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Abstract.  We consider theoretical and numerical methods for 
studying propagation and scattering of laser radiation of eigen-
modes and non-eigenmodes in an irregular integrated-optical wave-
guide. Scattering of non-eigenmodes in an irregular integrated-
optical waveguide is investigated for the first time. We present the 
calculated dispersion curves for TE and TM eigenmodes and TE 
non-eigenmodes. For the leaky TE0 modes we plot the dependence 
of the complex dispersion relation and show the vertical complex 
profile of the field. The dependence of the scattered laser radiation 
field on the effective refractive index is obtained for the given 
parameters of the waveguide. We compare for the first time the 
calculated complex scattering diagram of laser radiation outside 
the waveguide layer in the plane, perpendicular to the plane of inci-
dence, for the leaky and guided TE0 modes. 

Keywords: eigen- and non-eigenmodes, dispersion relation, three-
dimensional irregularity, vector three-dimensional problem of scat-
tering, linear and nonlinear media, second-harmonic generation. 

1. Introduction 

One of the urgent problems of integrated optics is the devel-
opment of new methods for studying propagation, conver-
sion, and scattering of electromagnetic waves in an integrated-
optical waveguide with three-dimensional (3D) irregularities 
[1 – 21]. Moreover, the solution of these problems is crucial 
for the design and development of advanced nanotechnolo-
gies in integrated optics and waveguide optoelectronics [7 – 15, 
19 –  24], since the waveguide is a basic element of various 
optical integrated circuits, including high-density integrated 
circuits for advanced telecommunication optical systems [9]. 
Such a solution, in particular, allows one: to find the attenua-
tion coefficient with high accuracy, to consider the influence 
of 3D irregularities on the characteristics of scattered radia-
tion (for example, optical integrated circuits), to take into 
account the effect of scattering of light on detecting capabili-
ties of integrated-optical sensors, etc. (see, for example, [1 – 21] 
and references therein). These studies are also important for 
the design of advanced optimised devices that combine opti-
cal waveguide devices (filters, lenses, etc.) with metallodielec-
tric waveguides that support surface plasmons. 

The solution to these urgent problems of integrated optics 
is hampered by lack of comprehensive theoretical methods 
that make it possible to study propagation, conversion and 
scattering of eigen- and non-eigenwaves in an integrated-opti-
cal waveguide with 3D-irregularities within a unified 
approach. In this case, analytical and numerical solutions 
should ensure a possibility of studying both integral and dif-
ferential characteristics of scattered radiation at an arbitrary 
distance from the waveguide, as well as when changing the 
radius of correlation of statistical irregularities in a wide 
range of variation of their transverse dimensions, including 
the size of the order of the wavelength of probe radiation as in 
the Mie scattering theory [1, 5, 11 – 14]. 

In this paper, we report theoretical and numerical analysis 
of waveguide propagation and scattering of laser radiation of 
eigen- and non-eigenmodes in an irregular integrated-optical 
waveguide within a unified approach, based on perturbation 
theory, the coupled mode method, the Green’s function 
method and the method of Fourier separation of variables 
[1, 3 – 5, 11 – 19]. Scattering of non-eigenmodes is investigated 
for the first time. The calculated dispersion curves are pre-
sented for the case of propagation of TE and TM eigenmodes 
and TE non-eigenmodes in the waveguides under study. The 
dependences of the field of scattered laser radiation on the 
effective refractive index are obtained for the given parame-
ters of the waveguide. Complex profiles of the field of fast and 
slow leaky modes and some other dependences are calculated. 

2. Electrodynamic problem of waveguide light 
scattering and methods of its solving 

2.1. Linear media 

The problem of waveguide scattering of electromagnetic radi-
ation in an irregular integrated-optical waveguide (Fig. 1) 
with 3D-irregularities is solved by the coupled-mode method 
and perturbation theory [1 – 5, 11 – 15, 18, 19]. 

