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Abstract.  We report the results of theoretical studies and numeri-
cal simulations of optical high-power pulse compression systems 
based on the spectral broadening in a Kerr nonlinear medium with 
subsequent pulse compression in a dispersive delay line. It is shown 
that the effective spectral broadening requires suppressing a small-
scale instability arising due to self-focusing, which is possible in 
quasi-periodic systems consisting of a nonlinear medium and opti-
cal relay telescopes transmitting images of the laser beam through 
the system. The numerical calculations have shown the possibility 
of broadening the spectrum, followed by 15-fold pulse compression 
until the instability is excited. 

Keywords: Kerr nonlinear medium, relay telescopes, self-phase 
modulation. 

1. Introduction 

Ultra-high-power femtosecond laser pulses of the petawatt 
range are usually generated using the phase-modulated 
(chirped) pulse amplification and compression technique [1], 
which is based on amplification of relatively long laser pulses 
(~0.1 – 1 ns) and their subsequent compression to pico- and 
femtosecond pulses in dispersive elements, e.g., diffraction 
gratings. Amplifiers in these laser systems are either classical 
quantum amplifiers [1 – 9] or optical parametric amplifiers 
based on KDP/DKDP crystals [7, 10]. In this case, the highest 
energy of output radiation (a few tens of kJ) is obtained in 
neodymium glass lasers. However, a sufficiently large pulse 
duration of such lasers (~0.3 – 1 ps) [9], determined by the 
finite bandwidth of the gain, also limits the peak output 
power. 

Application of additional techniques of output laser pulse 
compression would allow a significant (by an order or more) 
increase in power. One such method is based on self-phase 
modulation in a bulk nonlinear (in the simplest case, Kerr) 
medium with the subsequent compression of the pulses [11]. 

Spectral broadening of a Gaussian pulse in a passive Kerr 
nonlinear medium that determines the pulse compression can 
be estimated by using the expression [12] 
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where Dw0 and Dw are the initial and finite widths of the spec-
trum; B is the nonlinear phase incursion, or the so-called B 
integral defined in CGSE units by the expression: 
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where n0 and n2 are the linear and nonlinear parts of the 
refractive index n = n0 + n2|E|2/2; l is the wavelength; I is the 
radiation intensity; L is the length of the nonlinear medium; 
and E is electric field amplitude.

According to (1), a high degree of compression of the pulse 
after its phase modulation is achieved only for sufficiently large 
values of the B integral: B >> 1. However, the value of this inte-
gral in bulk integral media is usually limited to the value B < 
1 – 3 [2] due to the small-scale self-focusing (SSSF), which leads 
to the beam filamentation impairing the beam brightness and 
eventually causing the breakdown of optical components due 
to a strong increase in intensity in the self-focusing filaments. It 
is for this reason that a high degree of compression still cannot 
be achieved in one nonlinear element [13 – 15]. 

Noticeable phase modulation, and therefore significant 
broadening of the spectrum, is possible by taking measures to 
suppress the SSSF [11]. 

Below we consider pulse compression by a system of non-
linear elements (without amplification), in which the spec-
trum is broadened due to the self-action with a significant 
decrease in the SSSF influence caused by the use of relay tele-
scopes  –  a system consisting of a pair of lenses. 

According to the simplest theory of self-focusing suppres-
sion with relay telescopes [16], with decreasing pulse duration 
and increasing pulse power, the B-integral value can be pre-
served by reducing the nonlinear element length and the relay 
telescope length until the focal length becomes significantly 
shorter than the beam radius. The latter, obviously, cannot be 
realised. Therefore, in practice, one can use nonlinear quasi-
optical waveguides consisting of units, each of which has gaps 
filled with a linear medium, relay telescope and nonlinear ele-
ments (Fig. 1). Pulses generated due to phase modulation in 
the system can be compressed in the compressor, which con-
sists of diffraction gratings [17] or chirped mirrors [14, 18]. 
The total B integral in such a system, characterising the spec-
tral broadening, is BN

 = NB1, where B1 is the B integral for 
one element, and N is the number of elements. 

This paper presents the results of a study on suppression 
of the solution instability of a plane wave in the systems under 
consideration [19 – 22], with account for radiation diffraction 
in linear elements and relay telescope and for additional dis-
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tortions due to the Kerr nonlinearity in the nonlinear ele-
ments. We also discuss the features of propagation of wave 
beams and present the results of calculations of compression 
of pulses after their propagation in such systems. 

