula (18). The latter, 
however, does not lead to any significant change of the quan-
tities T(z, t) and Tlat(z, t) for times less than a few hundreds 
of femtoseconds and at temperatures of less than 2 eV. In this 
case, the evolution of the lattice temperature is described by 
the equation 

¶
¶ ( , ) ( , ) ( , ) ( , )C tT z t G z t T z t T z tlat lat lat= -6 @,	 (22)

where Clat - 3kBNa is the specific heat of the lattice; Na is the 
density of lattice atoms. 

Below we discuss the solutions to equations (15), (22) 
under the assumption that before the action of a laser pulse, 
the temperatures of the electron and the lattice are the same, 

( , ) ( , )T z t T z t Tlat 0" "3 3- = - = .	 (23)
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Figure 1.  Dependence of the electron heat capacity Ce on the tempera-
ture T for gold. The solid curve corresponds to formula (18), points – to 
the data of Fig. 4c from [11]. 
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In addition to the initial conditions (23), equation (15) must 
be supplemented by two boundary conditions. One of them 
corresponds to a given value of the temperature inside the 
metal, 

( , )T z t T0" 3 = ,	 (24)

and the second follows from the continuity of heat flux on the 
surface of the metal, i.e., at z = 0. Electrons are emitted from 
the surface z = 0, which is accompanied by the removal of 
heat. However, in the range of temperatures and flux densities 
of laser radiation, the heat flux caused by thermal emission of 
electrons is small [7], and the second boundary condition can 
be written as 

¶
¶( , ) ( , ) 0z t
z
T z t

z 0
-l

=
.	 (25)

As already noted, to describe the emission of electrons it is 
necessary to know the evolution of their temperature on the 
metal surface. To this end, we consider the numerical solution 
to equations (15), (20) when a femtosecond pulse of a Cr : for-
sterite laser with a carrier frequency w - 1.5 ́  1015 s–1 irradi-
ates a target made of gold. We assume that the flux density 
varies according to the law ( ) ( / )expI t I t tp0

2 2
= - , where the 

time tp characterises the pulse duration 2 ln t2 pt =  = 100 fs. 
The maximum flux density in the calculations varied from 
5 ́  1011 to 4 ́  1012 W cm–2. For gold at a temperature T0 = 300 
K we used the following collision frequencies of electrons 
with phonons: nep(T0) = 9.3 ́  1013 s–1 [13] and nepl(T0) = 
3.7 ́  1013 s–1 [14]. The plasma frequency is wp = 1.37 ́  1016 s–1, 
which corresponds to N - 5.9 ́  1022 cm–3, eF = 5.5 eV and 
uF=1.4 ́  108 cm s–1. The parameters a and b, known with a 
low degree of accuracy, are taken equal to 1 and 2, respec-
tively (cf. the data of [15]). Finally, in accordance with the 
experimental data [13], the quantities e0' (w) and e0"(w) corre-
sponding to the frequency w - 1.5 ́  1015 s–1 are equal to 11 
and 1.2. 

The solid curve in Fig. 2 shows the dependence of the 
maximum temperature Tmax of the electrons at the gold target 
surface on the maximum flux density I0. The dependence 
Tmax(I0) (dashed curve) is obtained by neglecting the contri-

bution of d-electrons to the heat capacity, i.e., in the calcula-
tions we used the approximation   ( , ) ( , ) /2C z t Nk T z te B F

2 2- p e  
[cf. (18)]. According to Fig. 2 in almost the entire range of 
considered values of I0, neglecting the influence of d-electrons 
leads to a significant overestimation of Tmax. The dotted curve 
shows the dependence Tmax(I0), obtained by using of the heat 
source of the form [cf. (16)] in equation (15) 

8
( 0, ) | ( , ) |z t E z t 2

p
w e =ll ,	 (26)

which leads to the Fresnel formula for the absorption coeffi-
cient. Although the neglect of the inhomogeneity, e"(z, t), in the 
skin layer leads to a noticeable error in the absorption coeffi-
cient [9, 10], the value of Tmax, obtained by using the source 
(26), is close to that derived in a more exact calculation (Fig. 2). 

The dependence of the lattice temperature at the surface 
at the instant of the pulse switching off (t = 3tp) on I0 is shown 
in Fig. 3. Due to the significant effect of d-electrons on the 
value of the function G(z, t) (21), the lattice is heated more 
strongly than in the case of ( , ) ( , )andG z t G C z te -=  

( , ) /2Nk T z tB F
2 2p e (dashed curve in Fig. 3). The influence of 
inhomogeneity e"(z, t) is small, as is evident from a compari-
son of solid and dotted curves. Note that in the whole range 
of the considered I0, the temperature Tlat at the instant t = 3tp 
is much smaller than the melting temperature of gold Tmelt = 
1336 K.

4. Thermal emission of electrons 

At the energy flux densities of a laser pulse heating a gold 
target being considered, the thermal emission leads to the for-
mation of a relatively large space charge of electrons above 
the surface of the target. The resulting difference in the poten-
tials complicates the electron emission from the metal, which 
shows up in a change in the properties of thermal emission. At 
electron temperatures of ~1 eV and focal spot radii of ~100 
mm, the Richardson – Dushman formula gives a higher value 
of the flux density of emitted electrons. To describe the ther-

I0/1012 W cm–20 1 2

10000

15000

5000

Tmax/K

Figure 2.  Dependences of the maximum temperature Tmax of the elec-
trons at the target surface on the maximum flux density I0 (solid line); 
the dashed curve is the calculation, without the effect of d-electrons 
taken into account; the dotted curve – without taking into account 
changes in e"(z, t) in the skin layer. 

