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Abstract.  We consider the problem of formation of optical vortex 
solitons in a medium of three-level atoms, taking into account the 
local field effects. The principal possibility of formation of optical 
solitons controlled by an optical pump wave under the off-resonance 
Raman conditions of the lambda-type interaction scheme is predicted 
in an optically dense medium, i.e., in a hollow-core photonic-crystal 
optical fibre filled with a gas of cold atoms 87Rb. 

Keywords: nonlinear atom – optical interaction, optically dense medium, 
vortex solitons, gas-filled fibres, optic control. 

5. Introduction 

The study of the possible control of formation of stable spatial 
optical structures in different media [1] is of considerable interest 
in connection with a wide range of practical applications of 
such structures, in particular in the problems of information 
transmission and processing [2]. 

The known procedure for coherent writing, storing and 
reading of optical information using the states of the atomic 
system [3] is based on the effect of electromagnetically induced 
transparency, corresponding to the linear operation regime of 
the lambda-type atom – optical interaction scheme under near-
resonance conditions. Significant delays of the probe pulse by 
the medium in this case are due to the efficient excitation of 
atomic (dark) polaritons under near-resonance conditions. In 
this case, the polarition propagation velocity is determined by 
the atomic excitation transfer rate and can tend to zero in the 
limiting case of switching-off of the pump field. The resulting 
phase of storage of (quantum) optical information on the 
states of an atomic ensemble is limited by the characteristic 
time of development of decoherence effects, in particular the 
processes of diffusion in gaseous media. At the same time, the 
lifetime of a quantum state in such a system can be increased 
by orders of magnitude using atomic coherent ensembles in 
the form of a Bose – Einstein condensate. 

The scheme under consideration acquires new features 
when stable topological structures are used as information 
carriers, the structures being formed in the transverse profile 

of the probe optical beam, in particular, dissipative spatial 
solitons [2]. Of considerable interest is a special class of optical 
topological structures – optical vortices [4], the central dip in 
the intensity distribution of which is securely recorded in the 
experiment, even in the case of a strong diffraction spreading 
of the optical beam [5]. At present, optical vortices are obtained 
experimentally using different laser schemes that can be con-
ventionally divided into two groups. The first one involves 
direct generation of topological light structures in laser reso-
nators [6, 7]; the second group is based on the modulation of 
the laser beam as it passes through spatially inhomogeneous 
media: specially synthesised holographic plates [8] and optical 
masks of variable thickness [9]. 

However, stable behaviour of optical vortices (dissipative 
vortex solitons) in the laser scheme during their generation 
can be extremely rarely observed [10]. The explanation for 
this is the fact that designing and developing modern laser 
devices, which combine stable generation and subsequent 
control of optical beams with complex topology require cor-
rect identification of the regions of their stability, specified in 
the parameters that describe a specific laser experiment. When 
using extended media it can be done by analysing the propa-
gation equation obtained by direct derivation, for example in 
solving a self-consistent problem on the atoms and the field [2]. 
Appearance of nonlinear terms (required for the formation of 
stable solitons) in the final form of the propagation equation 
may be associated with the use of the Raman regime of 
lambda-scheme operation [11], implemented at considerable 
lengths of the medium and with increasing concentration of 
active atoms [12]. 

A promising medium for the formation and control of 
soliton regimes can be a recently fabricated hollow-core pho-
tonic-crystal fibre loaded with cold atoms [13]. The coherent 
state in such an atomic medium was confined for a long time, 
sufficient for the development of competitive dispersion – dif-
fraction, nonlinear and dissipative processes that are necessary 
to stabilise dissipative solitons. 

However, the possibility of achieving high concentrations of 
optically active particles in such a system necessarily requires 
consideration of the local field effects [14, 15]. Corrections 
made in this case are caused by the presence of near dipole –
dipole interactions in the medium that are manifested when 
the Rabi frequency for the transition in an atom is comparable 
with the magnitude of the corresponding correction to these 
interactions. Estimates for the ensemble of resonant particles 
show that the need to take into account close dipole – dipole 
interactions begins at a concentration of 1015 cm–3. 

