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Abstract.  We consider propagation of electromagnetic solitary 
waves in two tunnel-coupled waveguides. It is assumed that one of 
the waveguides is made of a positive-index dielectric, having a Kerr 
nonlinearity. The other waveguide is made of a linear optical meta-
material characterised by the so-called negative refraction. The gap 
soliton formation in such a system, which, as shown, has a threshold 
character, is studied numerically. 

Keywords: optical solitons, tunnel-coupled waveguides, forward 
and backward waves, metamaterials. 

1. Introduction 

Recently, much attention has been paid to the study of a new 
class of artificial materials – metamaterials, which are pro-
duced due to advances in the fabrication technology of nano-
composites and nanostructured media. Among metamateri-
als, a special place belongs to materials with the so-called 
negative refraction of electromagnetic waves. Negative refrac-
tion at an interface between two media, as noted in [1], is due 
to the fact that in one of the media the wave vector and 
Poynting vector are oppositely directed, while in another 
medium, they have the same direction. Moreover, this is a 
general property of the waves of any nature with a negative 
group velocity and positive phase velocity (or vice versa). 
Such waves are called backward waves, and they have been 
known for a long time. To use Snell’s law to describe negative 
refraction, it is necessary to formally introduce a negative 
refractive index. After the pioneering work of Mandelstam 
[1], the waves in negative-index media were studied theoreti-
cally in [2 – 5]. The first experiments demonstrating the nega-
tive-index manifestation were performed in the microwave 
frequency range [6, 7]. The authors of papers [8, 9] reported 
the creation of a ‘bulk’ (a multilayer structure with a thick-
ness on the order of the wavelength) negatively refracting 
material. Although modern materials with optical negative 
refraction have large losses, there are reasons to expect in the 
future either new materials with low losses, or ways to com-

pensate for the loss [10]. The reviews of the properties of 
metamaterials are presented in [11 – 16]. 

The unusual properties of negative-index metamaterials 
appear when an electromagnetic wave is refracted or localised 
near the interface between an ordinary medium and a nega-
tive-index medium [17, 18]. One interesting example of the 
interaction of forward and backward waves is the relation 
between the waves propagating in closely spaced waveguides, 
one of which is made of a positive-index nonlinear material, 
and the other is made of a negative-index linear or nonlinear 
material [16, 19 – 22]. Such a device in integrated optics is 
called a directional coupler, if the directions of propagation 
of the wave energy fluxes coincide [23 – 25]. In the case we are 
discussing the energy fluxes have opposite directions (forward 
and backward waves are coupled). Therefore, this device can 
be called an anti-directional coupler (Fig. 1). The spectrum of 
linear waves in the anti-directional coupler has a band gap – a 
gap similar to the gap in a Bragg waveguide. However, in this 
coupler there is no periodic change in the refractive index, and 
the forward and backward waves are spatially separated. In 
addition, in a Bragg waveguide both waves propagating in 
opposite directions are forward waves. 

The authors of papers [20, 21] considered an extended 
nonlinear anti-directional coupler (NADC) and found the 
solutions that meet a stationary pulse of the electromagnetic 
field, which propagates along both tunnel-coupled wave-
guides as a whole. Based on the analogy between the proper-
ties of these pulses for a nonlinear Bragg waveguide and a 
NADC, a stationary solitary wave in the latter case can be 
called a gap soliton. 

In this paper, we study the formation of a stationary soli-
tary wave in an extended nonsymmetric (i.e., only an ordinary 
waveguide has nonlinear optical properties) nonlinear anti-
directional coupler [21]. By solving numerically the equations 
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Figure 1.  Scheme illustrating the differences between the directional 
and anti-directional couplers. 
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describing the coupler under study, it is shown that a small-
amplitude electromagnetic pulse, coupled into one of the 
NADC channels, is emitted in the opposite direction from the 
other channel of the coupler. When the amplitude of the input 
pulse exceeds a certain threshold, a pair of coupled pulses 
propagating in both waveguides in one, general direction is 
formed. Thus, the formation of a gap soliton in the NADC 
has a threshold character. The dependence of the threshold 
amplitude of the input pulse on a single parameter of the 
model is obtained numerically. 

2. Basic equations of the NADC model 

Following [21], we consider a pair of tunnel-coupled wave-
guides, one of which is made of a conventional optically non-
linear dielectric, the other is made of a negative-index linear 
material. The linear properties of the first waveguide are 
determined by the dielectric permittivity   ( )1 0e w  at the carrier 
wave frequency   0w , and its magnetic permeability is equal to 
unity. It is assumed that the medium is transparent at the fre-
quency 0w . The nonlinear properties of the first waveguide 
are characterised by the effective third-order nonlinear sus-
ceptibility   ( )

eff
3c . The waveguides are assumed short enough 

for the second-order group velocity dispersion effects to be 
ignored, and the condition of the wave matching is fulfilled. 

