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Abstract.  The dynamics of a model Rydberg atom in a strong non-
classical electromagnetic field is investigated. The field-induced 
transitions to the continuum involving different numbers of photons 
(with intermediate states in the discrete spectrum) are taken into 
account and the specific features of ionisation in ‘squeezed’ field 
states are considered in comparison with the case of classical light. 
A significant decrease in the ionisation rate is found, which is 
caused by the interference stabilisation of the atomic system. The 
entanglement of the atomic and field subsystems, the temporal 
dynamics of the correlations found, and the possibility of measuring 
them are analysed.

Keywords: interference stabilisation, nonclassical electromagnetic 
fields, entangled states.

1. Introduction 

The recent development of experimental laser physics has 
made it possible to generate few-cycle laser pulses with an 
intensity comparable with intra-atomic or even higher. 
Radically new effects arise in such strong fields. One of them, 
which appears to be the most striking one, is stabilisation [1, 
2]. It consists in suppression (saturation at a level below unity 
or even reduction) of the ionisation probability when the 
intensity of external laser field exceeds some critical value 
[1 – 4].

In the case of weak fields the interaction of laser radiation 
with atomic systems can be described in terms of the pertur-
bation theory [1]. However, the perturbation-theory methods 
cannot be applied to strong fields. In this case, it is necessary 
to search for new approaches that would strictly take into 
account the interaction with strong fields. A new system is 
formed in a strong field: the so-called field-dressed atom, 
whose properties radically differ from those of unperturbed 
atom. A field-dressed atom is characterised by new energy 
states, which are referred to as dressed states. Stabilisation 
can be observed due to the formation of a dressed system in a 
strong light field. Two types of stabilisation can be distin-
guished: the interference stabilisation of initially excited 
Rydberg atoms, which was predicted by M.V. Fedorov [1, 5], 
and the adiabatic stabilisation of unexcited atoms according 
to the Kramers – Henneberger mechanism [3, 4].

The physical nature of interference stabilisation is based 
on coherent repopulation of Rydberg levels during ionisation 
due to the Raman-type transitions. This repopulation may 
occur via virtual transitions through the continuum (L-type 
transitions) [1, 5, 6] or through a lower state (V-type transi-
tions) [6 – 8]. These transitions become effective in sufficiently 
strong fields. In this case, the coherent repopulation of closely 
spaced Rydberg levels due to the L- and V-type transitions 
leads to phasing of the population amplitudes for these levels 
in such a way that the subsequent transitions from these levels 
to the continuum interfere to suppress partially each other 
and stabilise the atom, thus reducing its ionisation rate in 
strong fields. In weak fields Raman transitions between levels 
with different energies are forbidden by the law of conserva-
tion of energy. These transitions become possible when the 
Rydberg levels have a corresponding ionisation broadening, 
which overlaps the energy spacing between neighbouring lev-
els. Due to this, interference stabilisation may occur, which 
arises in a strong classical field only at intensities exceeding 
some threshold value.

Although interference stabilisation is observed even in 
strong classical fields, the case of nonclassical fields (in par-
ticular, squeezed states), which have a number of exceptional 
properties, is of particular interest. For example, the essen-
tially nonclassical properties of these fields are retained at any 
(even very large) mean numbers of quanta. Thus, the proba-
bility of the processes involving many photons is high, a cir-
cumstance making these processes promising [9, 10]. A strik-
ing representative of these fields is a field in the squeezed-vac-
uum state [11]. The squeezed state of a quantum field is 
interesting from both theoretical and experimental points of 
view. For example, generation of harmonics in atoms in the 
case of squeezed light is much more efficient in comparison 
with other field states. The squeezed state is also characterised 
by diminished noise and quantum errors, which is important 
for various methods of quantum measurements [11]. Thus, 
the aforementioned stabilisation effect is expected to be more 
pronounced for quantum fields than for classical light. To 
date, quantum fields have been obtained experimentally 
[12 – 15]. The main features of squeezed states were consid-
ered in [11], and the specificity of interaction of atomic sys-
tems with nonclassical fields was discussed in [9, 10, 16]. It 
was demonstrated in [9, 10] that squeezed states increase the 
efficiency of processes involving many photons; nevertheless, 
the question of possible stabilisation of atomic systems in 
nonclassical fields has not been discussed and remains open.