In this paper we consider the formation and subsequent 
optical control of the dynamics of a vortex optical soliton [4] 
in the Raman operation regime of the lambda-scheme and 
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taking into account (in our case) the effects of the local 
response of the medium. The problem is similar to obtaining 
self-induced transparency solitons with account for the effect 
of the local field in resonant media [16]. The aim of the 
research is to find the estimated values of the medium and 
field parameters for which the model of a segment of a hol-
low-core photonic-crystal fibre filled with a gas of cold atoms 
87Rb can be used in the practical task of efficient generation 
of stable optical topological structures for the needs of tele-
communications and optical manipulation of microscopic 
objects in light beams [17]. Accounting for the local field 
should help identify the nature of the influence of close dipole – 
dipole interactions on the stabilisation of vortex solitons in 
the optical scheme under study. 

6. Basic relations for the lambda-type 	
interaction scheme in an optically dense medium 

In the problem under consideration we assume that the probe 
light pulse of given shape with centre radiation frequency wp 
and intensity Ep propagates along the z axis of a hollow-core 
optical fibre (waveguide channel filled with a gas of 87Rb 
atoms) in a direction, opposite to that of propagation of a cw 
pump pulse with intensity Ec (Fig. 1a). In the Raman limit for 
the lambda-type interaction scheme (Fig. 1b), when the field 
frequency detuning from the resonance is |Dc| > d0Gac [12], 
and assuming that all the atoms are initially located at the 
level |bñ, a self-consistent problem of atoms + probe field is 
described by the equations 

i ,i igba ba bc ba ba1s s e s c sG W=- - - -o

i ,igca ca cb ba ba cb2s s es c s sG=- - -o 	
(1a)

i ,i igbc bc ac ba3s s es sD W= + - *o

,i ig gbb ab bas es e s= - *o

=¶
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0 2d e s+ - =-c m 	 (1b)

where smn is an element of the density matrix; Gmn = |mmn|2 ́  
w3mn(3p'c3e0)–1 is the relaxation rate; cmn = r|mmn|2/(3'e0) is 
the value of the local response of the medium; mmn is the dipole 
moment of transition between atomic levels m and n; r is the 
atomic concentration; W and ge are the Rabi frequencies for 
the pump and probe fields; g = mba [w/(2'e0V )]1/2 is the atomic 
coupling constant; e = Ap[' w /(2e0V )]–1/2; Ap is a slowly varying 
amplitude of the probe field; V is the quantization volume; 
N = rV is the number of atoms in the interaction region; G1 = 
– [ iDb – (Gab + Gac)/2], G2 = – [ iDc – (Gab + Gac)/2]; D3 = Db – Dc; 
=
2d  = ¶2/¶x2 + ¶2/¶y2; D0 = lp /p is a parameter that specifies 

diffraction in the direction, transverse to the z axis; c is the speed 
of light in vacuum; ' is Planck’s constant; e0 is the dielectric 
constant. As applied to the problem in question, the optical 
thickness of the medium d0 can be determined by the charac-
teristic linear dimension a0 formed in the xy plane of topo-
logical structures: d0 = g2Na0 /(cGac) (cf. [12]). 

In deriving (1) it was assumed that the contribution of the 
local response of the medium is comparable to the Rabi fre-
quency for the probe transition, i.e., ge » sba  cba ; the local-
field effects can be ignored in the pumped transition, provided 
the W > sca cca. 

For a probe light pulse of duration T0, problem (1) can 
be reduced to the Ginzburg – Landau equation describing its 
propagation in a medium (cf. [18], see Appendix): 
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	 – ig2|e|2e + ig4|e|4e = – a1e – a2|e|2 e – a4|e|4 e,	 (2)

where the coefficients are given in the Appendix. 
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Figure 1.  Model of a hollow-core optical gas-filled fibre (a) and lambda-scheme of atomic – optical interaction for 87Rb atoms (b). Frequency detun-
ing d0 of levels |cñ and |bñ is 6.834 GHz, the dipole matrix element mab of transition |añ ® |bñ at a wavelength l = 780.241 nm is 3.58 ́  10–29 C m. 



