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Abstract.  The dependence of the output power of CuBr lasers 
(operating at wavelengths of 510.6 and 578.2 nm) on ten input 
physical parameters has been statistically analysed based on a 
large amount of experimental data accumulated for these lasers. 
Regression models have been built using the flexible nonparametric 
method of multivariate adaptive regression splines (MARS) to 
describe both linear and nonlinear local dependences. These models 
cover more than 97% initial data with an error comparable with the 
experimental error; they are applied to estimate and predict the 
output powers of both existing and future lasers. The advantage 
of the models constructed for estimating laser parameters over the 
standard parametric methods of multivariate factor and regression 
analysis is demonstrated. 

Keywords: copper bromide laser, output laser power, multivariate 
adaptive regression splines, nonparametric model.

1. Introduction 

The subject of this study is copper bromide (CuBr) lasers, 
which generate at the wavelengths l1 = 510.6 nm and l2 = 
578.2 nm. The lasers of these types are most efficient sources 
of visible light among metal vapour lasers. They are widely 
used in practice and are of great scientific interest [1].

These lasers have been intensively studied not only experi-
mentally but also using methods of analytical and numerical 
simulation. The main results in this field have been obtained 
within kinetic models, which are generally based on several 
tens or even hundreds of interrelated differential equations 
describing the relationship of the physical processes occur-
ring  in the laser medium [1, 2]. At the same time, some new 
approaches to the study of these lasers have been developed 
in  the last years; they are based on statistical treatment of 
accumulated experimental data with application of specialised 
computational methods and software [3 – 7]. These approaches 
directly yield important information about the main depen-
dences of laser parameters and predict the behaviour of a spe-
cific laser system or a type of systems. Statistical methods 

make it also possible to reveal new relationships between 
the characteristics of the system under consideration that can-
not be obtained by theoretical, numerical, and experimental 
studies.

The purpose of this study was to determine the explicit 
dependence of the output laser power on the main input 
parameters. To this end, we constructed nonparametric regres-
sion models by the method of multivariate adaptive regression 
splines (MARS) [8]. We used the MARS technique (1) to 
determine the dependences describing most adequately both 
locally linear and locally nonlinear terms; (2) to find the degree 
of influence of the input parameters on the output power; 
(3) to estimate the results of the known experiment, as well as 
to predict and plan new experiments; and (4) to compare the 
MARS results with those obtained by standard statistical 
methods. The study was performed on the basis of all existing 
experimental data on copper bromide lasers [9 – 17] that have 
been developed during the last several decades at the Laboratory 
of Metal Vapor Lasers of the Georgi Nadjakov Institute of 
Solid-State Physics, Bulgarian Academy of Sciences. Calcula
tions were performed using the MARS software [18].

2. Description of data 

We considered the following ten input laser variables (predic-
tors): the inner diameter of the laser tube, D (mm); the inner 
diameter of the diaphragm, Dr (mm); the active-region length 
(the distance between the electrodes), L (cm); the supplied 
electric power, Pin (kW); the electric power per unit length 
(with allowance for 50% loss), PL = Pin /L (kW cm–1); the 
electric pulse repetition frequency, Prf (kHz); the buffer gas 
(neon) pressure, pNe (Torr); the additional gas (hydrogen) pres-
sure, pH2

 (Torr); the equivalent capacitance of the capacitor 
battery, C (nF); and the temperature of the reservoir filled 
with CuBr, Tr (°C). The average output laser power Pout (W) 
will be considered as the main dependent variable.

We used the data for n = 387 experiments. The letter n 
will indicate the set of input variables in the following order: 
n = (D, Dr, L, Pin, PL, Prf, pNe, pH2

, C, Tr). For example, the 
maximum output power Pout = 120 W was obtained in the 
experiment characterised by n387 = (58, 58, 200, 5, 12.5, 0.6, 
17.5, 20, 1.3, 490) [14].