It should be noted that, in contrast to the semiclassical 
approach (where the given-field approximation is applied), in 
the case of quantum fields one can analyse the field evolution, 
i.e., the changes in the field properties in time. As a conse-
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quence, correlations may arise between the atomic and field 
subsystems during their interaction. This problem is also of 
great interest and has not been studied in detail. For example, 
having measured the properties of one subsystem, one can 
obtain information about the parameters of the other subsys-
tem in a given instant, which is rather convenient if the prop-
erties of some subsystem are difficult to measure.

Our purpose was to investigate the dynamics of a model 
atomic system in a strong nonclassical electromagnetic field; 
analyse the possibility and conditions for the occurrence of 
interference stabilisation, entanglement, or correlations 
between atomic and field subsystems; and study the temporal 
dynamics of the correlations found and the possibility of mea-
suring them.

2. Model of the atom + field system

The interaction between an atom and one mode of a quantum 
field is described by the time-dependent Schrödinger equation

¶
¶

i
t

H H Vintat field'
y

y= + +t t t^ h .	 (1) 

Here, Hat
t  is the Hamiltonian of unperturbed atom; Hfield

t  is 
the Hamiltonian of one field mode; Vintt  = – De = – Dqe0 is an 
operator describing the interaction of the atomic system with 
an external electromagnetic field in the dipole approximation; 
q is the dimensionless electric field; ande0 = /L4 3'p w  is the 
normalisation constant, which is formally determined by the 
characteristic cavity volume L3 and is actually controlled by 
the efficiency of interaction between the atomic system and 
field. In this study the atom is considered within the model of 
two or three discrete levels and a continuum [5 – 7], which 
allows one to investigate the evolution of excited Rydberg 
states in a quantum electromagnetic field and analyse the pos-
sibility of interference stabilisation. The so-called schemes of 
L- and V-types are considered separately. The L-type scheme 
considers a combination of two discrete levels (1 and 2) and 
the continuum; this scheme implies coherent repopulation of 
these levels due the L-transitions through the continuum. The 
V-type scheme includes two discrete levels (1 and 2), a lower 
resonant state 0, and the continuum. In this case, along with 
the L-type transitions, one must also take into account the 
V-type transitions through the lower resonant state. It is 
assumed that the two upper atomic levels are populated at the 
initial instant; the complex probability amplitudes of the 
states have a phase difference f, and the external field is char-
acterised by some initial distribution over Fock states with 
the probability amplitudes ak:
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where j1, j2, and Fk are, respectively, the wave functions of 
the stationary state of the atomic system and the field oscilla-
tor, with their interaction disregarded. The normalisation 
condition for the field and atomic coefficients is given by the 
expressions
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We took the initial state of the field in the form of coher-
ent states with Poissonian distribution of photons (which cor-

responds to classical light at large mean numbers of quanta 
áN ñ), as well as squeezed-vacuum states, and performed com-
parison for the interaction of this field with the atomic system 
at a fixed áN ñ. The field in the squeezed-vacuum state is an 
essentially nonclassical electromagnetic field, which is charac-
terised by a wide distribution over the number of photons:
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Here, the populations for different Fock states are expressed 
recurrently. It can easily be seen that the distribution slowly 
decreases with an increase in k, which leads to a nonzero 
probability of populating the Fock states with large k and a 
necessity for taking into account the processes involving 
many photons. Concerning the zero Fock state, it has the 
maximum population amplitude (proceeding from the distri-
bution properties) and does not cause ionisation of the atomic 
system when the latter interacts with the field.

Note also that only the Fock states with even numbers are 
populated in the squeezed-vacuum state. Specifically this fea-
ture characterises its nonclassical properties, because the 
mean electric field for this distribution is zero, and the charac-
teristic strength is determined by the dispersion, i.e., quantum 
fluctuations.

We will search for a solution to (1) in the form of an 
expansion in the state basis of the unperturbed system:

( ) ( ) ( ) ( )dt a t Ea tr rnk n k Ek E k
nk 0
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3
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	 /exp i k t1 2# w- +^ h6 @,	 (3)

where n = 1, 2 for the L scheme and 0, 1, 2 for the V scheme; 
the integration is over the continuum region.