Maxwell’s equations for the electromagnetic field in the 
case of a nonabsorbing linear isotropic medium (in the 
absence of charges and currents) in SI units are reduced to 
equations [1] 

¶ ¶ ¶ ¶,rot rott tH E E H/ /e m= =- ,	 (1)

where e, m are the dielectric and magnetic permeabilities of the 
medium, respectively;   nk0w em =  (n is the refractive index,  
k0 = 2p/l0, l0 is the wavelength of electromagnetic radiation in 
vacuum, w = 2p f,   f is the frequency of the electromagnetic 
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field); E, H is the vector of the electric and magnetic field 
strengths. 

Equations (1) yield the equation 

/ 0E E E2 2d d de e w me+ + =] g ,	 (2)

describing the electromagnetic field in an irregular optical 3D 
waveguide. 

We consider propagation of a guided {eigenmode, i.e., a 
solution to the problem on eigenfunctions (fields) and eigen-
values (propagation constants) [1 – 5]} TE0 mode in a wave-
guide along the z axis. Similarly, we perform an analysis for 
the guided TM modes. Figure 1 illustrates the process of 
propagation and scattering of guided modes in the ray-optics 
approximation. 

2.1.1. Real propagation constants. Sewing the fields at 
interfaces of the waveguide, we finally obtain the dispersion 
relation, for example, in the trigonometric form [1 – 5, 20]: 
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which allows one to find the propagation constants (eigenval-
ues) of the corresponding guided modes (subscripts ‘c, f, s’ 
denote media 1, 2 and 3, respectively; Fig. 1). Here, h is the 
thickness of the waveguide layer; r is the transverse compo-
nent of the propagation constants of guided modes (along the 
x axis);   k nm

2 2
0

2r b+ = ] g , where b is the longitudinal compo-
nent of the propagation constants of radiation modes (along 
the z axis), nm is the index refractive index of the correspond-
ing layer of a multilayer optical waveguide; the mode number 
is p = 1, 2, … in the first case and p = 0, 1, 2, … in the second 
case. 

Figure 2 shows the dispersion curves g = g(h) [plotted in 
accordance with formula (3)] for the first five TE and TM 
modes of a regular three-layer planar polystyrene wave-
guide (g is the coefficient of the phase delay). The inte-
grated-optical waveguide parameters (for the wavelength 
of a helium – neon laser l0 = 0.633 mm) are as follows: the 
refractive indices of air, nc = 1.000; of the waveguide layer 
(polystyrene film), nf = 1.590; and of the substrate, ns = 
1.515. The dispersion curves allow one to find (for the 
given g) the corresponding value of h and vice versa for the 
selected mode. 

We will represent any arbitrary distribution of the field 
components (e.g., Ey for the TE0 mode of a planar integrated-

optical waveguide) in the form of expansion (in the series and 
integral) in an orthogonal set of basis eigenfunctions [1 – 5, 
11  – 15, 19]: 
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where the first sum describes all even and odd TE modes, and 
the combination of the sum (in general, for even and odd 
modes of radiation, symbolically denoted by 1 and 2) and 
integration – all the modes of radiation. In expression (4) the 
variable v varies from 0 to +∞; cv are the expansion coeffi-
cients of guided modes Evy; q is the effective scattering ampli-
tude of TE modes, defined as the coefficient of expansion of 
the field over all the modes of radiation Ey. Let us make some 
physical remarks on the radiation modes of, for example, a 
substrate [2, 19]. The field of the radiation mode of the sub-
strate can be treated as if this mode is excited by a plane wave 
incident from the substrate under the condition rs = k0ns 
´ cos qs (qs  is the angle of incidence of a plane wave from the 
substrate at the substrate – film interface). The plane wave 
incident from the substrate is refracted and partially reflected 
at the interface with the film and undergoes total internal 
reflection (TIR) at the film – air interface. As a result of inter-
ference between incident and reflected plane waves there 
arises a standing wave with a characteristic sinusoidal field 
distribution in the substrate and film. 