300

325

350

375

Tlat/K

0 1 2 I0/1012 W cm–2

Figure 3.  Dependences of the lattice temperature Tlat at the target sur-
face on I0 at the instant of the pulse switching on (t = 3tp). The dashed 
curve is the calculation, without the effect of d-electrons on Ce(z, t) and 
G(z, t) taken into account; the dotted curve – without taking into ac-
count changes in e"(z, t) in the skin layer. 
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mal emission in these conditions, the authors of paper [5] pro-
posed the formula 

N
ge
k T Rmax

esc
B

f2=

´ ( )
ln exp

ge
m R k T

k T
T e

1
2

max max
max

max
f B

B

F
3

2

'p
t

e m f
+ -

- +; E( 2,	 (27)

which gives the number of emitted electrons, Nesc, with the 
account for the influence of the space charge on the process of 
thermionic emission. In (27) g ~ 1 is a geometric factor; tmax is 
the characteristic time during which the electron temperature 
is close to Tmax. For example, if the near-surface charge has a 
disk shape, then g = 16/3p; for a sphere g = 6/5 [5]. Accuracy 
of setting tmax is even smaller. Typically, the time tmax exceeds 
by several times the typical pulse duration t. However, when  

/k T N e RmaxB esc f
2L , the inaccuracy of setting g and tmax leads 

to logarithmically small errors in Nesc. Equation (27) includes 
the chemical potential m, depending on Tmax. In calculations 
the function m(T ) was approximated by the formula 

( , ) [ ( , )] . ( , )z t T z t T z t1 0 074 10F
4/ /m m m e= + - 27 A# -,	(28)

taking into account the effect of d-electrons. Figure 4 illus-
trates the proximity of the interpolation formula (28) to the 
data of Fig. 4b from paper [11]. 

Using the data on the heating of electrons, given in 
Section 3, we consider the dependence of the number of the 
emitted electrons Nesc (27) on the maximum flux density I0. 
We restrict ourselves to consideration of the conditions when 
the parameter L (see Introduction) is sufficiently small. The 
dependence of lg Nesc(I0) is shown in Fig. 5 by the solid curve. 
The dashed curve corresponds to the calculation without tak-
ing into account the influence of d-electrons on the heat 
capacity Ce(z, t), chemical potential m(z, t) and function 
G(z,  t). Note that due to the contribution of d-electron, the 
effect of m(z, t) and G(z, t) variations on the subsequent calcu-
lation of Nesc is substantially less than the corresponding 

effect caused by changes in Ce(z, t). According to Fig. 5 the 
neglect of d-electrons can lead to an overestimation of Nesc 
almost by an order of magnitude. The dots in Fig. 5 present 
the calculations of Nesc for Tmax, calculated without taking 
into account the inhomogeneity of the dielectric constant at 
the scales of the skin layer. A very slight difference between 
the dotted and the solid curve is the result of proximity to the 
corresponding curves for Tmax in Fig. 2. The latter is not sur-
prising, since the effect of inhomogeneity on Tmax = max[T(z 
= 0, t)] in the framework of the approximations made mani-
fests itself only through the removal of heat from the skin 
layer, which does not lead to a substantial decrease in Tmax, 
achieved within ~100 fs. However, the dependence of Nesc on 
Tmax at the metal surface can raise the question of the need for 
a more detailed analysis of the influence of the quasi-station-
ary electric field in the vicinity of z = 0 on the process of ther-
mal emission. The influence of such a field is possible both 
due to the temperature gradient [4] and due to the formation 
of a space charge at the metal surface. Analysis of the effect of 
a quasi-stationary field on Nesc is the subject of future consid-
eration, involving a new formulation of the problem for cal-
culating the field in the surface layer. 

5. Conclusions 

We have given a quantitative description of the heating of a 
gold target by a femtosecond laser pulse and have analysed 
the influence of heating on the thermal emission of electrons. 
Under conditions when the electrons are heated up to a tem-
perature of ~1 eV, we have demonstrated the important role 
of d-electrons both during the heating of the target and during 
the subsequent thermal emission. The effect of d-electrons 
manifests itself through the change of such physical charac-
teristics as the specific heat of the electrons, chemical poten-
tial and parameter characterising the energy transfer from 
electrons to the lattice. Changing these values leads to changes 
in laws of evolution of the electron temperature at the target 
surface, which has a strong influence on the process of ther-
mal emission. On the other hand, a detailed description (used 
in this paper) of the spatial distribution of the heating field 
has not resulted in significant changes in the number of emit-

m – eF/eV

0

0

0.5

0.5

1.0

1.0

1.5

1.5 T/104 K

Figure 4.  Dependence of the chemical potential m on the electron tem-
perature T for gold. The solid curve is calculated by formula (28), the 
dots correspond to the data of Fig. 4b from paper [11]. 
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Figure 5.  Dependence of the number of emitted electrons, Nesc, on I0 
(solid line); the dashed curve is the calculation, without the effect of d-
electrons taken into account; the dotted curve – without taking into 
account the inhomogeneity of the imaginary part of the dielectric con-
stant.
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ted electrons. This conclusion stems from the fact that in 
order to determine the number of emitted electrons, it is 
important to know the temperature of the electrons at the tar-
get surface, which during the action of the femtosecond pulse 
will vary slightly due to heat transfer in the skin layer. In gen-
eral, we note that although the role of d-electrons has been 
established and the weak influence of the nonuniform elec-
tron heating have been obtained for a target made of gold, the 
results obtained are quite versatile and should be valid for 
targets made of other metals.
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