The system of equations for the slowly varying envelopes 
of the electric field, E1, in the ordinary waveguide and, E2, in 
the negative-index waveguide has the form [21]: 

¶
¶

¶
¶

( )
| | 0,i i

z
E

t
E K E

c
E E2 ( )

g
eff

1

1

1
12 2

1 0

0 3
1
2

1
p

u e w
w c+ + + =

¶
¶

¶
¶ 0,i i

z
E

t
E K E

g

2

2

2
21 1u- + + = 	

(1)

where g ju  is the group velocity in the jth waveguide, and K12 
and K21 are the tunnelling coupling constants of the waves.

It is convenient to pass to dimensionless variables by 
selecting them as follows: 
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The electric fields ( , )E z tj  in the jth waveguide (j = 1, 2) can be 
written as 
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In these new variables, the system of equations (1) has the 
form 
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is a dimensionless parameter that characterises the nonlinear-
ity of the waveguide. We will call this system of equations the 
NADC equations. 

Stationary solitary waves – gap solitons – correspond to 
the solutions of equations (2), which are written as 

( , ) ( )eQ a, ,
( )i

1 2 1 2
,1 2z t h=
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b
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+

and b is a free parameter. Real amplitudes (envelopes of a gap 
soliton) ( )a ,1 2 h  and phases ( ),1 2f h  are defined by the expres-
sions [21]: 
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and the parameter ch  is a constant of integration, i.e., posi-
tion of the maximum of the gap soliton envelope. If we go 
back to the original variables (z, t), then for the group velocity 
su  of the gap soliton we can obtain the expression 
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Thus, the parameter (| | 1, 0)< !b b b  determines the group 
velocity of the gap soliton and the direction of its motion in 
the NADC. 

3. Results of the numerical solution 
of the NADC equations 

It is assumed that a pulse of Gaussian shape is coupled into 
the input of the waveguide made of an ordinary (in this case, 
nonlinear) dielectric, and no radiation is coupled into the out-
put of the second negative-index waveguide. Hence, the 
boundary conditions for system (2) can be written in the form 

( 0, ) , ( , ) 0.eQ z t a Q z L tin1 2
2

= = = =
t- 	 (7)

The waveguide length L is chosen finite but sufficiently 
large (much larger than the coupling length Lc) to ensure 
maximum total reflection in the linear limit. Along the time 
axis, use was made of an ordinary condition for solitary waves 

0Q =lim
| |

,
t

1 2
"3

.

To control the accuracy of numerical solutions of equa-
tions (2), we used the integral of motion, i.e., the Manley – Rowe 
relation, which takes into account the relationship of forward 
and backward waves: 
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To verify the accuracy of the numerical code, we performed 
the calculations using boundary conditions corresponding to 
the gap soliton in [21]; the numerical solution coincided with 
the analytical solution (3) – (6). 

Figure 2 shows the reflection of a weak signal coupled into 
the positive-index waveguide. The Gaussian pulse from the 
negative-index waveguide due to frustrated total internal 
reflection penetrates into the positive-index waveguide, where 
the energy flux is directed in the opposite direction, and the 

initial Gaussian pulse appears at the NADC input, but from 
another waveguide. 

Gradually increasing the amplitude of the input pulse, ain, 
it is possible to find a value when the input pulse reflection 
becomes negligible and a stationary pulse, localised in both 
waveguides, is formed (Figs 3 and 4). A further increase in the 
amplitude ain slightly changes the velocity of the stationary 
pulse, which corresponds to gap solitons. The value of ain, 
which yields a gap soliton, will be considered a threshold 
amplitude a1th. Figure 3 illustrates (in gray scale) how the 
input pulse with the amplitude smaller than the threshold one 
broadens and excites the broadening pulse in the second 
waveguide. But when its amplitude exceeds the threshold, two 
coupled pulses localised in both waveguides and retaining 
their shape are formed. Figure 4 shows that when the ampli-
tude of the input pulse exceeds the threshold, a stationary 
pulse (gap soliton), the propagation velocity of which is less 
than the pulse velocity in the linear regime, is produced in 
both waveguides. 

By changing the value of the nonlinearity parameter r in 
(2), we can numerically find the dependence of the amplitude 
threshold a1th on this parameter (Fig. 5). From these graphs, 
it follows that 

a r1
/

th
1 2+ -

[taking into account the error in determining a1th from the 
results of numerical solutions of system (2).] 