Having substituted the wave function (3) into the time-
dependent Schrödinger equation and neglected the direct 
transitions between closely spaced Rydberg levels and the 
transitions between different continuum states, in the case of 
the L scheme, we obtain a system of differential equations for 
the amplitudes ank of the probability of detecting the system in 
a discrete state with respect to the atomic degree of freedom 
and in a Fock state |kñ in the field degree of freedom and for 
the amplitude aEk, corresponding to the existence of the 
atomic subsystem in the continuum:
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where Dt  is the operator of the dipole-moment projection 
on the field direction and En is the energy of the atom in the 
state n.

Using the rotating-wave approximation, we will leave 
only the resonant term in (4). Then, having adiabatically 
excluded the continuum [17], we obtain the following system 
of differential equations for the probability amplitudes:
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where Gk = 2pke0
2|dnE |2/2 is the ionisation width, which is due 

to the interaction between the atom and field in the Fock state 
|kñ (it is assumed to be the same for all atomic states), and dnE 
is the matrix element of the dipole-moment operator.

A similar approach was used for the model atomic system, 
with allowance for its resonant coupling with the lower atomic 
level. In this case, the differential system of equations for the 
probability amplitudes of discrete atomic states has the form
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Here, Wk /' = e0 (k/2)1/2d0n /(2') is an analogue of the Rabi fre-
quency for the resonant transition. Thus, in contrast to classi-
cal light, in the quantum case Wk and Gk depend on k; i.e., the 
field-induced transitions for each Fock state have their own 
probabilities. In addition, three important parameters arise in 
this case: Wk, Gk, and d = E2 – E1. The relationship between 
them determines different regimes of dynamics of the atomic 
system placed in a quantum field.

Note that an analogue of classical field in the quantum 
case is the coherent state of a field with Poissonian distribu-
tion over the number of photons at áN ñ >> 1, and the classical 
intensity I is determined by the mean number of field quanta 
áN ñ [18]: I = сe0

2áN ñ/(4p).
For a quantum field (by analogy with classical), there 

must be some critical number of quanta, which will serve as a 
criterion for separating the problem into the domains of 
strong and weak fields. This separation can be performed for 
a field with Poissonian distribution of coefficients, which is 
related to the fairly narrow localisation of populated field 
states near the mean number of field quanta. Another situa-
tion is observed for a field in the squeezed-vacuum state: here, 
at any áN ñ value, there are always regions of both weak and 
strong fields, and one must perform summation over two 
regions simultaneously, due to the wide distribution over the 
number of photons of this quantum field. The boundary 
between these two regions is determined by solving the prob-
lem and corresponds to some critical number of photons, 
which will be found below. The number of populated Fock 
states that are taken into account depends on the specificity of 
distribution: for example, for a field in the squeezed-vacuum 
state, states with k ~ áN ñ2 can make a contribution.

Thus, the L scheme contains three important parameters: 
d (the spacing between discrete levels), Gk = G k (the ionisation 
width), and áN ñ (the mean number of photons for a given 
state of quantum field). The V scheme is characterised by 
an additional parameter: an analogue of the Rabi frequency 
Wk /' = W (k/2)1/2 /'. The effects observed are rather sensitive 
to the choice of initial conditions: stabilisation is practically 
absent in their certain range. We used the following values of 
the parameters: d = 0.1 eV, W = 0.1 eV, G =2 ´ 10–4 eV, E2 = 
– 0.4 eV, E1 = – 0.5 eV, E0 = – 1.5 eV, and ћw = 1 eV. Note that 

the parameters chosen correspond to a fairly strong coupling 
with the resonant state in the V scheme, in comparison with 
the continuum; this condition is necessary for implementing 
stabilisation, by analogy with [6].

3. Results and discussion

Consideration of this problem within the L scheme yielded an 
exact analytical solution to system (5). The time dependences 
of the population amplitudes for discrete atomic states were 
found provided that the field is in different Fock states |kñ. 
The solutions obtained differ significantly for the weak- and 
strong-field regions. The strong-field regime corresponds to 
overlap of atomic levels due to the ionisation width Gk > d. 
For the problem parameters chosen, this situation yields a 
critical number of photons kcr = 500, which corresponds to 
the boundary between these two regions.