2. Description of propagation of light beams 
in a nonlinear quasi-optical waveguide 

Consider a quasi-optical waveguide (Fig. 1), in which propa-
gation of pulses is accompanied by broadening of their spec-
trum with the SSSF suppression. Each period of the wave-
guide consists of a relay telescope formed by lenses with a 
focal length Fr (placed at a distance Lt r = 2Fr) and a nonlinear 
element of thickness Ld r with a refractive index n = n0 + 
n2|E |2/2 (located at a distance Ll r from the relay telescope 
lenses). Reflection from the boundaries of the elements is 
neglected in the study, and the lens is assumed to be a linear 
phase corrector. 

Consider the propagation of a pulse, defined on a limited 
time interval –1 < t/t < 1 at the input of the system as 
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where E0 is the initial amplitude of the field; a is radius of the 
beam; 2t is the pulse duration; r r=  is the radius vector in the 
plane perpendicular to the direction of the pulse propagation; 
and m is the number characterising a ‘super-Gaussian’ beam. 
We restrict ourselves to the simplest case and do not take into 
account the time dispersion, which is valid for 0.5 – 1-ps 
pulses. Consequently, we may assume the propagation of 
each temporal pulse cross section 

/t i M2i t= 	 (4)

(M is the number of points in time, included in the calcula-
tion, and i G M is the number of the cross section) to be inde-
pendent of the propagation of other cross sections, which 
allows the calculation of the structure of the field in each cross 
section using the steady-state equations 
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in a nonlinear medium and 
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in a linear medium with the initial conditions at the input of 
the system (at z = 0) 
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In (5) and (6), k0 is the wave number in a linear medium and 
relay telescope; kd is the wave number in a weak field in a 
dielectric. Radiation given by expression (3) at the input of 
the system is assumed transform- and diffraction-limited. 
When considering the propagation of the pulse, its duration 
does not change, but in each section of the stationary beam 
described by systems (5) and (6), there occurs a change due to 
the nonlinearity and diffraction of the complex field ampli-
tude, and because of the nonlinearity of the frequency-angu-
lar spectrum of the pulse broadens. Using the appropriate 
phase correction of the pulse spectrum, one can reduce the 
pulse duration. 

In this system, localised wave beams may propagate under 
certain conditions [23 – 25]. However, we restrict ourselves to 
a particular case, which is of most interest from the point of 
view of the instability suppression when there exists a rela-
tively simple unperturbed solution in the form of a plane 
wave in a nonlinear dielectric system. For the system in Fig. 1 
the field at distances Ld r and Ll r is described by a plane wave, 
and in a relay telescope of length Lt r due to the lenses the field 
‘contracts’ to a point on a plane halfway between the lenses. 
After passing through the plane, the beam propagates in the 
form of a spherical wave, whose phase front is corrected by 
the next lens; as a result, the wave in a nonlinear dielectric 
again becomes plane. The field compression in the middle of 
the relay telescope is determined by its structure at the system 
input. 

In studying systems (5) and (6) we pass to the dimension-
less variables ,k z k z Cr rd r n d r n= = += =  (in a nonlinear 
medium) and z k z Clin d r lin= +  (in a linear medium), as well as to 
Ld = kdLd r, Ll = kdLl r, Lt = kdLt r, k^ = k^ r /kd, /n n E2 0y = , 
where Cn and Clin are the constants depending on the number 
of the element in the structure. After this, equations (5) and 
(6) take the form 
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Before carrying out numerical calculations of the beam prop-
agation in the system in question, we investigate the stability 
of the above solution. 

3. Spatial instability of a plane wave 
in a periodic system 

Let a plane wave ( /2)exp i dz0 0
2y y y= -8 By  with an ampli-

tude y0 and phase ( /2)i dz0
2yF =- y  propagate in a peri-

odic system (Fig. 1). Integration is carried out only over a 
nonlinear medium. We investigate the stability of this field 
structure to perturbations of the transverse structure. To do 
so, we first represent the field in a nonlinear medium in the 
form convenient for multiple transitions between nonlinear 
and linear elements. Let 

( )exp i de z
20 0
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Figure 1.  Fragment of a transmission line (quasi-optical waveguide) 
with a relay telescope. 
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where the field perturbation e is a small quantity [26]. For the 
field e we have the equations: 
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inside a nonlinear medium and 
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in a linear medium. Let us find the field structure of the per-
turbations. According to [26, 27], the perturbations in a non-
linear medium represent a superposition of waves of the form 

)ik r(exp " = = :

( ) ( ) ( ) ( )exp expi ie A z k r B z k r= - += = = = .