The basic statistical characteristics of the experiments 
are listed in Table 1. Note that on the whole they cannot be 
described by a multivariate normal distribution; therefore, 
the application of parametric methods to the complete sample 
used is not justified. However, this condition is not necessary 
for nonparametric methods (such as MARS), which have a 
wider range of application and are not related to a certain 
type of data distribution.
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3. MARS method 

This method was developed by prominent American physi-
cist and statistician J. Friedman in the 1990 – 1991 [8]. It is 
implemented in such program packages as MARS [18], 
STATISTICA, R, and some others. In the last decade, MARS 
has acquired a reputation of a predictive technique in different 
fields of science and technology [18, 19].

In comparison with other regression techniques, MARS 
models are more flexible and can approximate local nonlin-
earities of data. Within these models the predictors that affect 
most significantly the dependent variable are automatically 
selected, and the simulation results have a simple form and can 
easily be understood and interpreted. Both small and large 
data sets can be processed by the MARS method. Here, it is 
sufficient for approximation errors to be normally distributed. 
For statistically significant models the estimate bias is generally 
very small.

Suppose we have a data set X = (x1, x2, ..., xp) and a vari-
able y = y(X), which depends on these data. Let the variables 
y, x1, x2, ..., xp be vectors of dimension n. The general expres-
sion for the MARS model y [ ]Mt  for approximating y has the 
form

( ),y b b F X[ ]M j j
j

M

0
1

= +
=

t / 	 (1)

where b0 and bj are constant coefficients of the model (j = 
1, 2, ..., M) and Fj(X ) are basis functions.

In the linear case the basis functions have the form of a 
one-dimensional mirror function:

Fj(X ) = max (0, xk – ck) or Fj(X ) = max (ck – xk, 0).	 (2)

Here, ck is the constant (node) of a basis function with values 
lying in the domain of the variable xk. Graphically, the linear 
MARS model is a partially linear function, which can be con-
sidered as a linear regression curve in each separate subinterval.

When constructing nonlinear MARS models, the basis 
functions can also contain products of two or more functions 
of type (2) with nonrepeating indices. For example, the basis 
function

Fj(X ) = max (0, xk – ck) max (0, xl – cl )	 (3)

can take into account the influence of the interaction between 
two predictors, xk and xl , on the dependent variable y. Note 
that the difference of MARS model (1) from the model of con-
ventional splines is as follows: the nodes ck , the real set of basis 
functions, and their number M are unknown beforehand and 

must be determined from a number of additional optimising 
conditions.

A model is constructed in two stages. First, some maxi-
mum number of possible basis functions (it will be denoted 
as M0) and the maximum order of interaction between them 
(the number of terms in the products of basis functions) are 
specified. It is recommended to choose M0 ³ 3p [19]. The so-
called step-by-step forward run is performed in the first stage. 
Beginning with some b0 value (for example, b0 = miin yi ), one 
pair of basis functions of type (2) is added to the model in 
each next step. For a current model with M basis functions, the 
variable, coefficients, and the corresponding desired variable 
node are determined from the condition for minimising the 
sum of squared errors,

( )S y y X[ ] [ ]M i M i
i

n
2

1
= -

=

t6 @/ .

If the forward run is finished after M1 steps, one has M1 
embedded models. The second stage implies a backward run: 
step-by-step removal of the terms (one by one) that do not 
improve the model in the sense of its cross-validation [method 
of generated cross-validation (GCV)] [19, 20]. The best model 
with m = M terms is chosen, for which a minimum is obtained 
for the quantity 
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where c(m) = m + d(m – 1)/2; d Î [2, 3]. The backward run 
makes it possible to exclude possible overfitting of the model. 
Note that, depending on the purposes of study, one can use 
each statistically obtained significant model.

4. MARS simulation of the output laser power 

Based on the above-described data, we will construct different 
MARS models to estimate the output power Pout and obtain 
explicit expressions for the dependence of type (1). These 
models are built using all ten specified independent variables 
from Section 2 as predictors and the output power Pout as a 
dependent variable.

For simplicity we restrict ourselves to the results obtained 
with the aid of the best MARS models. Below any model will 
be denoted as (M0;r), where M0 is the maximum number of 
initial basis functions and r corresponds to the chosen maxi-
mum order of interaction between predictors.

Table 1.  Statistical characteristics for a set of n = 387 measurements.