It is more convenient to consider this problem in terms of 
quasi-energies and quasi-energy wave functions, i.e., the ener-
gies and wave functions corresponding to the dressed system. 
In this case, the expression for the amplitude of the probabil-
ity of finding the atom in the state n and the field in the state 
|kñ takes the form

ank(t) = Ank exp(–ig+ 
(k)t/ћ) + Bnk exp(–ig–

(k)t/ћ),	 (7)

where the coefficients Ank and Bnk are time-independent; they 
are found from the initial conditions. System (5) is similar to 
that obtained for an atom in a classical field [6]; however, in 
our case Gk depends on the number k. The quasi-energies aris-
ing, g±

(k), are different for different photon states:
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The ionisation probability Wi can be expressed in these 
terms as follows:
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Thus, in a weak field (d > Gk), the time dependence of the 
ionisation probability is described by the expression
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In a strong field (d < Gk), we have 
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Expressions (10) and (11) take into account that the cho-
sen field state corresponds to the regime of a weak (or strong) 
field for all Fock states present in the initial distribution. This 
situation can be implemented for a Poissonian initial distribu-
tion of the field if áN ñ differs significantly from kcr. However, 
even a Poissonian distribution with áN ñ ~ kcr (and especially 
for case of squeezed vacuum) contains different photon states, 
some of which interact with the atom in the weak-field regime, 
while the others interact in the strong-field regime. Therefore, 
it is necessary to perform summation in the expression for the 
ionisation probability separately over each region, taking into 
account the difference between the solutions in the aforemen-
tioned regimes. Thus, the dynamics of the atomic system in 
the case of squeezed vacuum is expected to differ from that in 
the case of classical field, which was considered in [6]; this dif-
ference is caused by different contributions of a large number 
of Fock states to ionisation.

3.1. Dynamics of the system 
and the interference-stabilisation regime

As follows from solution (10), in a weak field (Gk < d ) the dif-
ference in quasi-energies leads to characteristic oscillations of 
atomic-level populations with a frequency on the order of d/ћ 
against the background of exponential decay with time. For a 
field with a Poissonian distribution of the coefficients the 
characteristic decay constant is close to the width Gk, calcu-
lated for k = áN ñ. Thus, the ionisation probability is saturated 
at a level of unity. At long times atomic levels decay, and the 
system becomes completely ionised (Fig. 1, dashed curve).

In a strong field (Gk > d ) the character of quasi-energies 
(8) radically changes: one of them (g–) corresponds to the 
quasi-energy state that rapidly decays with time, while the 
other (g+) corresponds to the state decaying more slowly. Due 
to the occurrence of a slowly decaying quasi-energy level in 
the strong field, one can observe the stabilisation effect. In the 
case of classical field [6], stabilisation manifests itself as fol-
lows: an increase in the laser intensity leads to an increase in 
the part of atomic population that is captured into a more 
stable (with respect to ionisation) quasi-energy state. 
Therefore, a higher laser intensity at a fixed instant yields a 
higher probability of detecting the atom in the bound state. 
Thus, in the general case, the ionisation dynamics of the sys-
tem is characterised by biexponential decay.

The situation with a quantum field characterised by a 
Poissonian initial distribution over the number of photons at 
áN ñ >> kcr is similar. Indeed, in this case, the ionisation 
dynamics of the system exhibits a sharp increase in the popu-
lation of the continuum in the initial stage, after which the 
population tends much more slowly to unity (Fig. 2, dashed 
curve).

In addition, stabilisation manifests itself in the phase sen-
sitivity of the ionisation probability to the initial phase of the 
atomic-level population amplitude. In the limit Gk >> d, the 
quasi-energies (8) characterise the rapidly decaying and 
practically stable states with the wave functions yk

" = [(j1 ± 
j2)/ 2 ]Fk; therefore, the equiprobable initial population of 
the atomic states with a difference in the initial phases of the 
population amplitudes equal to p leads to a very slow decay 
of this state. However, at long times, the more stable energy 
level also decays, and the system becomes completely ionised; 
this situation corresponds to that for the classical field. Thus, 
the results for a field with a Poissonian initial statistics com-
pletely correspond to the data obtained in [6] within the semi-
classical approach, although the áN ñ value is not very large 
and, strictly speaking, the coherent state under consideration 
is not classical light.