In the case of 3D-irregularities we represent the field dis-
tribution in the form of expansion over all possible eigen-
modes of a plane regular waveguide [1 – 5, 11 – 15]: 
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Here, q is the effective scattering amplitude, defined as the 
coefficient of expansion of the field over all modes of radia-
tion Eby; by is the longitudinal component along the y axis of 
the radiation mode propagation constant. The expansion 
coefficients in (4) and (5) are found using the known orthogo-
nality relations. 

The solution of the inhomogeneous three-dimensional 
equation (2) in form (5) using the Fourier method of separa-
tion of variables and the Green’s function method allows one 
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Figure 1.  Irregular integrated-optical waveguide: ( 1 ) cladding layer 
(air); ( 2 ) waveguide layer; ( 3 ) substrate; ( 4 ) optical beam; ( 5 ) scattered 
radiation; ( 6 ) leaky waves; h is the thickness of the waveguide layer. 
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Figure 2.  Dispersion curves g = g(h) for the first five guided (eigen) 
TE modes of a polystyrene waveguide. 
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to write the corresponding expression for the radiation field 
Es
out outside the waveguide [11 – 15, 18, 19]: 
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where x, y, z and x’, y’, z’ are the coordinates of the observa-
tion point and the coordinates of the point, where the irregu-
larity (for example, the waveguide layer) is located; the func-
tion Dnm sets the inhomogeneity of the waveguide layer; nm2  is 
the average refractive index of the waveguide layer; b0y is the 
modulus of the longitudinal component of the vector of prop-
agation kyn2 of the guided TE0 mode along the y axis; Eby is 
the field strength of the guided TE mode of the substrate; Ey 
is the field strength of the guided TE mode of the waveguide. 
In expression (6) integration over the primed variables is lim-
ited by the size of the volume where the inhomogeneity is con-
centrated. The nonlinear scattering integral (6) describes the 
radiation field at any distance from the waveguide. 

2.1.2. Complex propagation constants. If the waveguide 
media are absorbing, the propagation constant of the modes 
of even a regular waveguide will be complex. Consider guided 
modes, which exist at the waveguide thickness below the criti-
cal one hcr (Fig. 3). These modes are called leaky modes. In 
terms of ray-optics representation the leaky waves propagate 
due to the effect of the frustrated TIR at interfaces between 
the media forming a waveguide; therefore, some power of the 
guided modes radiates (‘leaks’) into the space surrounding the 
waveguide. In leaky modes the amplitude increases with dis-
tance from the waveguide along the vertical x axis (at a fixed 
longitudinal distance z and in the absence of losses in the 
waveguide), but while propagating along the z axis, these 
modes decay due to the continuous transfer of energy from 
the waveguide layer to the surrounding medium. Functionally, 
the fields of leaky modes (see Fig. 4a) are identical to the 
fields of conventional guided modes. 

In the case of TE modes the equations for the amplitudes 
Ey(x) in the substrate, film and cladding layer of a planar 
waveguide (assuming that ∂/∂y º 0) are of the form [1 – 5, 20]: 
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The expressions for other field components are found in 
accordance with the formulas 
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In the case of TM modes the equations for the amplitudes 
of the fields in the substrate, film and cladding layer of the 
waveguide are analogous to (7) (see, for example, [1 – 5]). 

We assume that in the waveguide under study, the wave-
guide layer absorbs, i.e., refractive index of this layer is com-
plex: 2 +n 2in n2 = l m . Using the expressions for the fields, we 
write the tangential boundary conditions, from which after 
some elementary mathematical transformations, we obtain 
the complex dispersion relation for the case of propagation of 
leaky (non-eigen) modes in the waveguide [5, 18, 20, 21]: 
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Here, ir+m m, , ,mr g g r g g g g=l ll l l ll ll l ll^ ^ ^h h h; ig g g= +l ll is a 
complex coefficient of the phase delay; p = 0, 1, 2, … 

Determination of complex roots of dispersion equations is 
of fundamental importance in the electrodynamic theory of 
optical waveguides. Despite its long history, the problem has 
not been yet satisfactorily studied. This explains the presence 
of a number of alternative computational methods of its solu-
tion [2, 5, 16 – 18, 21 – 24]. Below, we consider three well-
known methods for solving dispersion equations, which are 
nonlinear equations. 