Variable	 Minimum value	 Maximum value	 Mean value	 Asymmetry	 Excess

D	 15.00	 58.00	 46.59 ± 10.072	 –0.809 ± 0.12	 1.451 ± 0.25
Dr	 4.50	 58.00	 34.83 ± 18.31	 0.265 ± 0.12	 –1.602 ± 0.25
L	 30.00	 200.00	 106.59 ± 70.70	 0.478 ± 0.12	 –1.670 ± 0.25
Pin	 1.00	 5.00	 2.10 ± 1.27	 1.065 ± 0.12	 –0.321 ± 0.25
PL	 5.00	 16.67	 10.92 ± 2.51	 –0.467 ± 0.12	 0.183 ± 0.25
Prf	 3.20	 125.50	 23.24 ± 25.69	 3.589 ± 0.12	 11.530 ± 0.25
pNe	 8.00	 250.00	 22.56 ± 24.17	 6.389 ± 0.12	 46.454 ± 0.25
pH2	 0	 0.80	 0.36 ± 0.25	 –0.416 ± 0.12	 –1.430 ± 0.25
C	 0.33	 4.00	 1.33 ± 0.61	 2.313 ± 0.12	 6.233 ± 0.25
Tr	 350.00	 590.00	 478.22 ± 23.25	 –1.673 ± 0.12	 7.332 ± 0.25
Pout	 0.25	 120.00	 34.024 ± 35.57	 0.808 ± 0.12	 –0.862 ± 0.25
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4.1. First-order best MARS models

First-order models are partially linear regression models (M0;1) 
for each of the basis functions of model (1). Let us consider 
the model (30;1) in detail. The best MARS model contains the 
following 18 basis functions:

F1 = max (0, Pin – 2.5), 	 F3 = max (0, C – 1.9),

F5 = max (0, Dr – 40), 	 F6 = max (0, 40 – Dr),

F7 = max (0, C – 2.18), 	 F9 = max (0, C – 1.3),

F11 = max (0, Prf – 16.3), 	 F13 = max (0, Prf – 21.5),

F15 = max (0, C – 1.1), 	 F17 = max (0, C – 1),	 (5)

F19 = max (0, Prf – 18.5), 	 F21 = max (0, Pin – 2),

F23 = max (0, Prf – 26), 	 F25 = max (0, PL – 10),

F26 = max (0, 10 – PL), 	 F27 = max (0, pH2
 – 0.5),

F28 = max (0, 0.5 – pH2
), 	 F29 = max (0, Prf – 14).

The corresponding MARS model for the output power Pout 
has the form

P( ; )
out
30 1  = 31.6223 – 28.9857F1 + 120.663F3 

	 + 1.10983F5 – 0.436723F6 – 78.8721F7 

	 – 112.399F9 – 3.25176F11 + 8.49341F13 

	 + 209.183F15 – 142.364F17 – 6.14717F19	 (6)

	 + 44.4853F21 – 2.54973F23 – 1.63555F25 

	 – 1.60555F26 – 34.5407F27 – 9.7688F28 

	 + 3.45331F29.

In formulas (5) and (6), only six of ten input variables 
affect significantly the model: C (100), Pin (78.3), Prf (63.9), 
Dr (43.5), PL (14.6), and pH2

 (13.0) (their relative contributions 
are given in parentheses). One can easily find the individual 
contribution of each predictor by equating to zero all the model 
terms that do not contain this predictor. As an example Fig. 1 
shows the contributions of the predictors Pin and C. It can 
be seen that a change in Pin does not affect the model in the 
interval [1, 2], whereas in the interval [2, 2.5] its contribution 
amounts to 0 – 25 and in the interval [2.5, 5] the contribution 
gradually increases and reaches 65. Similarly, one can easily 

estimate the influence of the capacitance C and each predictor 
on the model.

Model (5), (6) describes 98 % of all data with a statistical 
significance P = 0 and a significance of the coefficients in (6) 
less than 0.00128. The model is very easy to use for calculating 
the predicted value P( ; )

out
30 1  if the predictor values are set. For 

example, for the set n = (40, 40, 120, 2.6, 10.83, 0.6, 17.5, 20, 1, 
450), we first find from (5) that F1 = 0.1, F3 = F5 = F6 = F7 = 
F9 = 0, F11 = 1.2, F13 = F15 = F17 = F19 = 0, F21 = 0.6, F23 = 0, 
F25 = 0.83, F26 = 0, F27 = 0.1, F28 = 0, and F29 = 3.5. Then, sub-
stituting these values into (6), we obtain P( ; )

out
30 1 (n) = 58.78 W. 