For a field in the squeezed-vacuum state, as was indicated 
above, the problem cannot be separated into strong- and 
weak-field regions: summation is performed simultaneously 
over two regions, as a result of which the features of both 
weak and strong fields manifest themselves in the dynamics of 
the system. For example, the time dependence of the ionisa-
tion probability exhibits characteristic oscillations with a fre-
quency on the order of d/ћ, as for weak fields. Simultaneously, 
one can observe the stabilisation (strong-field) effect. As was 
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Figure 1.  Time dependences of the ionisation probability Wi for the L 
scheme at áN ñ = 50 and the initial phase difference f = 0 for the field in 
coherent state (dashed line) and in the squeezed-vacuum state (solid 
line). The horizontal straight line shows the level 1 – W0, where W0 is the 
vacuum state population (1 au » 2.42 ́  10–17 s).
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Figure 2.  The same as in Fig. 1 but for áN ñ = 1000.
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expected, the stabilisation is most pronounced in this quan-
tum field. Two factors contribute to the stabilisation: (i) the 
population of the zero Fock state (which is maximum for this 
distribution) and (ii) nonzero populations of the Fock states 
with large numbers k and their contribution to the dynamics 
of ionisation-stable quasi-energy states. Since the population 
of the zero Fock (vacuum) state corresponds to the popula-
tions of the atomic states that do not decay with time, the 
corresponding stabilisation occurs at any instant. The smaller 
the mean number of photons áN ñ for a given field, the higher 
the population of this state and the higher the degree of the 
related stabilisation. However, a decrease in áN ñ leads to a 
decrease in the number of states with large numbers k that 
were taken into account (i.e., the states with k ~ áN ñ2), which 
are involved in the formation of ionisation-stable quasi-
energy states. Thus, for the problem parameters chosen, there 
is an optimal áN ñ value at which the stabilisation effect for a 
field in the squeezed-vacuum state is maximum.

The ionisation dynamics of the atomic system under field 
in the squeezed-vacuum state is shown in Figs 1 and 2 for 
áN ñ = 50 and 1000, respectively. The horizontal straight line 
is the level corresponding to the 1 – W0 value, where W0 is the 
vacuum-state population. This is the upper limit of the ionisa-
tion probability. It can be seen that for both áN ñ values the 
ionisation probability in squeezed vacuum is below this level 
and tends to saturate at a level below the aforementioned one. 
At áN ñ = 50 << kcrr the characteristic saturation time of the 
dependence Wi (t) for a field in the squeezed-vacuum state is 
much longer than in the case of Poissonian distribution with 
the same áN ñ. Therefore, even at small áN ñ, the ionisation in 
squeezed vacuum slows down, and the asymptotic (at t ® ∞) 
value of its probability is much smaller than not only unity 
but also the upper boundary, which is due to the stabilising 
role of the Fock states with a large number of the photons (k 
>> kcr) entering this field state.

A similar situation is observed for áN ñ = 1000. However, 
in this case the population of bound states for both the classi-
cal field and the field in the squeezed-vacuum state are char-
acterised by rapid decay in the initial stage, which is followed 
by a much slower decay. Thus, when an atom is ionised by a 
squeezed nonclassical field, interference stabilisation is 
observed for both rather small and large áN ñ values. This sta-
bilisation is much more pronounced than in the case of classi-
cal fields; it manifests itself in the formation of a wave packet 
of bound atomic states that are more stable to ionisation and 
in the long-term conservation of population in the states with 
a large number of photons.

Note also that a quantum field is characterised by even 
stronger (in comparison with classical fields) ionisation sensi-
tivity to the initial phase difference for the atomic-level popu-
lation amplitudes. In the case of antiphase population of 
atomic levels at the initial instant, the system exhibits a higher 
stability in comparison with the in-phase population. Thus, it 
is shown that the interaction of an atom with a quantum field 
in the squeezed-vacuum state leads to the formation of a 
rather stable system at a certain instant, which hardly decays 
in the course of time.