	 M.Yu. Gubin, A.V. Prokhorov, M.G. Gladush, et al.618

Equation (2) describes complex nonlinear probe field –
pump field interaction which arises solely due to the presence 
of polarisation on the pump-induced transition (sac ¹ 0) in 
the Raman limit of the lambda-scheme [11]. Accounting for 
the local field in the medium although does not introduce new 
terms into equation (2), but clarifies the picture of the nonlinear 
interactions with the corresponding corrections (the terms 
with a co-factor c determining the local field are given in the 
Appendix) in the case of an optically dense medium. 

Note that in the other limit of the lambda-scheme under 
the near-resonance conditions, Dc << Gac, the polarisation on 
the transition |añ ® |cñ disappears – either one-photon probe-
field process underlying the linear effect of electromagneti-
cally induced transparency [3] or its nonlinear analogue in the 
case of sufficiently intense pump radiation [19] can be imple-
mented. Accounting for the local field effects in these problems 
leads to appearance of one more term in the expression for the 
frequency detuning Db and to additional phase modulation of 
the probe pulse [20]. 

For the analysis of equation (2) we pass to the travelling 
coordinate system with T = t – z/ug, and after replacing the 
variables / | |u in

2e e= , x = z/Ldif, X = x/a0, Y = y/a0, we 
introduce the following characteristic parameters with the 
dimensionality of length: Lb2 = T0

2/|b2| for the second order 
dispersion; Lg2 = 1/( g2|ein|

2 ) and Lg4 = 1/( g4|ein|
4 ) for third- 

and fifth-order nonlinearities, respectively; La1 = 1/a1 for linear 
loss; La2 = 1/(a2|ein|

2 ) and La4 = 1/(a4|ein|
4 ) for the third- and 

fifth-order nonlinear losses, respectively; and Ldif = a02/D0 for 
diffraction, where a0 and ein are the initial width and reduced 
amplitude of the optical vortex. The signs of Lb2, Lg2, Lg4, La1, La2 
and La4 depend on the sign of the corresponding coefficients. 

After multiplying both sides of equation (2) by Ldif and 
the transition to cylindrical coordinates, we finally obtain 
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where Q = i [ –dU – f |U |2U – m|U |4U ] is the dissipative term; 
r  = (X 2 + Y 2)1/2;   q is the angle in spherical coordinates; 
U = uM; M2 = Ldif /Lg2. In (3) we introduced the basic param-
eters of the problem: d = Ldif /La1, f = Lg2 /La2, m = L

2
g2 /(La4Ldif), 

n = L2
g2 /(Lg4 Ldif). 

Since the inequality Ldif  << Lb2 is valid for the interaction 
parameters used below, the dispersion term in equation (3) 
is excluded and we are talking below only about the spatial 
effects in the case of propagating radiation. 

7. Formation of vortex solitons in gas-filled 
optical fibres 

Following the concept of dissipative solitons [14], to maintain 
the energy of bright solitons at the same level during their 
distribution in the medium, it is needed to alternate the effects 
of absorption and amplification for various segments on the 
probe light pulse envelope. This can occur if the inequalities 
d > 0, f < 0, m > 0 are fulfilled, their signs being determined 
by a combination of signs of the corresponding coefficients. 

Figure 2 shows the dependences of typical dissipative 
parameters on the frequency of pump field detuning from 
resonance Dc, when a single-mode optical fibre filled with a 
gas of 87Rb atoms is used as a model medium under the fol-
lowing conditions: atomic concentration, r = 7.3 ́  1021 m–3; 
frequency of probe field detuning, Db = 0; relaxation rate, 

Gab = Gac = 2.5 ́  108 Hz; magnitude of the local response, cab 
º c = 3.36 ́  109. The intensities of the fields used are chosen as 
follows: Ic = 58 W cm–2 for the pump field and Ip = 58 mW cm–2 
for the probe field. The corresponding Rabi frequencies can 
be calculated by the formulas W = macEc /', and ge = mabEp /' 
through the field strengths Ec,p = [2Ic,p /(ce0)]1/2 and will be 
equal to W = 7.13 ́  109 s–1 and ge = 2.25 ́  108 s–1. With a0 = 11 mm 
and the calculated parameters g = 1.3 ́  106 s–1 and N = 19.7 ́  108 
taken into account, the correspondence of the problem to the 
Raman interaction limit is due to the implementation of the 
ratio Dc /(d0Gac) » 6.5. 