The method of the segment bisection (bisection method) is 
a numerical method for solving nonlinear equations of form 
f(x) = 0. This method assumes only the continuity of the func-
tion f(x). The zero-search (root) algorithm x0 of the function 
is based on the assumption that at the endpoints of the seg-
ment, f(x) has different signs, whereas in the middle of this 
segment there is a point x0, where f(x0) = 0. 

Newton’s method (method of tangents) is an iterative 
numerical method for finding the root of the given function 
f(x). The algorithm for finding the numerical solution of the 
equation f(x) = 0 reduces to the iterative procedure of calcula-
tion: xn+1 = xn – f(x)/f'(x), where f'(x) is the first derivative of 
the function. We give a geometric interpretation of Newton’s 
method. First, we set the initial approximation near the 
expected root, and then construct the tangent to the function 
in question at a point of approximation for which intersection 
with the abscissa is found. This point is taken as the next 
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Figure 3.  Dispersion curves for the leaky (non-eigen) TE0 mode of a 
polystyrene waveguide (g = g' + ig"); hcr = 0.24 mm (shown by an arrow). 
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approximation. And so on, until the required accuracy is 
reached. 

In generalising Newton’s method to the functions of a 
complex argument, the algorithm in the case of real variables 
remains unchanged. Here, the function may have several 
zeros, and the solution may converge to different values. This 
problem was solved only in the 1970s with the advent of com-
puter technology. It turned out that at the intersections of 
domains of attraction, so-called fractals – infinite self-similar 
geometric figures (Newton fractals) – are formed. The solu-
tion of the dispersion relation is sought in the complex plane 
of the propagation constants (non-eigenvalues). As a zero 
approximation use is often made of the values of the roots of 
the dispersion relation for a metal waveguide (see, for exam-
ple, [21]) with perfectly conducting walls, whose imaginary 
part of the transverse propagation constant is r" ® ∞ (reflec-
tion from the boundary layers reduces). 

The Nelder – Mead method (flexible polyhedron method) 
is a method for unconstrained optimisation of functions of 
several variables f (x1, x2, x3,...), which does not use a deriva-
tive (gradient) function and is applicable to nonsmooth and/
or noisy functions. The method consists in the successive dis-
placement and deformation of a simplex* around the point of 
extremum. It is assumed that severe restrictions on the domain 
of the function do not exist, i.e., the function is defined at all 

points. A detailed description of the Nelder – Mead algorithm 
is given, for example, in [25 ]. 

Figure 3 shows an example of a solution to equation (8) 
for the leaky TE0 mode of the waveguide using the bisection 
method [16 – 18] (solutions were investigated by the other two 
methods). The waveguide parameters are the same as in 
Fig. 2, but the refractive index of the waveguide layer (a film 
with an absorbing impurity) is nf = 1.5900 + i0.0001. In the 
numerical solution we selected the branch of the two-valued 
function of the square root, where r's > 0, r'f > 0, r'c > 0. The 
signs of the imaginary parts of r"c, r"s will set the direction of 
propagation of leaky modes along the x axis. The sign of r"f 
determines the increase/decrease in the amplitude of the 
standing wave along the x axis. 

Figure 4a presents a complex profile of a fast leaky (non-
eigenwave with a high decay coefficient) TE0 mode. 
Polystyrene waveguide parameters are as follows:  g = 1.527 
– i2.489, h = 0.055 mm (the critical thickness of the waveguide 
for a guided TE0 mode is hcr = 0.24 mm). As can be seen from 
the figure, the profile of this mode is similar to the known 
profile of guided modes in the case of real r. 