The situation with the V system is more complicated. 
Here, the analytical solution is rather cumbersome, and the 
pattern observed is fairly sensitive to the initial parameters of 
the problem. An interaction of the atom with an external field 
gives rise to induced transitions between discrete levels of 
both the L type (through the continuum) and the V type 
(through the lower resonant state); therefore, the interference 

stabilisation is much more pronounced than for the L scheme. 
Here, the relation between the frequency of a light photon 
and the Rabi frequency is of great importance: if the param-
eters are chosen poorly, the probability of resonant transi-
tions is low, and they can hardly affect the dynamics of the 
system.

The consideration of the problem in terms of quasi-ener-
gies and quasi-energy wave functions gives rise to three quasi-
energies, two of which correspond to the states decaying fairly 
rapidly, while the third describes the state that hardly decays 
and thus leads to stabilisation. The quasi-energies can be 
obtained in the explicit form by equating the determinant of 
the matrix
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to zero. Since the analytical expressions in the V scheme are 
fairly cumbersome, the problem is solved numerically; it is 
assumed that the resonant level is depopulated at the initial 
instant but then becomes populated. In contrast to classical 
field, squeezed vacuum within the V scheme, even at long 
times, contains oscillations of populations of both the reso-
nant state (Fig. 3a) and the other two atomic levels (Fig. 3b), 
which is related to the influence of a large number of Fock 
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Figure 3.  Time dependences of the populations of the (a) resonant state, 
Wres, and (b) the first (W1; 3, 5 ) and second (W2; 4, 6 ) atomic levels for 
the V scheme at áN ñ = 50 and the initial phase difference f = 0 for fields 
in the (1, 3, 4 ) coherent and ( 2, 5, 6 ) squeezed-vacuum states.
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states with large numbers k, populated for the nonclassical 
field. Therefore, the ionisation probability in a nonclassical 
field is always below unity; i.e., the stabilisation effect is 
directly observed at any initial phase difference, which does 
not hold true for the classical field (Figs 3, 4). In the case of 
initially populated atomic levels with a phase difference of p, 
a rather stable wave packet is formed almost immediately and 
does not decay in the course of time, which is characteristic of 
both classical and quantum fields (Fig. 5). Under these condi-
tions, the stabilisation in the classical field is even stronger 
due to the higher degree of phase coherence of states (with 
respect to the validity of the destructive-interference condi-
tions for the transitions into continuum).

3.2. Entanglement of the atomic and field subsystems

An important property of a combined quantum-mechanical 
system is its entanglement or impossibility of being factorised 
into combined parts, in other words, the wave function of the 
system cannot be presented as the product of the wave func-
tions of the atomic and field subsystems: y(r, q) ¹ j(r)F (q).
There are different measures of entanglement [19 – 22]. Here, 
the entanglement of the system was analysed using the 
Schmidt parameter, which is directly related to the reduced 
matrix density rr of the system [19, 21]:

K = Tr ( rr2 )–1.	 (12)

For the states depending on a continuously changing vari-
able, the expression for the Schmidt parameter can be written 
in another form [21]:

2 2,
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It is easy to calculate the Schmidt parameter by considering 
only the states of the system that remained bound during ion-
isation. Having substituted the time-dependent wave function 
of the system in the form of expansion in the eigenfunctions of 
the bound states and taken into account the orthogonality of 
the basis states, we obtain the expression for K in terms of the 
time-dependent probability amplitudes:
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where n and m take values of 1 or 2 in the L scheme and 0, 1, 
or 2 in the V scheme; double summation is performed over the 
field states.

The same expression can be derived proceeding from the 
matrix concepts. The elements of the density matrix of the 
coupled atom + field system have the form

jla aij
kl

ikr = *^ h .

Averaging the matrix over the field degrees of freedom leads 
to the so-called reduced density matrix, which characterises 
the state of the atomic subsystem, independent of the field 
state:
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Using the definition of the Schmidt parameter (12), one can 
easily make sure that the matrix approach also yields expres-
sion (13). Thus, the physical meaning of the Schmidt param-
eter becomes clear: in the case of pure atomic state, the trace 
of the square of reduced density matrix is unity, i.e., K = 1; if 
the state is mixed, K > 1.