The region, in which the inequalities required for the soli-
ton stabilisation can be satisfied in the model under study, is 
located on the left side of Fig. 2. For further simulations, near 
the lasing threshold we fix point A to which the detuning fre-
quency Dc

A = –7.5 ́  108 s–1 corresponds. An additional condition 
of conservation of shape of a dissipative soliton Ldif  –~ Lg2 is 
fulfilled at this point, taking into account the fact that D > 0 
and g2 > 0 [21]. 

Using variational methods, we find with the help of equa-
tion (3) the regions of the parameters at which stable solitons 
can appear in our problem. In this case, we will focus on an 
important class of dissipative vortex solitons described by the 
expression [18] 
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where A, R, С, Y are the amplitude, spatial width, wavefront 
curvature and phase of the pulse, respectively. The parameter 
S defines the topological charge of the vortex soliton and is 
assumed to be unity in the present paper. 

The coefficients A0 and R0 can be obtained from the nor-
malisation condition of the total laser power 
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in the simplest case, P = A2R2, we have A0 = 1/(R0 p ) and 
assume below R0 = 1. 
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Figure 2.  Frequency dependences of the coefficients of the dissipative 
part of the dimensionless Ginzburg – Landau equation (3) for the initial 
probe pulse duration T0 = 10 ns. 
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In practice, the effects of diffusion spreading in atomic 
ensembles lead, as a rule, to the light filling of the central dip 
in the intensity distribution of the vortex soliton (4) even in 
the presence of long-term preservation of the external profile 
in the form of a bright soliton during its propagation in such 
media [5]. To have the form of vortex solitons (4) self-sus-
tained during their propagation, apart from the balance of 
nonlinear dispersive and dissipative effects [21] the implemen-
tation of additional conditions is also require, such as those 
associated with the presence of optical diffusion [2, 22] or 
refractive index modulation [23] and/or absorption through the 
functions of complex form [18]. In the latter case, the param-
eter of the linear absorption can be replaced by a new space-
dependent (coordinate r) effective parameter deff = d – Vr2, 
which corresponds to the introduction of an additional saturable 
absorber into a gas-filled fibre; we consider this case below, 
assuming V = –0.03 everywhere. 

A detailed analysis of the stability of vortex solitons dur-
ing linearization of the master equation of form that is more 
general than in (3) (which, apparently, can be obtained by 
solving a self-consistent problem through a series of succes-
sive approximations and without expansion of field-nonlinear 
functions for the density matrix in a power series; see the 
Appendix) and with the optical diffusion taken into account 
is given in [24]. 

Using the Euler – Lagrange equation 
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is the averaged conservative Lagrangian of equation (3), and 
h = {A(x), R(x), C(x), Y (x)} is a set of variable parameters of 
the functions of the spatial coordinates x, and taking into 
account (4) we obtain 
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In the approximation of low-frequency modulation (C2  –~ 0; 
cf. [18]) the following system of equations that simplifies the 
search for stationary points of the solutions of system (5) is 
valid: 
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The system of equations (6) has 16 solutions, only two of 
which correspond to the physical constraints imposed on the 
energy and width of the vortex soliton (A > 0, R > 0 and 
A, R Î R), while only one of them with a larger value of A 
and negative frequency modulation (C < 0) will be stable [18]. 

Figure 3 shows the parametric plane formed by the fol-
lowing parameters: the density of resonant atoms in the r 
system and the frequency detuning of the pump field from 
resonance, Dc. The gray highlighted region shows the stability 
of a vortex soliton for the selected physical solution of equa-
tions (6) [18]. This region of stability was determined from the 
analysis of the eigenvalues of lj of the Jacobian matrix of the 
system of equations (5), i.e., by the condition Re ( lj) < 0, where 
j = 1, 2, 3 [25], and corresponds to the point of a stable focus. 