The experimental value for this measurement is 57.8 W.
The results obtained for the main first-order models are 

listed in Table 2. These models are constructed for subsequent 
comparison with higher-order models of interaction between 
predictors.
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Figure 1.  Contributions (in normalised units) of the input power Pin and 
the capacitor battery capacitance C to model (5), (6).

Table 2.  Main characteristics of the best MARS models for calculating the output power Pout. The predictors are given in descending order with 
respect to their relative contributions to the models.

r	 M0	 R2	 GR2
	 Standard	 Number of	

M	 Predictors
				    regression error	 predictors

1	 20	 0.9744	 0.9700	 5.60	 4	 13	 Pin, C, Prf, Dr

	 25	 0.9786	 0.9737	 5.31	 5	 15	 Pin, C, Prf, Dr, D
	 30	 0.9816	 0.9765	 4.95	 6	 18	 C, Pin, Prf, Dr, PL, pH2

	 35	 0.9818	 0.9763	 4.93	 6	 19	 C, Pin, Prf, Dr, pH2, PL

	 40	 0.9818	 0.9762	 4.92	 6	 19	 C, Pin, Prf, Dr, pH2, PL

2	 20	 0.9856	 0.9817	 4.35	 6	 15	 Pin, C, Prf, L, pH2, PL

	 25	 0.9885	 0.9851	 3.9	 6	 17	 Pin, C, Prf, Dr, PL, pH2

	 30	 0.9910	 0.9874	 3.48	 6	 21	 Pin, C, Prf, Dr, pH2, PL 
	 35	 0.9944	 0.9918	 2.74	 6	 25	 Pin, C, Prf, Dr, pH2, PL

	 40	 0.9950	 0.9923	 2.51	 7	 26	 Pin, C, Prf, Dr, pH2, PL, Dr

3	 20	 0.9872	 0.9838	 4.11	 6	 16	 Pin, C, Prf, PL, pH2, L
	 25	 0.9904	 0.9879	 3.55	 6	 16	 Pin, C, Prf, PL, pH2, L
	 30	 0.9921	 0.9888	 3.26	 7	 22	 Pin, C, Prf, PL, pH2, L, Dr

	 35	 0.9934	 0.9894	 3.00	 8	 28	 Pin, C, Prf, PL, pH2, L, Dr, pNe
	 40	 0.9945	 0.9903	 2.71	 8	 31	 Pin, C, Prf, PL, pH2, L, Dr, Tr
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4.2. Second-order best MARS models

There are not only linear but also nonlinear local dependences 
between predictors. Therefore, we will construct second-order 
interaction models [see formula (3)]. Let us consider model 
(30;2) as an example. It is built using the following 22 basis 
functions:

F1 = max (0, Pin – 2.5), 	 F2 = max (0, 2.5 – Pin),

F3 = max (0, C – 0.33)F1,	 F4 = max (0, Prf – 17.5)F1, 

F5 = max (0, 17.5 – Prf)F1, 	 F7 = max (0, 0.6 – pH2
),

F8 = max (0, Prf – 23)F2, 	 F10 = max (0, PL – 7.5)F2,

F11 = max (0, 7.5 – PL)F2,	 F12 = max (0, PL – 9.58333)F2,

F14 = max (0, Prf – 16)F1, 	 F16 = max (0, Prf – 18.5)F1,	 (7)

F19 = max (0, 1.9 – C), 	 F20 = max (0, PL – 7.5)F19,

F21 = max (0, 7.5 – PL)F19, 	 F22 = max (0, Dr – 20)F19,

F23 = max (0, 20 – Dr)F19, 	 F24 = max (0, pH2
 – 0.3)F19,

F25 = max (0, 0.3 – pH2
)F19, 	F26 = max (0, Pin – 2)F19, 

F28 = max (0, C – 1.3)F1, 	 F30 = max (0, PL – 5)F1.  