Having performed some transformations, one can obtain 
simpler expressions for the Schmidt parameter in terms of the 
single sum over the field states:
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for the L scheme and 
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for the V scheme, where 

W abound nk
nk

2
=/ .

0

0

0.2

0.4

0.6

0.8

1.0

5000 10000 15000 t (au)

Wi

Figure 4.  Time dependences of the ionisation probability Wi for the V 
scheme at áN ñ = 50 and the initial phase difference f = 0 for fields in the 
coherent (dashed line) and (solid line) squeezed-vacuum states. The 
horizontal straight line shows the 1 – W0 level.
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Figure 5.  The same as in Fig. 4 but for the initial phase difference of the 
atomic states f = p.
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As was suggested, the Schmidt parameter for the L 
scheme in the case of classical field at áN ñ = 1000 is practi-
cally constant and equal to unity; i.e., no correlations are 
observed between the atomic and field subsystems (Fig. 6, 
dashed curve).

The situation is different in the case of the quantum 
field: here, the Schmidt parameter exceeds unity on some 
time interval (Fig. 6, solid curve). During ionisation the 
system is entangled, and factorisation can be performed 
only at complete decay of one of the states, corresponding 
to one of the quasi-energies. The initial population of 
atomic states in antiphase is more preferred, because the 
characteristic time of ionisation (and, therefore, entangle-
ment) significantly increases. Note that an increase in the 
mean number of quanta increases the degree of entangle-
ment of the system; i.e., the highest correlation between the 
atomic and field subsystems occurs in a stronger field. 
Thus, entanglement is inherent in only quantum fields, and 
the degree of entanglement depends on the field intensity. 

Even higher degree of entanglement can be obtained in 
the presence of resonant coupling with the lower state. In 
the case of the V scheme, an effect of coherent field even 
with a small áN ñ value may cause a weak entanglement of 
system at short times, while the resonant state remains 
populated. As the system becomes ionised and the reso-
nant state becomes depleted (Fig. 3a), the Schmidt param-
eter tends to unity and equals unity at long times. A sig-
nificant entanglement arises in a quantum field even at a 
small mean number of photons: áN ñ = 50 (Fig. 7). Here, 
one can also observe a correlation between the residual 
population of the resonant state and the K value. Thus, 
while the resonant state is populated, the Schmidt param-
eter K > 1, and the system is entangled; if the population of 
the lower state becomes zero, the V system degenerates 
into the L system, and the Schmidt parameter tends to 
unity. In a classical field, the population of the resonant 
state becomes zero at a certain instant, and the V scheme 
degenerates into the L scheme. A quantum field, even at 
long times, contains some residual population of the reso-
nant state, degeneration does not occur, and the system is 
constantly entangled (Figs 3, 7). Note that within the V 
scheme the dependence of the degree of entanglement on 
the initial phase of atomic-level population is opposite to 
that for the L scheme: the residual population of the reso-

nant state for the in-phase population exceeds that for the 
antiphase population; therefore, the degree of entangle-
ment in the case of in-phase population is also higher. In 
addition, since the population of the resonant state is 
retained, the Schmidt parameter for the V scheme exceeds 
that for the L scheme. Therefore, the V scheme is more 
favorable for observing the entanglement effect.

However, entanglement can also be observed in a 
coherent field with a Poissonian distribution of photons. 
This situation occurs, for example, in the L scheme, if the 
mean number of photons is close to k cr. As a result, an 
intermediate regime arises, where the ionisation rate Gk 
and the spacing d between discrete levels become values of 
the same order of magnitude. In this case, a degree of 
entanglement close to maximum (K = 2) is periodically 
observed in the system. Thus, along with the regions of 
strong and weak fields, one can select the third region, 
where the behaviour of the Schmidt parameter is radically 
different; this is the region near kcr. Figure 8 shows the 
behaviour of the Schmidt parameter in the weak-field 
regime (Fig. 8a) and in the case where  áN ñ » kcr and the 
K values are close to the maximum value Kmax = 2 (Fig. 
8b). Note that one would expect the coherent state of the 
field with áN ñ ~ kcr to be classical, which is indirectly con-
firmed by the correspondence between the dynamics of the 
atomic system in this field and the solution of the semiclas-
sical problem. However, the observed high degree of cor-
relation between the atomic and field subsystems reveals 
nonclassical features of this field state. Therefore, the 
degree of entanglement that arises upon interaction of 
coherent light with a Rydberg atom, for which the mean 
ionisation width is of the same order of magnitude as the 
energy spacing to the neighboring levels, can actually be a 
measure of acting-field nonclassicity.