Direct numerical simulation of equation (3) with exhaus-
tive search of parameters h for the function of form (4) and 
with the initial perturbations R and C taken into account 
[24, 26] shows that the set of obtained stable solutions to the 
simplified system (6) is very approximate, but the true stability 
region (denoted by I in Figs 3 and 4) has a much smaller size. 
Inside the stability region obtained by the variational method 
there appears a ‘fine’ structure in the form of separate regions 
of stability for solitons in modified forms, as well as region III, 
where the optical vortices decay. 

In particular, for region II [the parameters n = 0.5052, d = 
0.0023, f = –1.6255 and m  =  1.5319 of equation (3) corre-
spond to point B in Fig. 4 from this region with r = 7.3 ́  1021 
m–3 and Dc  = – 8.7 ́  108 s–1] the phase portrait of the system 
under the condition l3 < Re ( l1,2 ) is transformed into two 
narrow beams of the phase trajectories, significantly narrow-
ing near the singular point. Thus, even strong initial perturba-

0.2 0.4
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–1.2

–0.8

–0.4

Dc /109 s–1

0.6 0.8 1.0 1.2 r/1022 m–3
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II

III

Figure 3.  Parametric plane in the coordinates Dc (the pump field fre-
quency detuning from resonance) and r (the density of resonant atoms 
loaded in the fibre). Gray area is the region of existence of stationary 
vortex solitons, obtained by the variational method. The numbers de-
note the regions [found by direct numerical simulations of equation (3)] 
of true stability of axisymmetric vortex solitons (I), the transition to the 
vortex solitons with S = 0 (II) and loss of stability (III). Dashed line is 
the separatrix C = 0. Interaction parameters correspond to Fig. 2 (see 
description of Fig. 2 in the text). 
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tions of the substitution parameters (4) are rapidly quenched 
when the phase trajectories from the far region of the phase 
space tend to such a singular point. However, small fluctua-
tions of the vortex soliton in the singular point transfer the sys-
tem to an unstable trajectory. As a result, the vortex soliton 
spontaneously loses the topological charge and passes into a 
new stable state with S = 0 (see insets in Fig. 4). This is a new 
type of evolution of the vortex solitons, not described in [18]. 

Regions IV and V are transitional: in region IV [the param-
eters n = 0.3240, d = 0.0018, f = –1.7989 and m = 1.5183 of 
equation (3) correspond to point D from this region at r = 
6.8 ́  1021 m–3 and Dc  = –7.9 ́  108 s–1] there occurs a spontaneous 
transition of an axisymmetric vortex in double-humped soli-
tons, and in region V [the parameters n = 0.3448, d = 0.0015, 
f = –2.0409 and m = 1.6160 of equation (3) correspond to point 
E from this region at r = 7.5 ́  1021 m–3 and Dc  = –7 ́  108 s–1] – in 
single-humped asymmetric stable vortex solitons. Bifurca
tions of this type are described in [24]. 

In region VI [the parameters n = 0.2372, d = 0.0013, f = 
–2.2755 and m = 1.6131 of equation (3) correspond to point F 

from this region at r = 7.5 ́  1021 m–3 and Dc  = –6.3 ́  108 s–1] 
account for angular effects in (3) leads to the destruction of 
the vortex solitons with the emergence of some time-depen-
dent multi-humped localised structures in their place, which, 
however, do not decay but experience constant evolution [27]. 
In region III [the parameters n = 0.2261, d = 0.0018, f = 
–1.6652 and m = 1.4236 of equation (3) correspond to point C 
from this region at r = 6 ́  1021 m–3 and Dc  = –8.5 ́  108 s–1] there 
occurs a loss of stability and decay of vortex solitons. When 
selecting the initial values of A, R and C that are different 
from the values corresponding to equations (6), in region III 
the optical beam is split into separate filaments, which either 
decay or continue to evolve over time in the same way as 
described in [26]. 