Such a dependence of the threshold amplitude of the input 
pulse on the nonlinearity parameter is typical of the gap soli-
ton formation in the Bragg waveguide [26]. Qualitatively, it 
can be explained as follows. The frequency spectrum of linear 
waves has a gap of width (taken here in dimensionless vari-
ables) 2nD =  [20, 21]. The soliton is formed near the begin-
ning of the waveguide, which includes the pulse eQ a i

1 1
1=

f  
and where we can neglect the spatial variations of amplitude 
and phase. It follows from (2) that the time derivative of the 
phase 1f  determined by the nonlinearity of the waveguide 
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Figure 2.  Reflection of a weak signal  ( 1, 1.0r ain= = ).
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material is proportional ra ra in1
2 2. . Therefore, the carrier fre-

quency of the pulse is shifted by ra maxin+ . If this shift is small 
compared to the /2nD , the pulse cannot propagate in the 
waveguide (both in the Bragg waveguide and in the NADC) 
and is reflected. Otherwise, propagation takes place. 
Sometimes it is said that a sufficiently strong pulse locally 
changes the properties of the medium to such an extent that 
its spectrum turns out to be in the allowed band. Such a rough 
estimate of the threshold yields the formula a r1

/
th

1 2+ -

4. Conclusions 

The formation of a stationary pulse (gap soliton) in a nonlin-
ear anti-directional coupler, where one waveguide maintain-
ing backward wave propagation is optically linear and the 
other waveguide made of an ordinary dielectric has a Kerr 
nonlinearity, is considered numerically. This configuration of 
(linear and nonlinear) waveguides is sufficient for the gap 
soliton formation. The resulting dependence of the threshold 
value of the input pulse amplitude on the nonlinearity param-
eter has the same form as in the case of a nonlinear Bragg 
waveguide. This is an expected result, because in the linear 
regime the dispersion law is the same for the NADC and 
Bragg waveguide (in particular, the spectrum has a band gap 
– an energy gap). Although structurally the NADC and Bragg 
waveguide differ, in both cases the existing stationary pulse 
can be attributed to the same type of nonlinear waves – a gap 
soliton. 

In the calculations the duration of the input pulse was 
assumed fixed and equal to unity (in terms of normalised 
units). To analyse the effect of the input pulse duration on the 
threshold value of the gap soliton formation, one can, as 
above, consider the region near the NADC, where this pro-
cess occurs. If, using the pulse duration tp to determine the 
initial pulse amplitude as ( ) ( / )a t a t tp1 1= , then at about z = 0, 
the equation for the input pulse phase 1f  is approximately 
written as 
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where /t tin p 0t =  is the normalised pulse duration. When 
replacing the variable / int t t= l, the equation takes the form 
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This equation is similar to the equation in the case of unit 
duration of the input pulse, the difference lies in the renor-
malisation of the nonlinearity coefficient. Therefore, the car-
rier frequency of the pulse is shifted by about   ra ra1maxin in in

2 2t t= , 
which should exceed the value of the band gap in order to 
stop reflection. It follows that ( )a r1

/
th in

1 2+ t - .
It should also be noted that the spectral width of the input 

pulse must not exceed the width of the band gap, which 
imposes a limit on the minimum pulse duration: 1in &t nD . 
The maximum pulse duration may also be limited because of 
the development of the modulation instability [22]. 

Account for losses in the waveguides (or only one wave-
guide) prevents the gap soliton propagation at large distances. 
But the formation of such a soliton is possible if the loss coef-
ficient is less than one-tenth of the reverse coupling length. At 
the value of the loss coefficient on the order of the inverse 
coupling length, the gap soliton formation was not found in 
the numerical calculations. 

The fundamental point for the phenomenon considered in 
this paper is the coupling of the forward and backward waves. 
The NADC is a possible implementation of this kind of cou-
pling. Some examples of the media where propagation of the 
backward waves is possible are discussed in [13, 17]. In recent 
years, surface plasmon waves and surface plasmon – polariton 
waves are actively studied, among which there are both for-
ward and backward waves [27, 28]. Surface waves at the inter-
face between a homogeneous medium and photonic crystal 
can act as backward waves in some frequency range [29]. The 
system of equations (2) describes in the coupled-mode 
approximation the linear interaction of the forward and 
backward waves in the cases mentioned. In this sense, system 
(2) is universal. Accounting for group-velocity dispersion, 
dissipation effects and nonlinear interaction (for example, 
due to parametric processes), of course, will require a further 
generalisation.
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