The corresponding model for Pout contains 21 functions from 
set (7) and has the form

P( ; )
out
30 2  = 35.0442 – 44.6739F1 – 26.0407F2 

	 + 68.9544F3 + 6.30534F4 – 5.30336F5 

	 – 25.2627F7 – 0.0240315F8 + 10.1025F10
	 + 14.1118F11 – 12.0007F12 – 5.37771F14 

	 – 7.34248F16 – 0.850553F20 – 9.95073F21	
(8)

	 + 1.15859F22 + 0.928972F23 – 48.494F24 

	 + 21.027F25 + 34.1073F26 – 35.9377F28 

	 – 1.4502F30.

Model (7), (8) contains six of ten initial predictors. In 
descending order with respect to the influence on the model, 
these are the following variables (with their relative contri
butions in parentheses): Pin (100), C (38), Prf (30), Dr (15), 
pH2
 (12), and PL (10). Partial second-order interaction (also in 

descending order with respect to their relative contributions 
to the model) was found for the following groups of variables: 

{Pin, Prf}, {Pin, C}, {Pin, pH2
}, {Pin, PL}, {Dr, C}, {C, pH2

}, and 
{PL, C}. The contribution regions for the first two of these 
groups are shown in Fig. 2. To increase the output power, 
one must determine the ranges of values in which individual 
predictors should be chosen. For example, it can be seen in 
Fig. 2a that the influence of the group {Pin, Prf} reaches a 
maximum in the intervals Prf Î [50, 125]  and Pin Î [2.5, 3.5]. 
Similarly, Fig. 2b shows that the influence of the group {Pin, C} 
on the output power is maximum at Pin Î [4.5, 5] and C Î 
[1.6, 2].

Model (7), (8) describes 99% of all data with a statistical 
significance P = 0 and significance coefficients in (8) smaller 
than 0.00201.The results obtained for the main second-order 
models are also listed in Table 2.

We also constructed third- and higher order models; how-
ever, as can be seen in Table 2, they did not radically improve 
the results in comparison with the second-order models.

5. Comparison of models

Models can be compared in their main parameters (see Table 2). 
According to Table 2, the determination coefficient for linear 
models is R2 = 97 % – 98 %, while for the other models R2 > 99 % 
(this parameter characterises the percentage of the observa-
tions described by a given model). The cross-validation coef-
ficient R2 for GR2 is also rather large [20]. This means the fol-
lowing: if one constructs a model based on a 90 % random 
‘learning’ data sample and uses it to predict the rest 10 % data, 
the degree of approximation (in percent) will be GR2.

Among all models, it is the second- and the third-order 
interaction models that describe most adequately locally lin-
ear and locally nonlinear terms. For example, it is sufficient to 
choose 30 or 40 initial functions and models (30;2), (30;3) or 
(40;2), (40;3). These models give an approximation error of 
about 5%, which is comparable with the experimental error.

The last column of Table 2 shows that an increase in the 
model order and in the number M0 of initial basis functions 
stabilises the set of significant predictors. For example, the 
variables Pin, C, Prf, Dr, pH2

, and PL are significant when deter-
mining the output power Pout. Note that the relative contri
bution of Dr, pNe, and Tr in models (40;2), (30;3), (35;3), and 
(40;3) is less than 4, and their influence can be neglected.

Our previous statistical studies using parametric methods 
of multivariate factor and regression analyses led to models 
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Figure 2.  Contributions (in normalised units) of the interaction between (a) Pin and Prf and (b) Pin and C to model (7), (8).
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based on random samples from the data set under considera
tion. Based on the variables from the set Pin, Dr, D, L, PL, 
pH2
,  linear, nonlinear parametric, and MARS models were 

developed for the output power in [3], [6], and [5], respec-
tively. Note also that the variables C and Prf are not used in 
these models, because they take only several optimised values, 
and this factor is disregarded in parametric methods. These 
models had worse statistical characteristics and a more limited 
range of application than the MARS model constructed by 
us. This is related, on the one hand, to strict limitations on the 
application of parametric methods, and, on the other hand, to 
the presence of partially nonlinear dependences and high multi-
collinearity of the data analysed for copper bromide lasers.