Note that point A (see also Fig. 2) actually falls in the 
stability region, calculated on the basis of both – variational 
and numerical – methods, which corresponds to the qualitative 
analysis of equation (3) given above. At the same time to form 
a vortex soliton in the medium under study, the initial spatial 
width rR and linear frequency modulation CR of a light pulse of 
form (4) will be 12 mm and –7.7 ́  108 m–2, respectively (dimen-
sionless parameters A = 3.496, R = 1.096, C = – 0.093); the 
calculated parameters of equation (3) for point A in Fig. 4 are 
as follows: n = 0.3723, d = 0.0017, f = –1.8995 and m = 1.5817. 

The fundamental point in this problem is consideration of 
the local field effects. Indeed, in the case c = 0, i.e., without 
taking into account these effects, the stability region not only 
is transformed, but also is completely beyond the parametric 
plane shown in Figs 3 and 4. In this case, all the solutions 
obtained for the vortex solitons become unstable. Thus, a 
strategy of a possible experiment is changing dramatically due 
to the local response of the medium. 

Further analysis and obtaining (different from those found) 
the stability regions of a vortex soliton require solutions to 
the complete nonlinear system (5), as well as an advanced 
multi-dimensional numerical experiment in the parameter 
space of the problem. 

8. Optical control of dynamics of vortex solitons 
without affecting the conditions of their stability 

Consider the possibility of controlling the dynamics of vortex 
solitons obtained while following the conditions of the problem, 
which do not violate their stability.

Figure 5a presents a time-dependent piecewise linear func-
tion, when the frequency detuning of the pump field (param-
eter z ) changes externally, and the corresponding changes in 
the group velocity Dug (the expression for ug is given in the 
Appendix) during the propagation of a vortex soliton in a 
gas-filled fibre. 

Choosing the parameters for point A in Fig. 4 as initial 
conditions (at a constant detuning Dc

A at the initial time interval 
t Î [0; 10 ns]), we obtain the stabilisation of a corresponding 
vortex soliton during a characteristic time ~5 ns (Fig. 5b). 

Changing the frequency detuning to a value of Dc
A' for 

point A' in the same region of stability (Fig. 4) leads to a 
decrease in the group velocity of the vortex soliton Dug = 
1.8 ́  104 m s–1 while maintaining a steady regime for the axi-
symmetric soliton. Intensity oscillations of the vortex soliton 
emerging in this case decay rapidly for time td = 3 ns (Fig. 5b). 

When the frequency detuning acquires the previous value 
of Dc

A, a similar scenario of stabilisation of the symmetric 
vortex soliton is implemented at a level preceding the onset of 
changes in Dc. 
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Figure 4.  Scaled area around the region of true stability I in Fig. 3. 
Below are shown spatial profiles [obtained by direct numerical simula-
tions of equation (3)] (in the plane XY ) of optical beams after passing 
the distance x = 100 000, corresponding to ~50 m of a gas-filled fibre. 
Letters above each distribution correspond to points on the parametric 
plane whose coordinates are used to calculate the parameters of equa-
tion (3); the distribution for x = 0 corresponds to the shape of the optical 
vortex at the input to the medium (top view) in the presence of azimuthal 
perturbations. 
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The lower part of Fig. 5 presents the process of deforma-
tion of the vortex soliton as it propagates in a gas-filled fibre. 
These results were obtained by numerical simulation of equa-
tion (3) with the initial function (4) upon modulation of 
Dc(t), corresponding to Fig. 5a. In this case, the total length 
of the gas-filled fibre, corresponding to the entire time interval 
t Î (0; tK), is 14 cm. 

Note that changing the switching time affects only the type 
of the transition to the new conditions of the vortex soliton 
stability with the settling time tst when points A and A' are 
located in region I (Fig. 4). 