Convenient is the investigation of the functions A(z) and 
B*(z), for which we have a system of equations with constant 
coefficients: 
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The solution to equation (12) has the form 
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following from (12), we introduce new amplitudes
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and rewrite (9) as 
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According to (13), perturbations in a nonlinear medium rep-
resent a superposition of two waves of the form exp(±iHz). 
The amplitude of each wave is proportional to the sum 
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and depends on the transverse coordinate r^. In the instability 
region ( 2 0k k <4 2

0
2y-= = ), the field y can be written as 
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where H k k2 2
0
2 4y= -= =u ; j± are the phases of the ampli-

tudes A A=! !r r  ´ ( )exp ij! . It follows from (15) that the per-
turbations, which have the phase 2 /arctan H k 2- =u^ h  with 
respect to the phase of a high-power wave, increase exponen-
tially, while the perturbations, which have phase 

/arctan H k2 2
=u^ h with respect to the phase of a high-power 

wave, decrease exponentially. During propagation in a linear 
medium, the phase difference between the waves (15) and a 
high-power wave change, so that the wave, amplified in one 
nonlinear layer, can have an adverse phase for amplification 
in the next nonlinear layer, and its amplitude will decrease. 
The phase mechanism of self-focusing suppression is based on 
this phenomenon. In the stability region the perturbation 
waves (13) represent a superposition of waves of the form 

)ik r(exp " = =  with coupled amplitudes and phases. 
We define the wave transmission matrix of the form 
( )exp ik r= =  through the system where linear and nonlinear ele-

ment alternate. In a linear medium, the solution is 
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This yields the relation between the amplitudes A!c  and A!r : 
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We pass in the second equation to conjugates: 
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and, therefore, the matrix of transition from A!r  to A!c  has 
the form 
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The inverse matrix, the matrix of transition from A!c  to 
A!r , will be written in the form 
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The matrices , иL L Ld tL
t t t , describing the propagation of 

perturbations to a distance L in a linear medium, Ld in a non-
linear medium and Lt in the transponder, respectively, have a 
diagonal form: 
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The relay telescope matrix differs from the matrix of a linear 
medium by the sign in the exponent of the diagonal element. 

The change in the perturbations on the period of the sys-
tem (Fig. 1) is described by the product of the matrices 

L L L L L L Lnl d ln tL L1 2# # # # #=S
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Let us find the eigenvalues of the matrix L 
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Periodic systems are stable if the roots of the determinant 
|L1, 2| = 1, and unstable if |L1, 2| ¹ 1; in this case |L1 L2| = 1. 

It was shown in [19, 27] that if L1 = L2 = 0, the system is 
stable if the conditions 

| | , /2orL Bd 1G Gp py 2 ,	 (17)

L Ld t= 	 (18) 

are fulfilled. The last equation in dimensionless variables has 
the form ( / )k L k k Ld dr d tr

2
0= , or /L Ltr d dr0e e= , where e0 

and ed are the dielectric constants of a linear medium and a 
dielectric, respectively. 

In the system in Fig. 1 inequality (17) for the stability 
should be also met, and equality (18) is replaced by the expres-
sion 

Ld + 2Ll = Lt ,	 (19)
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Note that the expression (19) corresponds to a condition 
of continuous transmission of the beam image by the relay 
telescopes throughout the system.

Figure 2 shows the region of stability of the system in the 
parameter plane B1,  Ll r for the following values of other 
parameters: Lt r = 10 cm, n = 1.46 (silica glass), and Ld r = 
5  cm. One of the boundaries of the region (the top) is given by 
(17), the other lies below. The width of the region of stability 
for B1 » 1.5 is a small part of the thickness of the dielectric. 

One can see from Fig. 2 that the suppression of instability 
arising due to self-focusing (self-focusing instability) in the 

system under study is possible while strictly observing the dis-
tances between the linear and nonlinear elements, the require-
ments for accuracy increasing with decreasing thickness of the 
nonlinear element. 