Figure 4b compares the real and imaginary components 
of the vertical profiles of radiation and leaky modes. Research 
has shown that this type of dependence of the fields takes 
place in a wide range of parameters of the waveguides and the 
wavelength of electromagnetic radiation. 

In most publications on the leaky modes there are no 
numerically calculated graphs of the fields of different types 
of leaky modes. However, the authors of several publications 
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Figure 4.  Real and imaginary components of a complex vertical profile of the field of a fast leaky TE0 mode (mode of fast leakage, g"/g' H 1) (a) and 
comparison of real and imaginary components of the vertical profiles of radiation ( 1 )  and leaky ( 2 ) modes at a distance x = –65 mm from the 
polystyrene film – substrate interface (b). The waveguide parameters for the modes of gradual leakage (g"/g' << 1) are as follows:  g = 1.5150 – 
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* A simplex or an n-dimensional tetrahedron is a geometric figure, which 
is an n-dimensional generalisation of the triangle. By definition, a 0-sim-
plex is a point, a 1-simplex is a linear segment, and a 2-simplex is a tri-
angle, etc.
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(e.g., [22]) suggest replacing the leaky modes by radiation 
modes in limited domains. Our research has shown that such 
a replacement may lead, first, to a large error in calculating 
losses and, secondly, to an inaccurate calculation of field pro-
files of leaky modes at distances greater than several wave-
lengths (H2l0). 

Note that the number of leaky modes with gradual leak-
age is limited, unlike the continuum of radiation modes. At 
the same time, leaky waves with gradual leakage form a dis-
crete spectrum and are plane inhomogeneous waves, while the 
radiation modes form a continuum (with a continuous spec-
trum) and are plane homogeneous waves. The replacement of 
some waves by other waves that is sometimes used [22] 
requires a serious analysis in each case. As a consequence, 
there is an urgent need to develop new algorithms for the cal-
culation of the fields of radiation and leaky modes, which sur-
pass standard methods in the calculation rate (e.g., FDTD 
method) and are not inferior to them in terms of accuracy. 

We believe that the solution of the inhomogeneous three-
dimensional equation (2) in the form of the scattering integral 
(6), describing the radiation field Esout outside the waveguide, 
holds true in the case of guided eigenmodes (propagating in 
the waveguide at h < hcr). In our opinion, the better it describes 
the scattering of leaky modes (e.g., in the xy plane), the better 
their vertical profile (along the x axis) corresponds to the ver-
tical profile of radiation modes. However, we emphasize that 
in the world literature the problem of orthogonality (quasi-
orthogonality) and the completeness of the set of the fields 
(basis functions) used in this case still remain unsolved [2, 5, 
11, 15, 26]. 

2.2. Nonlinear media. Nonlinear effects in optical waveguides 

Nonlinear optical phenomena are observed upon interaction 
of light fields with matter, which has a nonlinear response of 
the polarisation vector P on the vector of the electric field 
strength E of the light wave. In most materials nonlinearity is 
only observed at very high intensities of laser radiation. In a 
optical waveguide this nonlinearity can be obtained at a low 
intensity of radiation. Second harmonic generation (SHG) is 
the simplest nonlinear effect described by nonlinear suscepti-
bility c(2). 

2.2.1. Advantages of optical waveguides for nonlinear trans-
formations. Let us enumerate main advantages of optical 
waveguides which make it possible to effectively implement a 
nonlinear transformation. The natural dispersion of the mate-
rial is replaced by the dispersion of waveguide modes (depend-
ing on the structure of the waveguide). Nonlinear interactions 
can occur in any component of the waveguide structure (for 
example, in our case, the cladding layer, waveguide film or 
substrate). The weak dispersion and strong double refraction 
of the material are not necessary conditions for phase match-
ing. Laser radiation with a high power density can easily 
propagate through a long waveguide, whereas its propaga-
tion in a bulk medium is limited by diffraction effects. 