However, the offset of the frequency detuning Dc(t) 
beyond the stability region – in going from point A to point B 
in Fig. 4 – leads to the pump-field-induced loss of the topo-
logical charge by the vortex soliton and to the transition to 
the new conditions of stability, but for a vortex-free soliton 
(see Fig. 6a and the shape of the optical beam for point K in 
Fig. 6b). An attempt to implement a scenario of return of the 
system to initial conditions, similar to that given in Fig. 5, 
fails: changing the frequency detuning Dc in the reverse transi-
tion to point A also leads to stabilisation of the soliton, but its 
vortex structure for S = 1 is not maintained (see the shape of 
an optical beam for point L in Fig. 6b). 

A feature of the system for the conditions corresponding 
to Fig. 6 is the presence of the establishment process (with 
characteristic settling time tst) appearing after achieving the 
conditions (upon modulation of Dc) corresponding to point B 

in Fig. 4 and preceding almost instantaneous switching from 
a vortex soliton to the vortex-free regime. In Fig. 6b the set-
tling time is 0.5 ms. The inverse modulation of Dc (performed 
during this time) to the conditions corresponding to point A 
does not allow the decay of the vortex structure of the soliton 
(see profiles of the optical beam for points K' and L' in Fig. 6b). 
This feature causes the additional possibility of using the pro-
posed scheme of optical control of dissipative vortex solitons 
for optical information processing. 

Note that the implementation of optical modulation 
beyond the region of stability of dissipative solitons, obtained 
by numerical methods (Fig. 3), leads to a rapid decrease in the 
intensity of the vortex soliton to full decay without the possi-
bility of further recovery of its shape. 

9. Conclusions 

We have considered the problem of forming and controlling 
the dynamics of optical vortex solitons of the probe field, 
emerging in the Raman regime of the lambda-type interac-
tion scheme, taking into account the local field effects. Using 
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Figure 5.  Optical control of dynamics of a vortex soliton: time dependences 
of the relative increment of the frequency detuning z = (Dc – Dc

A' )/(Dc
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A' ) 
(solid line) and change in the group velocity D ug = ugA – ug (dashed line) 
(a) and time dependence [obtained by numerical simulation of (3)] of 
the normalised intensity I

~
 of the vortex soliton (4), corresponding to 

almost instant modification from point A to point A' in Fig. 4 (b). Below 
is shown the shape of the vortex soliton at different times, corresponding 
to Fig. 5b. 
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variational methods and direct numerical simulation we have 
predicted the regions of the parameters of the medium and 
fields at which optical vortex solitons can be efficiently formed 
in a model of a hollow-core fibre filled with a gas of 87Rb 
atoms. Accounting for the dipole – dipole interactions in such 
a problem has a stabilising effect on the formation of dissipa-
tive solitons. We have found that the modulation of the 
detuning frequency of the pump field from the resonance 
does not lead to a dramatic destruction of a vortex soliton in 
the case when such changes do not exceed the limits of the 
stability region obtained. This results in additional topological 
noise immunity of the proposed scheme for the generation of 
optical vortex solitons with much more stable values of the 
parameters. Other advantages of the scheme include the pos-
sibility of controlling the parameters of the optical vortex 
solitons, a relatively simple interface with fibre-optic commu-
nication lines and compactness of the scheme. 

Experimental observation of the considered effects is a 
challenge and possible, for example, when using hollow-core 
photonic-crystal fibres filled with a gas of an atomic Bose – 
Einstein condensate; the lifetime of the coherent state of the 
atomic system in this case reaches 400 ms [13]. 

A significant increase in phase density of an ensemble of 
atoms, as they are loaded into the fibre from a magneto-optical 
trap containing a Bose – Einstein condensate, is possible when 
use is made of the geometry of a tapered fibre [28] with a hor-
izontal end-face of diameter of about several micrometres. 

An additional factor increasing the lifetime of the coherent 
state is the effect of channelling of atoms in the waveguide 
when a surface light wave is produced along its hollow core; 
atoms interacting with it can lose energy. The estimates given 
in [28] show that at an achievable concentration of the ensemble 
of atoms 1015 cm–3, the temperature of the atomic system in 
such a waveguide can be evaluated as 1.5 ́  10–5 K. 

In the absence of significant broadening of spectral lines 
and with the diffusion effects minimal for this gaseous medium, 
it is possible to observe confidently the effects analysed in a 
sample of a thin, gas-filled fibre. 