Note that, with allowance for the renormalisation of 
the elements of the reduced density matrix rru  = rr /Wbound, 
expression (15) yields the following relation for the Schmidt 
coefficient within the L scheme:

2 1 4P K 1
22 11

2
12 21r r r r= - = - +- u u u u^ h .	 (17)

This quantity characterises the degree of purity of the 
atomic state upon interaction between the atom and quan-
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Figure 6.  Time dependences of the Schmidt parameter K for the L 
scheme at áN ñ = 1000 and the initial phase difference f = 0 for fields in 
the coherent (dashed line) and squeezed-vacuum (solid line) states.
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tum field. Here, K = 1 yields P = 1 and corresponds to the 
factorisation of the total wave function and, therefore, to 
the possibility of characterising the atomic subsystem by a 
pure state.

As for the experimental measurement of the degree of 
entanglement, it is sufficient to determine either the Schmidt 
parameter K or the degree of atomic-state purity. To this end, 
it is necessary to measure the inverse population of the atomic 
state ( 22 11r r-u u ), which can easily be implemented experimen-
tally, and the last term in (17), which contains information 
about the phases; the latter is a fairly difficult problem. One of 
the ways to measure this quantity is based on the subsequent 
interaction between the atom in the state rru  and the classical 
field with the same frequency as the initial quantum field. In 
this case, the dynamics of the atomic system depends directly 
on the values of the off-diagonal elements of the density matrix 
and contains information about their amplitudes and phases.

Note that, for a real atom, which is characterised by a 
large number of neighboring Rydberg states, the model under 
consideration gives only a qualitative concept of the dynamics 
of the system, whereas the degree of entanglement is much 
more difficult to determine. However, when there is a reso-
nance with one of the lower states, all the found features of 
the dynamics of the V scheme considered above are present, 
and the population of the initially depleted resonant state can 
serve as a measure of entanglement of the system.

4. Conclusions 

We investigated the dynamics of a model atomic system in a 
strong nonclassical electromagnetic field and performed com-
parison with the case of interaction of an atomic system with 
classical light. It was shown that an atom in a quantum elec-
tromagnetic field in the squeezed-vacuum state is ionised 
more slowly than in the coherent state of the field, which is 
due to the much wider distribution over the number of pho-
tons for squeezed nonclassical light. At the same time, the 
dynamics of an atom in the squeezed-vacuum field demon-
strates features that are characteristic of the dynamics of an 
atom in a classical field in both strong- and weak-field 
regimes. It was established that in the case of resonant cou-
pling with the lower state a fairly stable wave packet can be 
formed, which barely decays even over long times. The found 
features of the dynamics of atomic systems in nonclassical 
fields qualitatively manifest themselves in real atoms, which 
are characterised by a large number of closely spaced Rydberg 
levels.

We also investigated the correlations arising in the atom + 
field system and demonstrated the occurrence of entangle-
ment of the field and atomic subsystems, which exists for a 
fairly long time. The presence of entanglement in the system 
makes it possible to obtain information about one subsystem 
by performing measurements with the other one. In particu-
lar, the detection of the field system in one of the specific Fock 
states allows one to find the atomic wave function in the form 
of a superposition of atomic states (wave packet) with exact 
(including the phase difference) determination of the ampli-
tudes of entering-state probabilities. The Schmidt parameter, 
which is a quantitative measure of entanglement, was calcu-
lated for the system under consideration, its temporal dynam-
ics was investigated, and the regimes in which the degree of 
entanglement reaches a maximum were found. The possibility 
of measuring experimentally the degree of entanglement in 
the system under study was analysed and it was demonstrated 
that the population of the lower, resonantly populated state 
can be a measure of entanglement of the system even for real 
atoms, characterised by a large number of closely spaced 
Rydberg states.
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