2.2.2. Propagation of waveguide TE modes in a nonlinear 
medium. The equation for the TE modes at the second har-
monic frequency 2w has the form [27] 

4 / 16 /c cE E P( ) ( ) ( )2 2 2 2 2 2
# #d d pw e w- =

w w w w] ]
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g g
g 	 (9)

(we consider the nonmagnetic media without absorption, i.e., 
the case of real propagation constants). 

The nonlinear frequency conversion is efficient if the value 
of the overlap integral for the fundamental frequency 

d dI E P x y=
w w] ]g gy 	 (10)

is large. Integration in (10) is performed over the cross section 
of the waveguide. To ensure the fulfilment of the condition 
I ® max in (10) it is required that the spatial overlap of the 
field of the TE mode in question and nonlinear polarisation in 
the transverse plane be maximal. One can see that I is better 
to optimise for weakly oscillating profiles (as in the lower 
modes) of the transverse distribution of the field energy. In 
addition, to ensure efficient mode coupling on the entire 
length of interaction it is required to fulfill phase-matching 
condition, i.e., equality of the wave vectors of nonlinear 
polarisation and the pump mode in (9): 2h hp m

2b b=
w w] ]

] ]
g g

g g . 
It is important to note that in optical waveguides due to 

the presence of modes with different polarisations (TE and 
TM) with respect to the given plane, even in an isotropic 
medium there already exists ‘splitting’ of the curve b(h) [or 
g(h)] for the given frequency w or of the curve b(w) for the 
given h. But it is not possible to achieve phase matching for 
ТЕ0 and ТM0 modes, when the overlap integral is maximum 
because their dispersion curves do not intersect. 

In passing from an isotropic material of the film to the 
anisotropic one, the dispersion curves of the TE modes are 
split into three dispersion curves, and the dispersion curves of 
TM modes are split into six dispersion curves. In an anisotro-
pic waveguide phase matching of fundamental modes is pos-
sible. In this case, the birefringence is sufficient to compensate 
for the dispersion of the modes of the same order at the fun-
damental frequency and second harmonic frequency.

An important advantage of the wave interactions in the 
case of SHG in waveguide structures in comparison with the 
classical bulk nonlinear media is the possibility of a substan-
tial (up to several orders of magnitude) increase in the effi-
ciency of frequency conversion, which in the case of volume 
interaction can be written as [27] 

2
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where 2K n /2 3
0 0

3 2w m e= -
^ h ; n is the refractive index; d is the 

effective nonlinear coefficient; P (w) is the total power of radia-
tion at the fundamental frequency; L is the length of interac-
tion of electromagnetic waves; 2k k k2D = -

w w] ]g g is the phase 
mismatch. 

In formula (11), the function sinc(x) reflects the contribu-
tion of the phase mismatch Dk between the wave vectors at 
the fundamental frequency and second harmonic frequency. 
The length L is limited by the cross section of the Gaussian 
laser beam, within which the power density remains approxi-
mately constant. 

The efficiency of frequency conversion in a planar wave-
guide can be written as [27] 

 
/
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where I is the overlap integral between the transverse distribu-
tion of nonlinear polarisation and the second harmonic field 
(in the section of the waveguide). It is assumed that Imax = h–1. 

From expressions (11) and (12) we obtain the estimates 
for h in both cases: 
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, ( / )LP L P hbk wg0
1 2 2. .h l hw w- ] ]g g .	 (13)

This implies that the efficiency of the bulk SHG depends 
directly proportionally on P(w) and L, whereas the efficiency 
of the waveguide SHG – on the power density P(w)/h 2 and L2. 
Assuming that h » l0, we have 

/ /Lwg bk 0.h h h l= .	 (14)

Let us make a simple estimate in accordance with (14). At 
L = 5 cm (a typical integrated-optical waveguide) and  l0 = 
1.3 mm (near-IR range), we have h » 4 ́  104 – this is a theo-
retical gain in efficiency in going from the bulk SHG to the 
waveguide SHG. Note that in reality, the gain (at a constant 
pump power and interaction length) is about two orders of 
magnitude smaller. 