Note also that of interest is the problem of an almost com-
plete stop and acceleration of formation of solitons without 
affecting their stability in the optical system. This approach 
avoids the procedures of writing the profile of the wave packet 
on the states of atomic excitations of the medium in which the 
storage time of quantum information is limited by the coher-
ence time of the atomic medium. This is especially urgent for 
the implementation of the original quantum information pro-
cessing algorithms based on the coding and control of time 
delays of probe pulses in multi-beam optical schemes of 
atomic-optical interactions [29], including the use of quantum 
solitons. To solve this problem, it is necessary to search for a 
wider region of stability of vortex solitons based on the analysis 
of phase portraits of the complete system of equations (5), 
similar to that described in [30] for the case of conventional 
bright solitons. 

Acknowledgements.  This work was financially supported by the 
Ministry of Education and Science of the Russian Federation 
within the analytical departmental target program ‘Develop
ment of Scientific Potential of Higher School’ (Project No. 
2.1.1/11823) and ‘State Task for Institutions of Higher Educa
tion’ (Project No. 2.4053.2011) as well as by the Russian Found
ation for Basic Research (Grant Nos 12-02-97529-r_tsentr_a 
and 10-02-13300-RT_omi). 

Appendix. Derivation of the coefficients  
of the Ginzburg – Landau equations  
for the Raman limit of lambda-type  
atomic – optical interaction scheme 

In deriving equation (2) we use the equation of propagation 
of the probe field, which generally takes the form (1b). This 
requires finding an explicit expression for the density matrix 
element sba (polarisation) on a probe transition, which depends 
only on the material parameters of the medium and the charac-
teristics of the optical fields. We solve the system of equations 
(1a) in two stages. 

In the first stage we define the polarisation of the system 
at lower levels scb, using the approximation of constant popu-
lation levels in the stationary regime, i.e., when aa bbs s= =o o

0ccs =o . In addition, we assume that the probe pulse duration 
is large enough compared to the inverse Rabi frequency for 
the pump field [T0 > (W d0)–1] to ensure ‘smooth input’ [12]; 
this allows one to ignore the fast oscillations sba [31] and, 
therefore, deep modulation of the probe pulse envelope is 
absent. Thus, the conditions , 00ba ca bcs s s= = =o o o  must be 
valid for the leading edge of the probe pulse. 

Taking into account this approximation from (1a) we can 
obtain an algebraic equation for the polarisation sbc: 

W cge*s2bc + i (G1 g2|e|2 + G2*Q ) sbc + igeW*G2* = 0, 	 (A1)

whose roots have the form: 
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where D = – (G1 g2|e|2 + G2*Q )2 – 4i cg2|W|2G2*|e|2; Q = |W|2 – 
iD3(G1 + ic); c º cba. 

Solutions (A2) define actually two branches of spin excita-
tions that occur at the transition between the levels |bñ and |cñ 
(Fig. 1). The solution containing the minus sign in (A2) leads 
to a problem with a saturable nonlinearity of type sbc » 1/e 
and in the present work is not considered. 

Expansion of the other, containing a plus sign, solution 
(A2) in series over the probe field e leads to the relation: 
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In the second stage we express from the equations for caso  
and bcso  of system (1a) the polarisation of the atomic system 
at the probe transition in regime of propagation of the probe 
pulse at bcso  ¹ 0. Then we obtain 
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Substituting expansion (A3) into (A4) and performing an 
additional expansion, we have 
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In order to determine the contributions of the effects that 
must be taken into account in the system, we substitute the 
obtained expression (A5) into (1b) and obtain the equation 
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	 – ig2|e|2 e + ig4|e|4 e = – a1e – a2|e|2 e – a4|e|4 e,	 (A6)

where the corresponding coefficients are given by 
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is the coefficient of cubic nonlinearity; 
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is the fifth-order nonlinearity coefficient; 
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is the fifth-order nonlinear loss coefficient. 
Equation (A6) corresponds to (2) and with the coefficients 

given above determines the basic relation for the problem 
under study. 
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