4. Numerical modelling of wave beam 
propagation and pulse compression 

The most detailed numerical calculations were performed for 
the following parameters: Lt r = 10 cm, n = 1.46, Ld r = 5 cm, а 
= 1 cm, l = 1000 nm. The beam size is limited by the comput-
ing power of the self-focusing instability calculation. In the 
parameters B1 and Ldr, the spatial scale of the perturbations 
with the maximum growth rate is /L a k Bdr d 1pL == ^ h, 
and on this scale it is needed to have several points of subdivi-
sion of the beam in its calculation, which limits the transverse 
beam size in the calculation on a grid of about ~103 ́  103 
points. 

For the pulse maximum we used B1 = 1.4, which is rather 
close to the instability boundary B1 = p/2. This value of the B 
integral for 5-cm-thick nonlinear elements is reached at a light 
intensity I » 15 GW cm–2 in silica glass (n2 = 0.72 ́  10–13 
CGSE units [28]). For 1-ps pulses typical of neodymium glass 
laser with pulse compression, this corresponds to the energy 
density of 0.015 J cm–2, which is two orders of magnitude less 
than the radiation strength of reflection and anti-reflection 
coatings [29]. The distance Ll r was chosen in the middle of the 
stability region: Ll r = 3.2 cm. The calculations were performed 
for different values of the ‘super-Gaussian’ m. The field after 
passing through the relay telescope was recalculated by the 
formula 

)exp=( ) ( iE r
L

E r k
F
r

2
1

2out r
tr

in
r

r

S

0

2

p==
=l ;y

	 + r= )rr-=(i i dk
F
r k

L
r

r
2 2r tr

r
0

2

0

2

-
=

=
l l

lE

	 =  )exp =
=(

( )
i d

L
E r k

L
r r

r
2
1

2tr
in

tr
S

0

2

p
+

=
=l

l
l; Ey ,	 (20)

L l r/cm

B1
2.0

2.4

2.8

3.2

0.8 1.0 1.2 1.4

Figure 2.  Stability region (shaded) in the coordinates Ll r, B1 for the thick-
ness of the nonlinear element, Ld r = 5 cm, at the relay telescope length Lt r 
= 5 cm and the refractive index of the nonlinear element n = 1.46. 
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where Ein(r^) is the field at the relay telescope input and 
Eout(r^ r) is the field at the relay telescope output; the integra-
tion is performed over the entire cross section. Note that the 
use of (20) is possible in the absence of the diaphragms inside 
the relay telescope. 

The field structure, which represents the dependence of 
the field amplitude on the radius r^ r in the cross section of the 
beam passing through the centre (r^ = 0), at the output of the 
22nd stage of this quasi-periodic system of nonlinear elements 
and relay telescopes is shown in Fig. 3. One can see that there 
is optimal m » 5. At large m, the self-focusing instability 
develops earlier; at lower m, the field amplitude of the beam 
in the maximum decreases due to the diffractional spreading 
of the beam. 

Figure 4 shows the degree of distortion of the beam struc-
ture due to the development of the self-focusing instability at 
the optimal m = 5. It has an ‘explosive’ character and devel-
ops on two or three stages after the twentieth stage. This 
behaviour is different from that presented in [30], where the 
instability develops on fewer stages, which, in our opinion, is 
due to the larger value of the B integral, and the presence of 
the seed phase – amplitude perturbations at the input to the 
system. 

After calculating all the beam cross sections we performed 
processing as follows. At the central point (r^ = 0) is the pulse 
spectrum 

(0, )
2

( ) (0, )exp i dF t E t t1
out

p
W W= -y .	 (21)

For pulse compression with the help of dispersion elements, 
very important is the phase of the spectrum. Its evolution at 
different stages of the system is shown in Fig. 5. Up to the 
20th – 25th stages, when the self-focusing instability has not 
yet developed, the dependence of the phase on the frequency 

W can be approximated by a polynomial of the fifth degree. 
The resulting spectrum was analysed according to the scheme, 
which simulates compression of the pulse in a grating com-
pressor [31]. The approximating value of the phase was sub-
tracted from the initial phase and the spectrum is convoluted 
with some residual phase in time. For comparison, we also 
zeroed completely the phase. 