The main advantage of the waveguide as compared with 
bulk materials is the possibility of conservation of power of laser 
radiation injected into the waveguide at a theoretically infinite 
length of an ideal (without irregularities and absorption) wave-
guide with transverse dimensions of the order of l0. This prop-
erty plays an important role in nonlinear waveguide phenomena. 
Undoubtedly, the study of the SHG phenomena in optical wave-
guides with uneven (rough) interfaces between the media form-
ing the waveguide is very promising, including both nonlinear 
bulk and surface phenomena taken into account. 

3. Numerical study of light scattering 
in an integrated-optical waveguide 

Main objectives of the numerical study in the general case are 
formulated in [15, 16, 19]. They include development of new 
algorithms and software packages for calculating the fields of 
radiation and leaky modes, which surpass the standard meth-
ods (e.g., FDTD [28]) in the calculation rate and are not infe-
rior to them in terms of accuracy; calculation and plotting of 
the dispersion curves of TE and TM modes for the selected 
types of waveguides, a series of calculations of the nonlinear 
scattering integral (6) for different sets of input parameters of 
the problem; construction of 3D-field profiles (1D- and 
2D-diagrams), in particular, Es(x), Es(y), Es(z), and Es(g). 

For example, we considered the scattering of the funda-
mental TE mode on an extended bulk inhomogeneity (insert 
type) of a nonabsorbing or absorbing waveguide layer, which is 
easily implemented in practice by a polystyrene waveguide. A 
three-layer waveguide was formed by a thin layer of polysty-
rene deposited on a glass substrate. Its parameters (all for the 
given l0) were as follows: the refractive index of air, nc = 1.000; 
the refractive index of the waveguide layer, nf = 1.590; the 
refractive index of the substrate, ns = 1.515. In the numerical 
simulation we used the parameters of a helium – neon laser 
(wavelength, l0 = 0.633 mm; normalised output power, P0 = 1). 

3.1. Light scattering in an integrated-optical waveguide with 
linear media 

3.1.1. Real propagation constants. To simplify the numeri-
cal calculations we assume that the 3D inhomogeneity of the 
refractive index has a quasi-periodic distribution of the inho-
mogeneity of the refractive index of unit density. Type of 
irregularity can be modified by changing the form of the func-
tion Dn2m(x', y', z' ) of the position of the irregularity in the 
waveguide as well as by changing the size of the region within 
which integration in expression (6) is carried out. 

For the fluctuations of the refractive index inhomogeneity 
we used the following values: /n n nf s s

2 2
-  = 0.32 (relative to 

the substrate) and / .n n n 1 24f c c
2 2
- =  (relative to air). 

As an example, Fig. 5a shows the dependence of the field 
Es on g for the guided mode for the given parameters of the 
waveguide. The maximum of the field scattering diagram is 
located near g » gopt, close to the inflection point on the dis-
persion curve [20]. In calculations we found the expected non-
linear dependence of Es on the parameters of the inhomoge-
neity (at other fixed parameters of the problem) [19]. 

It should also be noted that expression (6) for the radia-
tion field outside the waveguide is an integral expression, in 
which the contribution of scattered radiation from the vari-
ous harmonic components of the inhomogeneity is averaged 
and is poorly visible against the background of the central 
peak of the dependences Es(y). By physical nature expression 
(6) reflects the nonlocal relation between the parameters of 
the medium (irregularity) under study and the guided TE 
mode field. 