6. Estimation and prediction of experimental 
results using MARS models

We will apply MARS models to predict the results of known 
and future experiments. As was shown in Subsection 4.1, 
having some model and a set of its parameters, one can easily 
calculate the values of the basis functions and obtain the cor-
responding estimate for Pout. For definiteness, we will use the 
best MARS models: (30;2), (40;2), (30;3), and (40;3).

6.1. Prediction of the results of known experiments

Model (30;2) yields the following estimate for the experi-
ment with the set of input parameters n387 and Pout = 120 W: 

P( ; )
out
30 2  = 119.7 W. The experimental Pout values are compared 

with their model estimates by formulas (7), (8) in Fig. 3.
To demonstrate the possibilities of predicting known output 

powers based on 377 experiments, we constructed four models: 
(30;2), (40;2), (30;3), and (40;3) and predicted, based on them, 
the data of the last ten of 387 experiments. These results are 
listed in Table 3 in ascending order with respect to Pout.

6.2. Prediction of the results of future experiments

By analogy with Subsection 6.1, MARS models can also be 
used to predict the results of new experiments. Our purpose 
was to predict the characteristics of copper bromide lasers with 
increased output power. To this end, we will set (taking into 
account the behaviour of the main predictors in the intervals 
where Pout increases) new sets of characteristics and calculate 
the corresponding approximations for Pout. The thus obtained 
predictions for ten chosen sets of parameters, denoted as npr , 
are listed in Table 4.

7. Physical interpretation of the simulation 
results 

When constructing models for calculating the output power 
Pout, we used ten independent variables. Nine of them are 
physical, and only the variable PL = Pin /L (with allowance 
for 50 % loss) is derivative. As was noted in Section 5, in the 
second- and third-order models for calculating the output 
power of copper bromide lasers, only the following six input 
parameters are significant: Pin, C, Prf, Dr, pH2

, PL. Of prime 
importance is the supplied electric power Pin (almost 100 
relative units), which is in good correspondence with the real 

Figure 3.  Approximation of the output power Pout using the best MARS 
model (30;2). The solid lines show the 5 % deviation from the mean value.

Table 3.  Results predicted based on 377 observations, using four MARS 
models for ten experiments (D = 58 mm, Dr = 58 mm, L = 200 cm, pH2 = 
0.6 Torr, pNe = 20 Torr, C = 1.3 nF, Tr = 490 °C).

n	 Pin	 PL	 Prf	 Pou
exp
t	 Pou

(3 
t 
0;2)	 Pou

(4 
t 
0;2)	 Pou

(3 
t 
0;3)	 Pou

(4 
t 
0;3)

378	 4	 10.00	 18.5	 104	 104.1	 104.2	 103.4	 105.7 
379	 5	 12.50	 15	 106	 106.8	 106.3	 106.0	 106.5 
380	 4.5	 11.25	 16	 108	 112.4	 109.3	 111.1	 111.1 
381	 4.5	 11.25	 17.5	 110	 112.1	 113.0	 114.9	 116.1 
382	 4.5	 11.25	 16.5	 112	 112.3	 113.2	 112.4	 112.8 
383	 4.5	 11.25	 18.5	 112	 114.0	 112.7	 113.1	 113.1 
384	 5	 12.50	 16	 118	 120.0	 114.0	 118.5	 118.1 
385	 5	 12.50	 16.5	 120	 119.9	 117.9	 120.1	 119.6 
386	 5	 12.50	 18.5	 120	 122.1	 119.2	 121.0	 117.5 
387	 5	 12.50	 17.5	 120	 119.7	 118.5	 123.3	 122.5

Note:  Pou
exp
t is the experimentally found output power and 

Pou
(3 
t 
0;2), Pou

(4 
t 
0;2), Pou

(3 
t 
0;3), and Pou

(4 
t 
0;3) are the output powers calculated accord-

ing to the models (30;2), (40;2), (30;3), and (40;3), respectively.

