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Defect mode suppression in a photonic crystal structure
with a resonance nanocomposite layer

S.G. Moiseev, V.A. Ostatochnikov, D.I. Sementsov

Abstract. This paper examines the key features of the transmission
and reflection spectra of a one-dimensional photonic crystal struc-
ture in which a nanocomposite layer is sandwiched between dielec-
tric Bragg mirrors. Two orthogonal polarisations of an incident
wave correspond to different plasmon resonance frequencies of the
nanocomposite. If one of the plasmon frequencies coincides with the
defect mode frequency in one of the photonic bandgaps, complete
suppression of the defect mode in the transmission spectrum is pos-
sible, which makes the spectra of such structures polarisation-sen-
sitive.
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1. Introduction

One-dimensional (1D) photonic crystal structures (PCS’s)
formed by a periodic arrangement of layers of different mate-
rials have recently attracted a great deal of attention. Owing
to the periodic modulation of their refractive index, the pho-
ton spectrum of such structures has a bandgap, with an
almost total reflection of incident light. This property is of
importance for various practical applications of PCS’s,
including control of optical radiation in laser engineering and
information transfer systems. Of particular interest in this
context is a Fabry—Perot microcavity structure, which has
the form of a ‘defect’ layer sandwiched between two Bragg
mirrors (1D photonic crystals). The defect layer in such a PCS
acts as an optical microcavity where an optical field can be
localised, which considerably enhances many effects pertain-
ing to light—matter interaction [1, 2].

The functionality of PCS’s can be extended through con-
trol of their spectral characteristics by varying their geometric
and physical parameters. In particular, the photon spectrum
of a PCS can be significantly modified by disturbing its peri-
odicity [3—5] or by using materials with controllable proper-
ties, e.g. nonlinear, resonant or magnetogyrotropic materials
[6—11]. Potentially attractive photonic crystal (PC) microcav-
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ity materials are metal—dielectric nanocomposites, which
have high optical dispersion in the plasmon resonance region
[12—16]. D’yachenko and Miklyaev [17] and Vetrov et al. [18]
investigated the relationship between the structural parame-
ters of a plasmonic nanocomposite and the spectral properties
of the PCS. In this paper, we report the transmission and
reflection of a 1D PCS containing a nanocomposite defect
layer whose optical characteristics depend on the incident
light polarisation.

2. Material parameters of the PCS

Consider a symmetric microcavity PCS in which a nanocom-
posite layer is sandwiched between two dielectric PC mirrors
inverted relative to one another (Fig. 1). The structure has a
double defect: inversion and inserted layer. The inversion is
due to the change in the stacking sequence of the layers in
going from one part of the structure to the other. Each part is
a dielectric PC mirror, i.e. a periodic structure. It can be
described by the formula N = (NINZ)“ or N= (Nz]Vl)”,
where a determines the number of structural periods in the PC
mirror. To the inverted period corresponds a transfer matrix
whose elements are related to those of the matrix for the nor-
mal period by Nog = N3_p3_,, where e, f = 1, 2 [19]. The PC
mirrors have a finite number of structural periods, each con-
sisting of two layers of isotropic dielectrics having permittiv-
ity &; and thickness L; (j = 1,2). We neglect absorption in the
frequency range of interest, so ¢; is real-valued and both N
and N are unimodular matrices with unity determinant. In
modelling the optical properties of the structure, we use the
following permittivities of the layers in the PC mirrors: ¢; =
5.52 (TiO,) and &, = 2.25 (SiO,) [20].

The defect layer in the PCS consists of a nanocomposite,
which has the form of a dielectric material containing evenly
distributed metallic nanoparticles in the shape of ellipsoids of
revolution. The nanoparticles are aligned with their polar axis
parallel to the x axis. The nanocomposite has properties of a
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Figure 1. Schematic of the nanocomposite microcavity with dielectric
Bragg mirrors.
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uniaxial crystal, and its effective permittivity is represented in
the major axes by a diagonal tensor with components ¢, = ¢,
and e, =¢.= ¢,. (Here and in what follows, the subscripts ||
and 1 refer to two orientations of the electric field vector of
the wave: along and across the optic axis of the nanocom-
posite.)

