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Abstract.  We have derived analytical formulas for differential and 
total ionisation probabilities of a two-dimensional quantum dot by 
a constant electric field. In the adiabatic approximation, we have 
calculated the probability of this process in the field of a plane elec-
tromagnetic wave and in a superposition of constant and alternat-
ing electric fields. The imaginary-time method is used to obtain the 
momentum distribution of the ionisation probability of a bound sys-
tem by an intense field generated by a superposition of parallel con-
stant and alternating electric fields. The total probability of the 
process per unit time is calculated with exponential accuracy. The 
dependence of the results obtained on the characteristic parameters 
of the problem is investigated. 

Keywords: ionisation, quantum dot, imaginary-time method, saddle 
point. 

6. Introduction 

The development of nanotechnology and creation of high-
power lasers stimulate theoretical and experimental studies of 
the interaction of intense electromagnetic fields with nano-
structures. Advances in the field of quantum-dot structures 
and prospects of these new types of heterostructures make 
theoretical study of ionisation of a quantum dot by intense 
electromagnetic fields as urgent as possible. 

The purpose of this paper is to study ionisation of a two-
dimensional quantum dot both by a constant electric field 
and by a field, which is a superposition of parallel constant 
and alternating electric fields. 

The theoretical description of tunnelling and multiphoton 
ionisation of low-dimensional structures is based on the results 
obtained in [1 – 10]. 

Photoionisation of a bound system in the presence of a 
constant electric field was considered earlier in [11 – 16]. Semi-
quantitatively, this problem was first discussed in [13]. 
Quantitative analysis of the phenomenon in the case of elec-
tron detachment bound by short-range forces was carried out 
in [12]. In the approximation of zero-range binding forces a 
formula was derived for the differential probability of the 

process in the general case, when the constant field strength 
is directed at an arbitrary angle to the axis along which the 
electric field of a linearly polarised wave oscillates. The case 
when the electric field strength of a linearly polarised wave 
is orthogonal to the constant field strength is considered in 
detail. 

Nonperturbative, gauge-invariant approach to the descrip
tion of ionisation of both one-dimensional and three-dimen-
sional systems with a finite-range binding potential has been 
formulated in [11, 16], where the authors discuss the general 
characteristics of the process of ionisation of systems with 
short-range forces due to a superposition of constant and 
alternating electric fields. 

The authors of [14] studied the decay of a weakly bound 
level in a superposition of a constant electric field and the 
electromagnetic wave. The probability of ionisation was deter
mined by the imaginary part of the quasi-energy and calculated, 
as in [12], in the framework of the zero-range force potential 
in the case of the perpendicular fields, where the interference 
contribution to the ionisation probability vanishes. The analysis 
performed in [14] also showed that application of even a rela-
tively weak constant field leads to a significant change in the 
ionisation probability of the energy level by the wave field. 
In  this paper, to interpret the results obtained, the authors 
[14] proposed the mechanism of electron tunnelling from the 
virtual state: an electron absorbs k light quanta and with the 
energy E0 + kw < 0 (w is the wave frequency) tunnels in a 
constant field. This process occurs only in the presence of two 
fields – high-frequency and static – and cannot proceed when 
the constant field is switched off [14]. 

In the most interesting case of collinear fields, the influ-
ence of an alternating field on the quantum tunnelling of a 
particle through a potential barrier, interband tunnelling in 
a semiconductor and above-barrier reflection was considered 
in [15] by the method of complex trajectories [17]. The prob-
ability of a sub-barrier passage of a particle through a triangular 
barrier (field emission) in an alternating field was calculated 
with exponential accuracy. It was shown that the probability of 
quasi-classical tunnelling process under the influence of a time-
varying perturbation sharply increased, and a succession of 
tunnelling regimes with increasing wave intensity was analysed. 

Essential information about the process of tunnelling 
ionisation is obtained from the energy and angular distribu-
tions of electrons produced [18 – 20], which were not studied 
in [14, 15]. To describe operation of a photodetector with 
quantum wells in which photoionisation occurs in the presence 
of a constant electric field, knowledge of the spectral-angular 
distribution of photoelectrons can be of practical interest [21]. 
Unfortunately, the authors of [15] did not present stringent 
conditions for the applicability of this result, which should 
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follow from the initial quantum description, and did not clarify 
how to calculate the pre-exponential factor in the formula for 
the total ionisation probability per unit time. 

Given the fact that the authors of the above-mentioned 
work [11 – 16] predicted a significant increase in the prob
ability of classically forbidden processes under the action of 
an electromagnetic wave, it seems relevant to study the ionisa-
tion process of bound systems by an alternating electric field 
with a constant component. 

7. Probability of ionisation of a two-dimensional 
quantum dot by a constant electric field 

We model the binding potential of a two-dimensional quantum 
dot by a potential well of the form 

( ) , ,
, ,

U U x y a
a0

0
2 2 1

2
r r

r
=

- = +
) 	 (1)

where a is the radius of a quantum dot. Note that depending 
on the type of lateral binding potential the typical dot size 
varies from tens to several hundreds of nanometres, and the 
number of electrons in a quantum dot can be controllably 
varied from a few to several hundreds [22]. 

The probability of ionisation of the ground state of an 
electron in a quantum dot by a constant electric field will be 
calculated on the basis of the quantum-mechanical method 
described in [3, 4]. 

The solution of the stationary Schrödinger equation for 
the ground state of an electron with energy E0 = –k2/2 in a 
two-dimensional potential well (1) has the form [23] 
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where J0(x) and K0(x) are the Bessel and Macdonald func-
tions of zero order; 
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The conditions of continuity of the wave function and its 
derivative at point r =  lead to the equation 
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from which the energy E0 (–U0 < E0 < 0) of the ground state 
of an electron in a quantum dot is determined. The integral 
Schrödinger equation for the quasi-stationary regime is given by 

y (r, t) = 
t

i d dt r-
3-

ly y G(r, t; r', t' ) U(r' ) y(r', t' ),	 (5)

where G(r, t; r', t' ) is Green’s function of the time-dependent 
Schrödinger equation in a constant electric field E = (F, 0, 0). 
If the field strength satisfies the condition 

Fa << k2 < 2U0,	 (6)

then in the region of the well the electric field is a small pertur-
bation. Considering also that outside the well U(r) = 0, the 
function y(r', t' ) in the right-hand side of equation (5) in the 
first approximation can be set equal to the wave function (2) 
of the bound state of an electron in a quantum dot. 

Describing a constant electric field by a vector potential 
A(t), depending only on time, Green’s function G(r, t; r', t' ) 
can be represented as [4] 
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where

p(t) = p – A(t) = ( px + Ft, py)	 (8)

is the generalised momentum; p = (px, py) is the electron 
momentum, q(t – t') is the Heaviside function. 

Thus, the solution of the Schrödinger equation has the 
form 

y(r, t) = 
3
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and the value of g(p(t’ )) is related to the Fourier transform of 
the coordinate part of the solution (2): 

g(p(t' )) = 
2
1  [ p2(t’ ) + k2 ] y0(p(t’ )),	 (11)

y0(p(t' )) = 
3

[ ( )] ( ) .expd tr r0yp-
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The characteristic quantity of the field dimension in this 
problem is the value of F0 = k3. Below, along with (6), we 
assume that the condition 

F << F0	 (13)

to be fulfilled. In this case, the integral over the variable t' in 
(10) is calculated by the saddle-point method (see also [4, 21]). 
The saddle point, defined by the equation 

p2(t'0) º py
2 + ( px

2 + Ft'0) = –k2,	 (14)

is located in the complex plane of the variable t'. Calculation 
of the integral yields the following result: 
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where

C = (– pkaB) [ I1(ka)K0(ka) + I0(ka)K1(ka)].	 (16)
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The main contribution to the integral over the variable t' is 
from the region of width 

|t – t’0| £ 
F
1
k

	 (17)

around the saddle point, which should be small compared 
with the upper limit of integration, i.e., it is assumed that 

t >> 
F
1
k

.	 (18)

The contribution of the term proportional to (t – t'0)3, can be 
neglected, as it was done to obtain (15), if the condition 

F
F
0
 << 1	 (19)

is met. 
The ionisation probability per unit time is determined by 

the flux of electrons through a straight line (remote from the 
centre of the quantum dot) that is perpendicular to the x axis: 
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First, we calculate the integral with respect to the variable px. 
Given that 

t’0 = ,iF p p1
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2 2k- - +` j 	 (21)

0 < Re t'0 < t,	 (22)

integration with respect to px in (9) is performed in the interval 

–Ft < px < 0.	 (23)

To calculate the integral 
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we will use again the saddle-point method. As a result, we 
obtain 
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and the applicability condition of this formula has the form 
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Thus, when conditions (17), (19) and (26) are fulfilled, from 
(9) it follows that 
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In view of (20) and (27) we find the momentum distribution of 
the probability of the process per unit time: 
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The total probability of ionisation of a two-dimensional 
quantum dot by a constant electric field per unit time is 
obtained by integrating (28) with respect to py : 
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A characteristic feature of expression (29) is that the pre-
exponential factor is proportional to /F F0 . For comparison, 
in the case of a one-dimensional quantum well, this factor 
does not depend on the electric field strength, and in the for-
mula for the probability of electron ejection from the ground 
state in a three-dimensional potential well this factor is pro-
portional to the field strength [3, 4]. 

8. Ionisation of a quantum dot by a superposition 
of constant and alternating electric fields 		
in the adiabatic approximation 

If the process under consideration is formed at such a time 
that the phase of the wave has no time to change significantly, 
then the probability of this process in a periodic field is related 
to the probability in a constant field by the equation [4, 11, 12, 18] 

( ),dw w F2 /2

stat
0p y=
py 	 (30)

where wstat(F ) is the probability of the process in a constant 
field with intensity F. Using this result, we can find the prob-
ability of tunnelling ionisation of a quantum dot by an alter-
nating electric field with intensity F(t) = F cos (wt) (w is the 
frequency of the wave) when the Keldysh parameter is small 
compared with unity, i.e., when 

Fg kw
=  << 1.	 (31)

To do this, in (30) we replace F by F cos j, and averaging the 
resulting expression with account for (29), we obtain 
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where the parameter C is determined by formula (16) and 
depends on the properties of a quantum dot.

Note that due to averaging the functional dependence of 
the pre-exponential factor on the field changed: in a variable 
field the ionisation probability is always less than in the con-
stant field with the same intensity F. This is explained by the 
fact that in an alternating field only for a small part of the period 
when the field strength is close to the peak value, the tunnelling 
of a quantum dot is most effective. 

Using expression (29), we obtain in the approximation of 
low frequencies ( g << 1) the ionisation probability of a quan-
tum dot by the field, which is a superposition of constant and 
alternating electric fields directed along the x axis 
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F(t) = F1 + F2 cos (wt).	 (33)

If conditions 

F1 > F2,  
( )F F

F F

1 2
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+
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are met, then from equations (29), (30) for the probability of 
the process in the adiabatic approximation, we obtain the 
expression: 
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9. Probability of ionisation of the bound  
system under the action of parallel constant  
and alternating electric fields 

To determine the probability of ionisation by the imaginary-
time method, it is needed to calculate the imaginary part of 
the truncated action [4, 6, 19, 24, 25]. Using this method we 
calculate the probability of ionisation of a system with short-
range forces by an external electric field, which is a superposi-
tion of a constant field with intensity F1 and an alternating 
field with amplitude F2 and frequency w. The time-dependent 
vector potential of the field, as in [12], is written in the form 
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For definiteness, we first consider the two-dimensional case. 
It may be, for example, a two-dimensional quantum dot. The 
initial moment of time for sub-barrier motion t0 coincides with 
the saddle point and is found from the equation 

p2(t0) º [ p – A(t0)]2 
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The extremal sub-barrier classical trajectory that minimises 
the imaginary part of the truncated action Su corresponds to 
the situation when the particle comes from under the barrier 
at time t = 0 with zero velocity, i.e., ( )x 0 0=o . The trajectory 
x = x(t) and truncated action Su are functions of px and py. The 
case px = py = 0 corresponds to a trajectory that minimises the 
value of ImSu, and the maximum rate of ionisation corresponds 
to this trajectory. Assuming also that at time t0 the coordinate 
of the electron is equal to zero, we obtain that the effective 
barrier width is , = х(0). Thus, the extremal classical trajectory 
is found from the equations 

xp  = F0 + F cos (wt),  x(t0) = 0,  xo (0) = 0,	 (38)

and time t0 – from the equation 
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To describe illustratively the sub-barrier motion, it is con-
venient to pass to the real time t = –it. Then, the equation of 

the extremal trajectory and the equation for determining the 
point in time t0 take the form:
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2
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and the dependence of the effective barrier width on the char-
acteristic parameters of the problem is given by 
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Up to the pre-exponential factor P the probability of ioni-
sation per unit time within the framework of the imaginary-
time method is given by [4, 6, 19, 24, 25] 
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where the truncated action 
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Note that expressions (44) and (45) in the literature are also 
called Landau – Dykhne formulas [20, 26]. 

Calculating the imaginary part of the truncated action for 
the extremal trajectory (40) – (42), we obtain the expression 
for the ionisation rate: 

W0 = P0 exp [ –g(F2, F1, k, t0, w)],	 (46)
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To find the spectrum of electron pulses we must take into 
account the contribution of classical trajectories that are close 
to the extremal trajectories and calculate the imaginary part 
of the truncated action up to quadratic terms by the deviation 
of such trajectories from the extremal ones. From equation 
(37) for p2 << k2 we find 

j0 º wt0 = iwt0 = i
( / )cosh

sinhu
p

u F F
u

2
1 x

0

2

0 1 2
3

0
k

g
+

+
c m=

	 y

( / ) ( / )
,

cosh cosh
i

p
u F F

p
u F F2

1 1x
2

0 1 2 0 1 2

g
k g k+

+
+

+
c m G 	 (48)

where u0 is the solution of the equation 
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Using (48), we expand (45) in powers of p/k to the second 
order inclusive and select the imaginary part of the truncated 
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action. As a result, we find the momentum distribution of the 
ionisation probability of a two-dimensional quantum dot by 
the field (36): 
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In the limiting case py = 0, formulas (50), (51) describe, in 
the semiclassical approximation, the momentum distribution 
of the probability of ionisation of a one-dimensional quantum 
well. Note that with the exponential accuracy, the total prob-
ability of ionisation of a quantum well per unit time is also 
determined by (46), (47). This result in the limiting case (34) 
agrees with the corresponding result of [21], where it was 
obtained in the adiabatic approximation. 

10. Discussion and conclusions 

The results can be used to describe the ionisation process of 
real physical systems, which include not only systems with 
short-range forces (for example, quantum dot, quantum well 
and negative ion), but also a system of charged particles with 
long-range Coulomb forces (ionised atoms). 

In the quasi-classical approximation, we have derived an 
analytical expression for the probability of ionisation of the 
quantum dot per unit time: formula (29) describes the depen-
dence of the ionisation rate of a quantum dot on its radius, 
well depth and constant electric field strength. 

We have calculated the rate of ionisation of a quantum 
dot in an alternating electric field with a constant component 
[Eqn (35)] in the case of relatively low frequencies, when the 
time of electron motion in the classically forbidden region is 
small compared with the period of the alternating field. This 
limiting case is reached in the optical and IR lasers. 

We have derived formulas (50), (51), which describe the 
momentum distribution of the ionisation probability of a 
quantum dot under the influence of parallel constant and 
alternating electric fields. 

Formulas (50), (51) (as special cases) yield a formula for 
the differential probability of electron detachment by the field 
of a linearly polarised electromagnetic wave, and a formula 
for the differential probability of tunnelling in a constant 
field, obtained Section 1. For example, when the constant 
electric field is switched off (F1 ® 0) from (50), (51) we obtain 
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where the Keldysh function [1] has the form 
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and the coefficients in the exponent have the same form as 
for the partial probability of the process in the field of a lin-
early polarised wave (see also [6, 10, 19]). Figure 1 shows the 
momentum distribution of the probability of process on the 
Keldysh parameter for different ratios of the constant field 
strength to the amplitude of the alternating field. 

Formulas (46) (47), determining with an exponential 
accuracy the dependence of the characteristic parameters of 
the problem of the ionisation rate of a quantum dot and a 
quantum well per unit time, have been obtained in this work 
by the imaginary-time method. These formulas coincide with 
expressions (20), (21) in [15], where they were found by the 
method of complex classical Landau trajectories. 

Dependences of l = g(F2, F1, k, t0, w) /g(F2, F1 = 0, k, t0, w) 
on the Keldysh parameter for different ratios of the constant 
field strength to the amplitude of the alternating field are 
shown in Fig. 2. One can see that this parameter takes values 
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Figure 1.  Momentum distribution of the probability of ionisation at the 
Keldysh parameter g = 1 and px /k = 0.1 for the ratio of the constant 
electric field strength to the alternating field amplitude F1 /F2 = 0.1 ( 1 ), 
1 ( 2 ) and 10 ( 3 ). 
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Figure 2.  Dependence of the quantity l on the Keldysh parameter for 
the ratio of the constant electric field strength to the alternating field 
amplitude F1 /F2 = 10 ( 1 ), 1 ( 2 ) and 0.1 ( 3 ).
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that do not exceed unity, which corresponds to an increase in 
the ionisation probability of a bound system by an alternating 
electric field under the action of a constant electric field. 

Thus, application of even a relatively weak constant field 
changes significantly both the total probability of the process 
per unit time and the momentum distribution of the probability 
of the process. 
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