Table 4.  Results predicted based on 387 real observations using four MARS models for ten planned experiments (Prf = 17.5 kHz, C = 1.3 nF).

npr	 D	 Dr	 L	 Pin	 PL	 pH2	 pNe	 Tr	 Pou
(3 
t 
0;2)	 Pou

(4 
t 
0;2)	 Pou

(3 
t 
0;3)	 Pou

(4 
t 
0;3) 

1	 60	 60	 210	 5.1	 12.14	 0.6	 20	 490	 125.0	 124.1	 127.1	 127.8 
2	 68	 65	 220	 5.2	 11.82	 0.6	 20	 500	 132.4	 131.5	 130.8	 133.0 
3	 70	 68	 225	 5.25	 11.67	 0.6	 20	 500	 136.4	 135.6	 132.7	 135.6 
4	 75	 73	 230	 5.3	 11.52	 0.5	 20	 500	 144.7	 142.6	 134.5	 138.2 
5	 70	 70	 240	 5.5	 11.46	 0.5	 20	 500	 147.9	 145.8	 139.9	 144.7 
6	 70	 70	 240	 5.6	 11.67	 0.5	 20	 500	 149.4	 146.9	 141.5	 145.9 
7	 70	 68	 240	 5.7	 11.88	 0.5	 21	 500	 149.4	 146.7	 143.1	 147.0 
8	 75	 73	 240	 5.5	 11.46	 0.5	 21	 500	 150.0	 147.8	 139.9	 144.7 
9	 70	 70	 240	 5.7	 11.88	 0.5	 21	 500	 150.8	 148.0	 143.1	 147.0 
10	 75	 75	 240	 5.7	 11.88	 0.5	 21	 500	 154.3	 151.3	 143.1	 147.0

Note:  Pou
(3 
t 
0;2), Pou

(4 
t 
0;2), Pou

(3 
t 
0;3), and Pou

(4 
t 
0;3) are the output powers calculated according to the models (30;2), (40;2), (30;3), and (40;3), respectively.
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experiment. The contribution of the capacitor battery capaci-
tance C and the electric pulse repetition frequency Prf to the 
model is 20 – 35 rel. units, while the contribution of the other 
variables is 10 – 15 rel. units. These six parameters affect sig-
nificantly the average output laser power, because they set 
the  electric field distribution, the electron energy, and the 
temperature profile of ionised gas. All these factors affect the 
occupation of upper laser levels and, therefore, the lasing 
power Pout.

The variable PL is of particular importance for designing 
the laser tube. It must be taken into account to obtain good 
results in both the MARS analysis and parametric models 
[3 – 7]. The predicted results in Table 4 show a decrease in PL. 
This means that L should increase more rapidly than Pin to 
reduce the ratio PL = Pin /L. Physically, this is explained by 
the fact that an increase in the interelectrode distance L leads 
to redistribution of the input electric power Pin between the 
electrodes and in the active volume of positive gas-discharge 
column; this redistribution increases the output power and 
lasing efficiency.

Another important parameter for designing lasers is the 
specific power PV = Pin /V (in W cm–3); i.e., the power per 
unit  active volume V in the laser tube, with allowance for 
50 % loss. For the last three rows in Table 3 (Pout = 120 W), 
PV = 0.47 W cm–3. For the ten predicted sets of variables (npr) 
in Table 4, the PV value decreases with an increase in the 
set  number. The calculations show that the corresponding 
PV values are smaller than 0.47 W cm–3 by 30 % – 35 %. This 
deviation can be explained by higher input powers for the 
laser under study. With allowance for the results obtained, a 
specific input power PV = 0.3 W cm–3 can be recommended 
for designing future lasers. Using this value, one can decrease 
the thermochemical degradation of the laser tube and active 
operating materials, increase the service life, and reduce 
the decrease in the average laser power in the tube during its 
operation.

8. Conclusions 

Statistical simulation of the dependence of the output laser 
power on ten input variables was performed for copper bromide 
lasers using the predictive MARS technique. Partially linear 
and partially nonlinear MARS models were constructed based 
on a large amount of known experimental data to yield a very 
good approximation to the initial data sets. Six main vari-
ables were selected for calculating the output laser power. The 
models obtained were used both to calculate the parameters 
of existing lasers and predict the characteristics of future lasers. 
The models constructed and the predictions were physically 
interpreted. The approach developed and the results obtained 
can be used to plan future experiments.
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