In analysis of the optical properties of the PCS, we use the
effective medium approximation. Among the diversity of
known effective medium models, the nanocomposite under
consideration is best represented by the Maxwell Garnett
model, in which the effective permittivities have the form [21]

77(819_ €m) (1)
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where e, and ¢, are the permittivities of the matrix and inclu-
sions, respectively; 77 is the volume fraction of the inclusions;
and g, | are geometric factors that take into account the effect
of nanoparticle shape on the induced dipole moment of the
nanoparticles. Neglecting the absorption and frequency dis-
persion in the dielectric matrix, we take &, to be constant and
real-valued. The permittivity of the metallic nanoparticles is
given by

o
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where w,, is the plasmon frequency; ¢ is the lattice contribu-
tion; and y is the relaxation parameter. The geometric factor
can be expressed through the ratio of the semi-polar axis to
the semi-equatorial axis of the nanoparticles:

1 /] _ garcsinV1 -&
1-&\ Vi-g

The magnetic permeabilities of all the layers in the structure
are taken to be unity.

In the numerical analysis below, the nanoparticle material
is silver for definiteness: w, = 1.36x10'% s, &y = 5, y =
3.04x 1083 57! [22]. The other parameters are 7 = 1073, £ = 0.55
and ¢, = 2.25 (Si0,). These parameters correspond to the
nanocomposite described by Wang et al. [23]. In the fabrica-
tion of such nanocomposites, wide use is made of a low-tem-
perature process in which a softened (~600°C) mixture of
glass and silver nanoparticles is rolled out, drawn or extruded
under pressure to give films containing nanoparticles of
desired shape and orientation. In the nanocomposites thus
produced, the inclusions have a high degree of orientation
ordering and are evenly distributed over the matrix [23-27].

Figure 2 shows the frequency dependences of the real and
imaginary parts of the effective permittivities of the nanocom-
posite. The permittivities are seen to exhibit resonant behav-
iour, with different resonance frequencies of ¢, and ¢ (w, =
3.99x10 57!, w=5.07x 10" s7!), which eventually leads to a
significant dependence of the optical properties of the nano-
composite on the polarisation of propagating waves. The
observed resonances are associated with the plasmon reso-
nances of the nanoparticles, and their frequencies depend on
the orientation of the optic axis of the nanoparticles with
respect to the light vector of the electromagnetic wave
[15, 28, 29].

8= g=0-gp2. (3)
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Figure 2. F requency depend.en.ce's of the real'( SJ’_’H) and 'irr}aginary (si’,“ )
parts of the effective permittivity of the silver-containing nanocom-
positeat £ =0.55,7 =103, ¢9=5,y =3.04x 10" s, w, = 1.36x 100 57",

3. Transfer matrices

Let the z axis be normal to the interfaces between the layers.
A wave propagates along this axis, and the PCS is in vacuum.
Solving Maxwell’s equations, we obtain two orthogonally
polarised eigenwaves with electromagnetic field components
(Ey, H,,0) and (H,, E,,0). In the case of a periodic layered
structure, it is convenient to introduce a two-component vec-
tor F with components E,and H, (for the former type of
wave) and a transfer matrix of the entire structure, G, which
links the amplitudes of the incident and transmitted waves: F;
= GF,. The transfer matrix of the PCS under consideration,
with an inserted defect layer and two PC mirrors, has the
form G = N°DN?, where N° = (N;N,)* and N? = (N>N;)®
are the transfer matrices of defect-free PC mirrors having a
and b periods, respectively [19]. The right-hand PC mirror is
an inverted structure because it has an inverted sequence of
layers. The transfer matrix of the defect layer has the form

l’j _ COS(ded) i\/s—dsin(ded) (4)
T\ = (i/veq)sin(kqaLg)  cos(kqLq)

where Ly is the thickness of the defect layer; kq = ky+v/eq; and
g4 = ¢ or &, depending on the type (polarisation) of the wave
propagating through the structure.

The amplitude reflection and transmission coefficients of
the PCS in vacuum can be expressed through the elements of
the G matrix:

=Gt Go=Gu=Gyp ,_ 2 (5)
G+ G+ Gy + G’ G+ G+ Gy + Gy’

The reflectance and transmittance are R = |r[>and T =|¢[*.

4. Numerical analysis

Consider the optical characteristics of the PCS. Let the layers
in the PC mirrors have identical optical thicknesses, i.e.
LiVe, = L,Ve, = Ly, and the optical thickness of the nano-
composite layer is 2L,. At these thicknesses, the spectral line
of the defect mode lies in the centre of the bandgap of a defect-
free PCS. Figure 3 shows the transmission and reflection
spectra of an (N;N>)°D(N,N)® PCS with a nonresonant
defect layer having a real-valued permittivity 4 = ¢, = 2.25
and with a resonant defect layer having the same parameters
as in the caption to Fig. 2. The spectra are for the first pho-
tonic bandgap with a centre frequency w, = 3.99x10%5 57!,
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corresponding to a structure with ¢4 = ¢, and layer thick-
nesses L; = 79 nm, L, = 50 nm and Ly = 157 nm (optical
thicknesses L, Ve, = L,vV'e; = LgVéen /2 = 118 nm). The dou-
ble defect — inversion plus insertion — disturbs the periodicity
of the PCS and produces narrow transmission bands — so-
called defect modes — in the centre of the photonic bandgaps
[19]. The reflectance of the nonresonant structure, which is
thought to be nonabsorbing, is R = 1 — 7. The transmittance
for the defect mode at frequency @ = w then has the highest
possible value 7' = 1. The resonant structure has near-zero
transmission at this frequency for a wave with the corre-
sponding polarisation, i.e. with components H,, £, and 0, and
two symmetrically arranged peaks, corresponding to low
transmission of the structure. The T'(w) and R(w) spectra for
a wave with the orthogonal polarisation (E,, H,, 0) are almost
identical to those of the structure with a nonresonant defect.
At frequency w |, the transmittance for a wave with this polar-
isation differs little from unity. The reason for this is that, in
the frequency range in question, ¢ = &, with high accuracy.
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Figure 3. Transmission and reflectlon sg)ectra (solid and dashed lines,
respectively) of an (N, N>)° D(N>Ny)® PCS with (a) a nonresonant
(¢4 = &) and (b) a resonant [e4 = ¢, (w)] defect layer.

For a wave with field components £, H, and 0, the trans-
mission and reflection spectra corresponding to the first pho-
tonic bandgap of an (N, N,)° D(N>Ny)® structure are presented
in Fig. 4. The spectra are similar to those in Fig. 3. In this
case, however, g4 = ¢, and, for the resonance frequency, w;=
5.070x 10" 57!, to equal the centre frequency of the photonic
bandgap, the optical thicknesses of the layers should be
LiVe = L,Ve, = LgVen /2 =93 nm (the actual thicknesses
are L; = 62 nm, L, =40 nm and Ly = 124 nm). The structure
also has near-zero transmission at the centre frequency for the
type of wave under consideration and almost complete trans-
mission for a wave with the orthogonal polarisation. Thus,
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Figure 4. Transmission and reflection spectra (solid and dashed lines,
respectively) of an (Nl Nz) D(N7 Nl) PCS atey = ¢ (w).

the insertion of a nanocomposite defect layer into a PCS
makes its transmission and reflection spectra polarisation-
sensitive.

In addition, the parameters of the nanocomposite and the
PCS as a whole can be adjusted so that the resonance frequen-
cies @, and o) will be equal to the centre frequencies of the
neighbouring photonic bandgaps (v = 3.967x10" s and o
=5.100x 10" s™). Figure 5 shows the transmission and reflec-
tion spectra of the PCS when the electric field vector of a light
wave is oriented across and along the optic axis of the nano-
composite. The material parameters of the structure are the
same as in the caption to Fig. 2, and the actual thicknesses of
the layers are L; = 554 nm, L, = 354 nm and Ly = 1108 nm
(optical thicknesses L;ve, = Lrves = Lyven /2 = 833 nm).
It is seen that, for both polarisations, one of the two plasmon
resonances of the nanoparticles is excited, which leads to
defect mode suppression at the corresponding resonance fre-
quency, i.e. in the corresponding photonic bandgap. At the

Figure 5. Transmission (md reflection spectra (solid and dashed lines,
respectively) of an (NlNz) D(Nle) PCSat(a) e¢g=¢, and (b) g4 =
& (@).
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layer thicknesses chosen above, the numbers of the neigh-
bouring photonic bands are seven and nine because, when the
layers in a PCS have identical optical thicknesses, its trans-
mission and reflection spectra have only odd photonic band-
gaps [19]. As seen from the above data, orthogonal polarisa-
tions of waves correspond to defect mode suppression in dif-
ferent photonic bandgaps. This property of the PCS
considered here can be used to control laser light polarisation.
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