The examples of the pulses calculated in this way are 
shown in Fig. 6. Note that we observed side subpulses with a 
rather large (~20 dB) amplitude, which is caused by the non-
linear dependence of the frequency on the time. This, obvi-
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Figure 3.  Cross sections of the electric field of the laser beam after the 
22th stage. 
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ously, decreases the time contrast of the pulse. Figure 7 shows 
the dependence of the intensity at the maximum of the pulse 
on the number of stages in the quasi-periodic system of non-
linear elements and relay telescopes. One can see that the 
intensity increases up to 22th stage; in this case, the residual 
phase obtained after phase correction by the polynomial of 
the fifth degree slightly reduces the intensity. Comparison of 
the obtained intensity with that calculated using formula (1) 
shows that the latter gives a value overestimated by about 1.6 
times for the parameters used in the present study. Comparison 
of the results for the field structure as a function of the trans-
verse coordinates (Fig. 3) and for the degree of the intensity 
growth in the compressed pulse shows that relatively small 
structural distortions of the field structure (on the 22th stage, 
see Fig. 3) can stop the intensity growth. 

As seen from the presented results, when a pulse, suffi-
ciently smooth in transverse coordinates, is supplied into the 
system under consideration, the self-focusing instability is 
severely weakened and is manifested for the total B integral 
BN » 30. When the real noise inherent in laser beams of high-
power systems is taken into account [30, 32], the maximum 
value of the B integral will obviously decrease. 

One of the drawbacks of the spectral broadening scheme 
is the limitation of the B-integral value in one of the elements 
of the system (B1 < 1.5), which requires a large number of 
stages to increase BN. Introduction of the diaphragms into the 
relay telescopes, i.e., use of spatial filters, can potentially 
increase the value of B1 [32]. However, our calculations and 
the results of [30] show that when use is made of standard 
diaphragms, whose angular size exceeds by 10 – 20 times the 
diffraction divergence of the beam, spatial filters have no 
advantage over the relay telescopes. Perhaps, this is caused by 
the spatial intensity perturbations which are introduced into a 
beam by the diaphragms and increase due to SSSF. 

5. Evaluation of the parameters of the system 
of spectral broadening and compression 
of ultra-high-power laser pulses 

The quasi-periodic system of nonlinear elements considered 
in this paper can be used for spectral broadening and pulse 
compression of ultra-high-power neodymium-glass laser sys-
tems. Currently, the peak power of some lasers exceeds 1 PW 
for the pulse duration of ~1 ps. 

As nonlinear elements of the spectral broadening system, 
the most suitable is quartz glass, which has the highest radia-
tion resistance and the smallest nonlinear refractive index 
[28]. Nonlinear elements made of quartz glass should have 
AR coatings in order to minimise losses in the system. The 
damage threshold for AR coatings for the pulse duration of 
~1 ps is ~2 J cm–2 [29], which makes it safe at an energy den-
sity of 0.2 J cm–2, or intensity of 200 GW cm–2. Note that the 
possibility of amplification of pulses with an intensity of 
100 GW cm–2 was experimentally demonstrated in [33]. The 
safety value of the B integral B1 = 1.4 is reached for a 0.5-cm-
thick plate. Plates with a large aperture and good optical 
quality can be made of quartz glass. However, as follows 
from the results of the analysis, more stringent requirements 
are imposed on the accuracy of installation of nonlinear ele-
ments to ensure the system stability. 

For a petawatt laser pulse the beam diameter will be about 
50 cm, which is approximately equal to the beam diameter at 
the compressor output in ‘large’ laser systems. As relay tele-
scopes spatial filters from laser systems can be used. 
Nevertheless, we still must find the answer to the question of 
how the lens nonlinearity of spatial filters affects the SSSF in 
the configuration under study. In principle, mirrors can serve 
as focusing elements of the relay telescopes. 

To achieve high degrees of compression requires multiele-
ment systems, which are large enough. In principle, multiele-
ment systems can be replaced by multipass systems. As a 
decoupling element use can be made of a plasma-electrode 
Pockels cell [34], developed for laser fusion. 

To compress the pulses with a broadened spectrum, the 
most suitable are the chirped mirrors, because the compres-
sion of short laser pulses does not need dispersive elements 
with large dispersion. These mirrors also have a significantly 
higher radiation resistance than the diffraction grating, and 
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Figure 6.  Structure of the pulse after compression at the 22nd (optimal) 
cascade: minus the total phase of the spectrum ( 1 ) and the phase, ap-
proximated by a polynomial of the fifth degree ( 2 ). Curve ( 3 ) is the 
initial pulse. 
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Figure 7.  Dependences of the normalised intensity on the number of 
stages: minus the total phase of the spectrum ( 1 ) and the phase, ap-
proximated by a polynomial of the fifth degree ( 2 ).
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do not require an increase in the beam diameter before com-
pression. 

6. