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Abstract.  It is shown that using the state-of-the-art quantum 
interferometer (SQUID) with the resolution 10–6 F0 Hz–1/2 = 
2.07 ́  10–21 Wb Hz–1/2, coupled to a magnetostrictor, playing the 
role of tensomagnetic transducer, it is possible to construct a 
system for detecting pressure variations with the ultimate sensitivity 
of 10–13 Pa Hz–1/2 and for measuring specific elongation with the 
sensitivity of 10–24 Hz–1/2. The analysis of physical grounds of the 
inverse magnetostriction effect demonstrates concrete ways to 
essentially higher efficiency of tensomagnetic conversion. The esti-
mates performed demonstrate the possibility of using the SQUID/
magnetostrictor system as a detector of gravitational waves. Other 
possibilities of using this system for solving both fundamental and 
applied problems are also considered.

Keywords: quantum interferometer, magnetostrictor, gravitational 
waves.

1. Introduction

Using the state-of-the-art superconducting quantum interferom-
eter (SQUID [1, 2]) with resolution ádF ñ Hz–1/2 = 10–6F0 Hz–1/2 
coupled to a magnetostrictor that plays the role of transducing 
the pressure p and/or elongation Dℓ/ℓ into a magnetic signal, 
one can design a system for measuring p and Dℓ/ℓ with the 
sensitivity of ~10–13 Pa Hz–1/2 and ~0.5 ́  10–24 Hz–1/2, respec-
tively. The above-mentioned resolution of the quantum inter-
ferometer, equal to one millionth part of the flux quantum 
F0 = p'/е = 2.07 ́ 10–15 Wb (e is the electron charge) in the 
unit frequency bandwidth is considered as high, but not record-
breaking for a state-of-the-art SQUID. In the 1990s the low-
noise two-step direct-current SQUIDs (DC SQUIDs) were 
developed to support the operation of Weber-type gravita-
tional antennas, in which the elongation is detected via the 
mechanical displacement of the magnetic flux, frozen in the 
reversibly-deformable superconducting circuit. In such a two-
cascade cryoelectronic circuit the second DC SQUID plays 
the role of a low-noise amplifier of electric signals, coming 
from the first DC SQUID [3, 4]. In this case the resolution 
ádF ñ Hz–1/2 = (2 – 5) ́ 10–7F0 Hz–1/2 is achieved [5 – 8]. In par-
ticular cases in the devices of such type the obtained resolu-

tion appeared to be greater than formally allowed by the 
Heisenberg uncertainty relation (ádF ñ /  fT )2/(2L) ³ '/2 (D f 
is the operating frequency bandwidth, L is the inductivity of 
the operating ring of the SQUID with Josephson tunnel junc-
tions) [9, 10]. Note, that in these cases no special methods of 
quantum squeezing [11, 12] were used to ‘overcome’ the quan-
tum limit. In alternating-current SQUIDs (RF SQUIDs), the 
condition LIJ < F0 /(2p) being satisfied allows transition to 
the anhysteretic regime, in which the direct channel of energy 
dissipation is completely absent (IJ is the critical tunnelling 
current of the Josephson junction). The unhysteretic RF SQUID 
[13 – 15] will possess nonzero noise temperature only due to 
being coupled to ‘external dissipative electronics’, and its 
resolution is estimated as being able to reach ~10–9F0 Hz–1/2.

The operation of the pressure or elongation transducer, 
which is supposed to be used together with the SQUID, is 
based on the inverse magnetostriction effect, or Villari effect 
(discovered by E. Villari in 1865). This effect manifests itself 
in the change of magnetisation under the action of a mechan-
ical stress (pressure) and/or deformation of the magnetostric-
tive sample. In turn, the ‘direct’ magnetostriction effect, or 
‘common’ magnetostriction (discovered by J. Joule in 1842) 
manifests itself in the change of magnetostrictive sample 
dimensions when being magnetised [16]. To demonstrate the 
relation between the direct and inverse effect, let us write the 
expression for the variation of thermodynamic potential den-
sity / of the magnetostrictor, depending on the variables U, 
T, S, p, H:
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Here U, T, and S (‘thermal variables’) are the internal energy, 
temperature, and entropy, respectively; p is the pressure, caused 
by the magnetostrictor deformation; H is the magnetic field 
strength; l and l0 are the values of the magnetostrictor length 
in the presence of the field and without it; and B is the mag-
netic field induction inside the magnetostrictor. The last two 
terms characterise the contributions to d/ from the energy of 
deformation and magnetisation. Then the partial derivatives 
of the density / are calculated as
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and from the equality of mixed derivatives it follows that
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Then, expressing the elongation in terms of the pressure vari-
ation, in correspondence with Hook’s law dp = Edl/l0 , we 
arrive at the quantitative relation between the direct (the con-
stant L ) and inverse [the constant L(–1) ] magnetostriction 
effects:

¶
¶
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where E is the Young modulus; and m0 and m are the magnetic 
permeability of vacuum and the deformed body, respectively. 
Since for the alloy, consisting of Pt (54 %) and Fe (46 %) and 
possessing the magnetostriction parameters far from record-
breaking [17] (L/E » 6 ́  10–3 T–1), the inverse effect will be 
characterised by the constant L(–1) » m0  mL/E » 7 ́  10–6 T Pa–1 
(here m » 1000).

2. SQUID/magnetostrictor system

The idea of using the inverse magnetostriction effect for strain 
measurements can be hardly considered as original. The 
descriptions of such systems (without using a SQUID) are not 
only presented in special reviews [18], but also can be found 
in handbooks on general physics [19]. From the point of view 
of applications, the Villari effect is characterised by the mag-
netostriction sensitivity, which coincides with the constant 
L(–1) = ¶B/¶p and demonstrates quantitative relation between 
the variation of magnetic induction and the variation of elastic 
stress, causing the former in a particular material [20].

Let us estimate the ultimate capabilities of this classical 
method in detecting the magnetic response by means of a 
superconducting quantum interferometer under the condition 
DF = dF, i.e., when the magnetic signal is equal to the resolu-
tion of the SQUID. The variation of the flux of the magnetic 
induction B through the section Sms of the magnetostriction 
cylinder is determined by the relation Sms DB = Sms L(–1)D p, 
from where the ultimate sensitivity of the SQUID/magneto-
strictor system used for pressure measurement is expressed in 
terms of the resolution of the used quantum interferometer in 
the form dp = dF/(Sms L(–1)). If ádF ñ Hz–1/2 = 10–6F0 Hz–1/2 = 
2.07 ́  10–21 Wb Hz–1/2, Sms = 0.003 m2 and L(–1) » 7 ́  10–6 T Pa–1, 
then the ultimate sensitivity of the system is ádpñ Hz–1/2 = 
10–13 Pa Hz–1/2. This pressure, which in principle can be still 
detected by the system in the unit bandwidth, corresponds to 
the ultimate detectable elongation of ádl/lñ Hz–1/2 = 10–24 Hz–1/2 
in a magnetostrictor with the typical value of the Young modulus 
E = 100 GPa.

Thus, preliminary estimates, obtained without explicit 
accounting for the intrinsic noise of the magnetostrictor, 
demonstrate the possibility of using the SQUID/magneto-
strictor system for detecting gravitational waves (Fig. 1) with 
the intensity pc3f 2|dgij

^|2 /(2 g) » 6.5 ́  10–7 W m–2, which at the 
frequency f = 1 kHz corresponds to the perturbation amplitude 
of the transverse metric tensor components |dgij

^|2  » 10–24 (the 
universal gravitation constant is g = 6.67 ́  10–11 m3 kg–1 s–2).

It is not necessary to make the entire antenna of a magne-
tostrictive material. In Fig. 2 the schematic diagram is pre-
sented, where the elongation of the working body having the 
shape of a ‘large’ frame is transferred onto a ‘little’ (ℓms << ℓfr) 
magnetostrictive body having the shape of a tablet via pressure 
concentrators. The stress, corresponding to the elongation 
of  the frame under the action of gravitational wave, dpfr = 
Efr dlfr /lfr = Efr|dgij

^|, is ‘concentrated’ at the faces of the tablet: 
dpms = (Sfr /Sms) dpfr = (Sfr /Sms)Efr|dgij

^|, providing the mag-

netic response dF = Sms L(–1)dpms = SfrEfrL(–1)|dgij
^|, which is 

then detected by the SQUID (Sms and Sfr are the areas of the 
magnetostrictor and the frame, respectively). The transverse 
size of the tablet is a free parameter that does not enter the 
last part of the expression for dF, which allows the use of a 
low-inductance input loop of the superconducting flux trans-
former (encircling the tablet), which facilitates the increase in 
the coefficient of magnetic response transmission dF into the 
operating ring of the SQUID.

However, the ratio of the frame length lfr and the tablet 
thickness lms now cannot be arbitrary, because from the condi-
tion of continuity of the mechanical link dℓms = dℓfr, Newton’s 
third law Sms dpms = Sfr dpfr and Hook’s law dp = E dℓ /ℓ it fol-
lows that lfr /lms = (Sfr /Sms)(Efr /Ems). Then the resulting incre-
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Figure 1.  Qualitative relation between the geometry of gravitational wave 
propagation and the position of magnetostrictive antenna, the change 
of magnetic flux in which is detected by the SQUID. In the foreground 
the plane-polarised gravitational wave is schematically shown. Arrows 
point at the regions of decreasing and increasing dimensions of a virtual 
test body, caused by the influence of the gravitational wave. The pro-
portion between the wavelength l and the dimension l of the cylindrical 
antenna is deliberately distorted (really l is greater than l by nearly 5 orders 
of magnitude); for clarity also exaggerated (by 20 orders of magnitude) 
is the variation of geometric dimensions of the test body in the field of the 
gravitational wave. Here and in Figs 2 and 3 the electric circuit includes 
a DC SQUID and the elements of service electronics [1], the crosses in 
the operating ring of the DC SQUID mark Josephson tunnel junctions – 
the principal elements of the superconducting quantum interferometer [2].
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Figure 2.  Schematic diagram of a ‘frame’ gravitational antenna with 
compact sensitive magnetostrictive element (‘grey’ tablet between the 
faces of the ‘black’ concentrator of mechanical stresses).
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ment of the magnetic flux dF = SfrEfrL(–1)|dgij
^| = (lfr /lms) ́  

SmsEmsL(–1)|dgij
^| appears to be ℓfr /ℓms times greater than the 

flux increment in the absence of the frame, dFms = SmsEms ́  
L(–1)|dgij

^|. It is assumed that the measurements of dF are 
performed at the eigenfrequency of the frame vibration, dif-
ferent from the resonance vibration frequencies of the con-
centrator arms, which allows considering the latter as incom-
pressible.

Now let us explicitly allow for the contribution of the 
magnetostrictor dFms into the total fluctuations of the mag-
netic flux dFms + dFSQUID (dFSQUID are the intrinsic noises of 
the SQUID) that limit the total sensitivity of the system. To 
make the increment of pressure Dp and/or elongation Dℓ/ℓ, 
estimated above, actually detectable, it is also necessary to 
satisfy the condition that the magnetic self-fluctuations of the 
magnetostrictive rod dFms are small compared to the Nyquist 
noise of the SQUID, i.e., dFms << dFSQUID. The estimate of 
dFms may be obtained using an analogy with the simplest 
derivation of the Nyquist formula dU = 4 kTR fTp  that 
allows calculation of the amplitude of noise voltage dU, pro-
duced by the resistor R at the temperature T, within the 
frequency bandwidth D f. In fact, this formula follows from 
the condition that within the unit frequency bandwidth the 
power W is continuously dissipated, which corresponds to the 
equilibrium value of the energy kT per one degree of freedom: 
kT = Wt = (dU/ 2 )2/(2pRD f  ), where t = D f  –1. The analo-
gous condition for a paramagnetic in the absence of external 
magnetic biasing, when ádF ext ñ = 0, has the form

kT = Wt = (dEpm /t| | ) 2 f
1
Tp  = 
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from which it follows that dFpm = [4pkT ( mm0Spmt|| /lpm)Df  ]1/2, 
where t|| is the longitudinal relaxation time of the spin system. 
For a ferromagnetic with external magnetic biasing the mean 
flux is nonzero (ádF ext ñ = BextSfm), and then kT = [lfmBext ́  

dF fm /( mm0)] t||–1/(2pD f ), from where we get dFfm = 2pkT ́
 [ mm0 t|| /(lfm Bext)] Df. The longitudinal relaxation time can be 
estimated based on ‘reverse’ width of spin resonance Dfsr

–1. 
Thus, for ferromagnetic resonance in ferroalumoyttrium 
garnet ( fsr = 3.3 ́  109 Hz for B = 0.11 T, D fsr = 5 ́  105 Hz) 
the longitudinal relaxation time amounts to ~2 ́  10–6 s. Using 
these parameters to estimate the self-noise of the magneto-
strictive core 0.1 m long at the liquid helium temperature 
(T = 4.2 K) in the saturation field Bext = 1 T, we conclude that 
their amplitude is limited from above by the value dFms(D f  ) » 
dFfm(D f ) = 2pkT [ mm0 t|| /(lfm Bext)] Df < 10–23 Wb, and within 
the unit frequency bandwidth by the value dFms (D f = 1 Гц) < 
2 ́  10–29 Wb. Hence, the magnetic self-fluctuations of the mag-
netostrictive rod dFms appear to be essentially (by eight orders 
of magnitude) smaller than the amplitudes of the Nyquist noise 
of the SQUID dFSQUID = 10–6F0  Hz–1/2 = 2.07 ́  10–21 Wb Hz–1/2.

The above estimate of the ultimate sensitivity was obtained 
without accounting for the transmission coefficient of the flux 
transformer. In the SQUID the superconducting flux trans-
former functions as a coupling and matching element. By 
means of this element the magnetic signal DF from the macro-
scopic region, where, in correspondence with experimental con-
ditions, the magnetic flux measurements are to be performed, 
is transferred into the input circuit of the interferometer, 
which, in accordance with the requirement LIJ ~< F0 that 
excludes unambiguity of performance characteristic, must 
have microscopic dimensions. The magnetic flux transformer 
consists of a couple of loops, closed to form a single supercon-

ducting loop by means of a low-inductance twin-wire line (see 
Figs 1 and 2). The first loop is coupled to the macroscopic 
region and the second one is coupled to the operating circuit 
of the SQUID. Due to the conservation of the total magnetic 
flux, passing through the closed superconducting circuit, the 
variation DF is transmitted from the first loop into the second 
one in correspondence with the condition DF1 = –DF2. The 
maximal transmission coefficient DFSQUID /DF is propor-
tional to /L L1  and usually takes the value within the limits 
0.005 – 0.05 [21]. In long-term measurements such a reduction 
of sensitivity is easily compensated by increasing the signal 
acquisition time up to ~104 s. However, in detection of sepa-
rate events such as a pulsed gravitational wave, when the arti-
ficial narrowing of the spectrum is not acceptable, it is required 
to increase the transmission coefficient of the flux transformer 
by means of efficient reduction of the inductance L1of its 
coupling turn. For this purpose the loop should be shielded 
with an additional external superconducting ring (Fig. 3). An 
alternative way to increase the transmission coefficient of the 
flux transformer consists in artificial increase in the induc-
tance of the SQUID input circuit. In order to bypass the limi-
tation LIJ ~< F0 , the authors of Ref. [22] proposed to replace 
single Josephson tunnelling junctions in the SQUID with chains 
of n successively connected junctions with nearly equal IJ . In 
this case the limitation becomes less strict and takes the form 
LIJ ~< nF0.

3. Physical grounds of magnetostriction and 
criteria for the optimal test body choice in the 
SQUID/magnetostrictor system

In connection with mentioned above, it is of certain interest to 
seek for ways of improving magnetostrictive properties of the 
substance, used as a test body in the SQUID/magnetostrictor 
system. 

3.1. Phenomenological description of magnetostriction

In accordance with the simplest phenomenological scheme, 
describing magnetostriction effects, the common expansion 
of the free energy [23] F(T, M) = F0 + a (T – TK)M2 + bM4 (TK 
is the Curie temperature) should be completed with a ‘mixed’ 
term, proportional to the product of the magnetic moment 
M  of the system and the relative elongation Dℓ/ℓ = e; then 
F(T, M, e) = F0 + a (T – TK)M2 + bM4 + c1Me [24]. Such a 
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Figure 3.  Schematic diagram of a superconducting magnetic flux con-
centrator: 	
( 1 ) magnetostrictor; ( 2 ) tubular loop of the superconducting flux trans-
former; ( 3 ) external superconducting tube (superconducting flux con-
centrator); ( 4 ) twin-wire connection link of the flux transformer.
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mixed term corresponds to the direct linear and inverse linear 
magnetostriction effects, i.e., e(M) µ M and DM(e) µ e, respec-
tively. The minimum of free energy in a ferromagnetic, pos-
sessing no magnetostriction properties, corresponds to the 
zero of the partial derivative

¶
¶ ( , )

M
F T M

 = 2a(T – TK)M + 4bM3 = 0,

from which the common expression for the spontaneous mag-
netization M0 = ( ) /( )a T T b2K-  follows. The analogous con-
dition for the free energy minimum with the mixed term taken 
into account,

¶
¶ ( , )

M
F T M

 = 2a(T – TK)M + 4bM3 + c1e = 0,

leads to a cubic equation with respect to M, the approximate 
solution of which includes the correction, responsible for defor-
mation, M » M0 + DM(e) = M0 + c1e / [8a(TK – T )]. It is seen 
that the magnetisation due to Villari effect used in the system, 
described in the present paper, grows as T approaches the 
Curie temperature.

The mixed term, having the form c1Me, corresponds to 
linear magnetodeformation effects, observed either in piezo
magnetics (antiferromagnetics, where under the influence of 
deformation the equilibrium of oppositely polarised sublat-
tices is broken), or under the conditions of ‘common’ quad
ratic magnetostriction effects, when an external magnetic 
field is applied to the sample (in this case the proportionality 
coefficient becomes dependent upon the external field, c1 = 
c1(Bext) µ Bext) [24]. In the absence of the external magnetic 
biasing the quadratic effects should be described using the 
mixed term of the form c2M2e (here, for simplicity, we do not 
take into account the tensor nature of the coefficients c1 and c2, 
reflecting the anisotropy of the crystal [25 – 27]). Such a mixed 
term corresponds to the direct quadratic and inverse linear 
magnetostriction effects, i.e., e(M) µ M2 and DM(e) µ Me, 
respectively. As above, the expression of the magnetic moment, 
corresponding to the minimum of free energy of the ferro-
magnetic with the term c2M2e taken into account, includes the 
correction, depending on the deformation, M » M0 + DM(e) = 
M0 – (c2 e / 4) /[ ( )]b a T T2 K- , which is just the essence of the 
inverse magnetostriction effect. However, now the tempera-
ture dependence of the response to deformation is seen to 
appear weaker, i.e., DM(e) µ (TK – T )–1/2 instead of DM(e) µ 
(TK – T )–1. At the same time it appears that both in linear and 
quadratic cases the effect, used in the described SQUID/mag
netostrictor system, is unlimitedly enhanced, when T ® TK.

Thus, in order to increase the sensitivity, one should make 
the operating temperature of this measuring system to be as 
close to TK as possible. The Curie temperature of common 
magnetostrictive materials on the basis of iron or nickel 
amounts to hundreds of kelvins and, therefore, the detector 
using such substances under the condition T ® TK cannot be 
considered as low-noise detectors (and even less super-low-
noise). This circumstance makes the search for cryogenic 
magnetostrictive materials, i.e., magnetostrictors with low 
(from a few kelvins to parts of a kelvin) Curie temperatures to 
be an extremely urgent problem. 

It is also worth noting, that a magnetostrictor, as well as 
any ferromagnetic, possesses magnetic viscosity [25 – 27], char-
acterising the scale of energy dissipation in the magnetic sub-
system. Obviously, this viscosity limits the Q-factor of the 

loaded oscillatory system, including magnetostrictive elements. 
Therefore, in the case when it is required to provide a high 
Q-factor, it is probably reasonable, at the expense of an insig-
nificant reduction of the recording system sensitivity, to replace 
the magnetostrictor with a piezomagnetic, in which, like in a 
single-domain antiferromagnetic, the losses, corresponding to 
the magnetic viscosity, appear to be essentially smaller.

3.2. Microscopic description of magnetostriction

An attempt of simple consideration of magnetostriction from 
the point of view of microscopic positions from the very begin-
ning meets the necessity of direct accounting for collective effects 
of spin – spin interaction of electrons. Starting from the micro-
scopic mechanism that implies no collective effects in the interac-
tion of each electron with each electron, we find that the calcu-
lated sensitivity of the magnetostriction-based detector appears 
to be nearly zero. From the microscopic position, the ‘ferromag-
netic collectivism’ manifests itself in self-consistent interaction of 
each spin with total magnetisation of all the rest electrons or 
holes, belonging to the appropriate energy zone, but with explicit 
accounting for the exchange spin – spin interaction. The spin 
polarisation due to the exchange interaction and/or under the 
action of the external magnetisation leads to the splitting of the 
initial energy zone into two subzones. The difference of the car-
rier numbers in the spin-split subzones nT -. is expressed in terms 
of the product of the Fermi density of states NF and the differ-
ence of the ‘subzone’ energies nT -. = (n-  – n.)/2 = NF  ET -.. The 
formation of subzones leads to the growth of the kinetic energy 
of the system:

( )
.E

n n
E N

n n
N
n

2
1
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F F

2 2

T T
T
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Meanwhile, the energy of spin – spin interaction, expressed in 
terms of the exchange integral Jss, will decrease:

( ) .E J n n J
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J n
2ex ss ss ss

2
2T T= -

+
=- .

- .
-.` j

Thus, the expression for the total change of energy with the 
polarisation of spins caused by the external field Bext taken 
into account may be written in the form DE = DEkin + DEex – 
2( mB nT -.)Bext = (1/NF – Jex)( nT -.)2 – 2 mB Bext nT -. ( mB is the 
Bohr magneton), and the condition of energy minimum of 
the system at T » 0 takes the form ¶(E0 + DE)/¶( nT -.) = 0 (the 
closeness of the temperature to absolute zero makes it possible 
not to take the entropy into account). From the condition of 
minimum the equation (1/NF – Jss) nT -. = mB Bext follows, the 
solution of which allows determination of the ferromagnetic 
susceptibility

.B
m

B
n

J N
N

1
int

ext ext

B

ss F

B F
2T

c
m m

= = =
-

-.

It is seen that at T » 0 the dependence of the internal specific 
magnetisation mint on the exchange integral of spin – spin 
interaction becomes stronger as the Stoner factor Jss NF 
approaches unity: ¶mint /¶Jss = NF mint /(1 – Jss NF). Expressing 
the ferromagnetic susceptibility c in terms of the Pauli suscep-
tibility of the gas of non-interacting spins cP, we arrive at the 
formula c = cP /[1 – (Jss /mB

2 ) cP], analogous in structure to the 
known expression for the gain of a system with the feedback 
taken into account, K = K0 /(1 – bK0). Therefore, it appears 
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that the exchange interaction constant Jss /mB
2 plays the role of 

a positive feedback coefficient b, promoting the amplifica-
tion of the internal polarisation, which is a response to the 
impact in the form of external magnetic field Bext. The gain 
may be presented in the form of a power series, converging at 
|bK0| < 1, K = K0 (1 + bK0 + b2K0

2 + b3K0
3 + ...), to which the 

series of diagrams presented in Fig. 4 corresponds. Successive 
summation of this series corresponds to taking the feedback 
effect into account in higher and higher orders of approxima-
tion: the first term describes the gain without feedback, the 
second describes the amplification of a part of already ampli-
fied response, passed from the output to the input via the 
feedback channel with the transmission coefficient b, the third 
term corresponds to the amplification of a part of the doubly-
amplified response, etc. 

Under the deformation, the relative variation of the dis-
tance between the spins Dlss /lss will be approximately equal to 
the relative elongation of the entire magnetostrictive sample, 
which, in turn, implies the presence of essential dependence of 
the exchange integral of the spin – spin interaction Jss on the 
relative elongation of the crystal DJss /Jss –~ Dlss /lss = Dl/l. 
When the Stoner factor approaches unity (JssNF » 1), the 
strong dependence of the magnetisation mint on the exchange 
integral 

1m
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J N
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J
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int
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J N
J N
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l
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ss F T
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J N l

l
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1
ss F
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makes it possible to reach high sensitivity when measuring the 
relative elongation with the SQUID/magnetostrictor system: 
DF » [ m0 cSmsBext /(1 – JssNF)] /(Dl/l), where Sms is the cross-
section of the magnetostrictor.

Thus, while within the framework of the phenomenologi-
cal ferromagnetism model one should seek for the high sensi-
tivity of a magnetostrictive detector near the Curie tempera-
ture (see Section 3.1), from the position of the microscopic 
theory the highest sensitivity may be obtained when the 
Stoner factor approaches unity (which is implemented, e.g., in 
palladium).

4. Possible applications of the SQUID/mag
netostrictor system and alternative scheme  
of detecting gravity fields with a SQUID

Apart from detecting gravitational waves, the SQUID/mag-
netostrictor system may be useful as a supersensitive acceler-
ometer, as well as for performing high precision measure-
ments of local variations of the free fall acceleration. The first 
of these facilities (measuring the inertia fields) is urgent in 
the problems of orientation and control of object motion, the 
second one (measuring gravity field of the Earth) is important 
for geophysics, geological exploration, etc.

If the test body (magnetostrictor) having the mass m = 
rms Sms ℓms bears on the base having the area Sms, then the 
recorded acceleration a will be related to the detected pres-
sure p via the formula a = F/m = pSms /m = p/( rms ℓms). Subs
tituting into this relation the minimal detectable pressure 
dp ~ 10–13 Pa Hz–1/2, obtained in Section 2, and the typical 
density rms » 10 kg m–3 and length l » 0.1 m of a magneto-
strictor, we get the acceleration, detected at the ultimate sen-
sitivity, da ~ 10–13 m s–2 Hz–1/2 = 0.01 nGal Hz–1/2. Such high 
sensitivity in measuring the free fall acceleration may appear 
useful for solving different geophysical problems [28], associ-
ated with the search for gravity abnormalities, corresponding 
to variations of the Earth crust density D rE in the regions of 
mineral deposits. For example, the salt domes, which are one 
of the fingerprints of oil-bearing bed presence, are accompa-
nied by the variation of the rock density D rE » –25 kg m–3. 
Basing on the abovementioned sensitivity, during the acquisi-
tion time ~100 s such variation may be detected at the depth 
of 5 km, if the dome volume amounts to at least 150 m3, which 
in geological measure corresponds to a small-scale inhomo
geneity of the Earth crust. With the same sensitivity of the 
SQUID/magnetostrictor system and the same acquisition time 
(~100 s) at the surface of the Earth, it is possible to detect 
the perturbation of the gravity field, produced by a light tank 
(with the mass ~15 t), at the distance of 10 km. Such high 
sensitivity of the system not only can be useful for solving 
applied problems of geological exploration, but also will allow 
continuation of the studies of weak deviations from the law of 
universal gravitation, the possibility of which in the ‘near-
field’ zone was reported in a number of papers [29, 30]. If the 
study of such deviations will be performed at the distance of 
a few metres from a body having the mass m0 = 15 kg, then 
the sensor, detecting the gravitational field strength (i.e., the 
acceleration of free fall on the body with the mass m0) with 
the abovementioned sensitivity of 10–13 m s–2 Hz–1/2, during 
the time of ~100 s will be able to detect a deviation from the 
Newton gravitation law, if it amounts to at least 0.001 %.

Choosing the test body in the form of a dumbbell with the 
masses m1 and m2 at the ends, linked with a magnetostrictive 
rod, which is coupled to a SQUID via a superconducting flux 
transformer, one can construct a supersensitive gradiometer 
of the gravitation field. With magnetostrictive link, having the 
cross section Sms = 10–4 m2, the length l12 = 0.1 m and the end 
masses m1 = m2 = m = 5 kg, such measuring instrument with 
the ultimate sensitivity Dp12 = dp ~ 10–13 Pa Hz–1/2 will be able 
to detect the gradient of the gravitation field strength |Ña| = 
Sms Dp12 /(2ml12) = 10–17 s–2 Hz–1/2. In comparison with the gravi-
meter, the gradiometer possesses better noise resistance, because 
the impact of the noise sources located at the distance much 
greater than l12 appears to be strongly suppressed. The tensor 
character of the gradient of the gravitation field strength 
(Ña = Ñi  aj) indicates its direct relation with the Ricci curva-
ture tensor, arising due to gravitational distortion of the 
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Figure 4.  A series of diagrams, demonstrating the formation of the gain in a system with feedback. Straight lines in individual diagrams correspond 
to ‘unperturbed’ amplification (K0), the arcs correspond to feedback channels with the transmission coefficient b, the straight lines are directed from 
input to output, and the arcs are directed from output to input. In the case of a magnetic system the straight-line segments correspond to Pauli 
susceptibility of non-interacting spin gas cP and the arcs represent the constant of exchange spin – spin interaction Jss /mB
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‘plane’ Euclidean metric. The gradiometric scheme described 
above allows the measurement of diagonal elements of the 
curvature tensor only, however, detecting the magnetic response 
that corresponds to shear deformations of a piezomagnetic, 
will probably allow the detection of non-diagonal components 
as well.

The energy density 1 keV cm–3 corresponds to the internal 
pressure pint » 1.6 ́  10–10 Pa. In correspondence with the esti-
mates, this is just the density that should be possessed by the 
dark energy [31 – 35], the everywhere presence of which explains 
the additional acceleration in recession of galaxies, as com-
pared to Hubble’s law V = HR (the velocity of recession V is 
proportional to the distance R to the observed objects, H being 
Hubble’s constant). One of the popular hypotheses about the 
nature of dark energy actually identifies it with the vacuum of 
quantised electromagnetic field. In principle, this model allows 
implicit registration of dark energy density variations by per-
forming long-term observations of the Casimir effect, which 
consists in appearance of small difference of pressures, exerted 
by virtual photons from inside and outside the gap between 
two closely spaced parallel mirrors. The calculation, account-
ing for the resonance factors in the statistics of virtual photons 
that are created and annihilated in the quantum-field vacuum, 
shows that the pressure difference Dpqv = p2'c/(240d 4) » 
1.2 ́  10–27/d 4 [36 – 39]. If d = 50 mm is the width of the gap 
that plays the role of a resonator for virtual photons, then this 
difference will, on average, amount to ~2 ́  10–10 Pa. Thus, the 
SQUID/magnetostrictor system, used as a sensor for detect-
ing the variations of the internal pressure pint or the varia-
tions Dpqv, relevant to the Casimir effect, with the sensitivity 
~10–13 Pa Hz–1/2, will allow laboratory studies of periodical 
variations of dark energy, corresponding to complex polycyclic 
motion of the Earth in the space.

And, finally, let us consider the possible scheme of ‘direct’ 
registration of gravity fields, in which it is proposed to apply 
the superconducting interferometer without using the magneto-
strictive sensor. Relativistic effects are closely connected to 
the natural anisotropy, possessed by the motion and gravity. 
In the special relativity theory this anisotropy manifests itself 
in the difference of Lorenz transformations along and across 
the motion direction, while in the general relativity theory it is 
present in the form of anisotropic influence of gravity on the 
appropriate components of the metric tensor, responsible for 
linear scale along and across the vector of gravity field 
strength (it is reasonable to note that in modern cosmological 
theories, relating the observed distribution of matter in the 
Universe to the Finsler metric [40 – 42], the anisotropy acquires 
vital significance).

The natural anisotropy of relativistic effects is reflected in 
the geometry of the classical Michelson – Morley experiment, 
too. In this experiment the role of the velocity of the labora-
tory coordinate frame is played by the solar escape velocity, 
with which the Earth moves around the Sun (30 km s–1). In 
this case, with respect to the Sun the interferometer was in the 
zero-gravity state. However, if an interferometer with mutu-
ally perpendicular arms, one of which is directed towards the 
centre of the gravitation field, will be actually at rest with 
respect to this centre, then the variation of the gravitational 
potential D jg, corresponding to slow displacement of the 
device up or down by the distance Dh, will cause the displace-
ment of the resulting interference pattern. The effect will be, 
in principle, observable, but obviously hard to detect, since its 
order of magnitude will be 
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where the strength of the gravitational field at the surface of 
the Earth is ¶jg / ¶z » 9.8 m s–2. The required sensitivity may 
be provided by quantum interferometers, registering the 
phase change DQ, which is proportional to the effective elon-
gation D l, expressed in the units of the operating wavelength, 
i.e., DQ = 2pDℓ/l, and the operating wavelength in the super-
conducting ring of a SQUID, depending on the accumulated 
magnetic flux F, can be essentially smaller than the typical 
one in common optical systems, lSQUID = 2prF0 /F (r is the 
ring radius, F0 = p'/e).

Consider a flux transformer, incorporating two supercon-
ducting loops, closed on each other, with the inductances L^ 
and L | | and the lengths l^ и l | |, the planes of which are oriented 
horizontally and vertically with respect to the direction of 
the gravitation field strength. Assume that N flux quanta are 
stored in the transformer, then NF0 = F | | + F^ = (L^ + L | |)I 
( I is the current in the flux transformer) and, therefore, F^ = 
L^I = NF0L^ /(L^ + L | |). Expressing the inductance L of the 
long rectangular loop with the length l, much greater than its 
width, in terms of its specific value, L = (¶L/¶l)l, assuming the 
specific inductances to be equal in both loops, ¶L| | /¶l| | = 
¶L^/¶l̂ , and neglecting the contribution of the ends, we get: 
F^ = NF 0 l̂  /(l^ + l | |) and DF^ = –NF0 l̂ Dl | | /(l^ + l | |)2. 
Assuming that with no influence of gravitation taken into 
account the loops have equal lengths (l̂  = l || = l0) and using 
the law of linear scale transformation l | |  = l0 ( )g zzz  = l0 ́
( / )c1 g

2 1j+ -  и l^ = l0 g==  = l0, describing the relativistic 
gravity effects in terms of the appropriate components of the 
metric tensor, we arrive at the expression for the flux variation 
in the horizontal loop DF^, arising when the superconducting 
interferometer is lifted by the height Dh
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For quantitative estimation let us substitute the Earth 
gravitation parameter ¶jg / ¶z » 9.8 m s–2 into the obtained 
formula and assume that the superconducting loops, in which 
109 flux quanta are stored, are lifted up the height 800 m. 
Then the flux will be redistributed between the loops so that 
DF^ » 10–6F0 = –2.07 ́  10–21 Wb. If the elevation was per-
formed with the velocity 0.5 m s–1, then this decrease of the flux 
will be registered by the SQUID in the frequency band D f = 1/t 
= 0.5 m s–1 / 800 m = 6.25 ́  10–3 Hz, so that fT  = 0.025 Hz–1/2. 
Thus, to make the registration of the effect possible, the flux 
fluctuations in the quantum interferometer should not exceed 
10–6F0 / 0.025 Hz1/2 = 4 ́  10–5F0 / Hz1/2, whereas the noise ampli-
tude in modern SQUIDs is almost two orders of magnitude 
smaller.
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