The validity of our results is confirmed both by compar-
ison with experimental data, and by comparison of the con-
clusions that follow from the results of our study with the 
conclusions arising from the independent theory of wave-
guide 3D scattering of monochromatic optical radiation 
[15]. 
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Figure 5.  Dependences of the vertical profiles of the fields on g in the 
case of scattering of a guided mode (waveguide parameters are: g = g' = 
1.5238, h = 0.3416 mm) (a) and in the case of scattering of a leaky mode 
(waveguide parameters are: g = 1.5238 – i0.0007, h = 2.544 ́  10–7) (b). 
The dimensions of the irregularity are x'    y'    z'  = 4 ́  200 ́  400 mm, the 
coordinates of the observation point are x, y, z = 6, 0, 0 mm. 
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3.1.2. Complex propagation constants. Figure 6 presents 
two field diagrams of scattering on the same irregularity of 
the waveguide for the slow leaky (non-eigenwave with small 
attenuation) TE0 mode and guided (eigen) TE0 mode. The 
amplitudes of the fields are normalised to unity. 

As can be seen from the figure, the period of oscillations 
of sidelobes on the diagram of scattering of the guided mode 
in the transverse xy plane is about three times higher than in 
the diagram of scattering of the leaky modes, the first minima 
of the scattering diagrams being located in the vicinity of 
±1 mm (guided mode) and about ±0.3 mm (leaky mode). 

3.2. Light scattering in an integrated-optical waveguide with 
nonlinear media 

A detailed study of light scattering in an optical waveguide 
with nonlinear media is beyond the scope of this paper. Here, 
we only estimate the degree of increase in scattering losses in 
a waveguide with a nonlinear film upon generation of second 
and third harmonics without taking into account the coeffi-
cient of the conversion of the fundamental-frequency mode 
power into the harmonic-frequency mode power. 

We assume for simplicity that the scattering losses in the 
waveguide film obey the Rayleigh law, i.e., the intensity of the 
scattering losses is Is µ l0– 4. Let the wavelength of fundamen-
tal radiation (pump radiation) be l0 = 3 mm, and the power 
losses for this radiation in an integrated-optical processor, 
such as thin-film waveguide generalised Luneburg lens of 
radius 1 cm be 1 dB [the attenuation coefficient is a(w) » 
0.2 cm–1]. Then at the second harmonic frequency, these losses 
will amount to ~16 dB [a(2w) = 4 cm–1], and the third har-
monic losses will reach 81 dB [a(3w) = 20 cm–1]. These esti-
mates show, on the one hand, the complexity of the experi-
mental measurements of such losses in nonlinear waveguides, 
and, on the other hand, considerable promise of using nonlin-
ear optical phenomena for the study and diagnostics of vari-
ous irregularities in multilayer waveguide structures. 

4. Conclusions 

We have analysed theoretical and numerically waveguide 
propagation and scattering of laser radiation of eigen- and 
non-eigenmodes in an integrated-optical waveguide with 
3D-irregularities. The analysis is performed within a unified 
approach, based on the perturbation theory, the coupled-
mode method, the Green’s function method and the method 
of Fourier separation of variables. We have studied for the 
first time scattering of leaky (non-eigen) modes. We have 
briefly considered the fundamentals of waveguide nonlinear 
optics. The numerical study of the characteristics of laser 
radiation scattered in a waveguide with 3D inhomogeneity 
has made it possible to find a significant effect of the coeffi-
cient of the phase delay of the waveguide, the size and posi-
tion of three-dimensional inhomogeneity of the waveguide 
layer, as well as coordinates of points of observation on the 
amplitude and phase of the field strength of radiation of 
eigen- and non-eigenmodes outside the waveguide. We have 
discovered a complex process of transformation of the radia-
tion field of eigen- and non-eigenmodes as they propagate in 
the waveguide and from the irregularity in the case of the out-
put of radiation into the surrounding medium. The method 
for calculating the radiation field, presented in this paper, has 
an advantage over the standard FDTD method.

The developed methods can be useful for the theoretical 
and numerical studies of optical waveguides that support 
eigen- and non-eigenmodes, as well as the characteristics of 
laser radiation of the corresponding modes, scattered in opti-
cal waveguides with three-dimensional irregularities. 
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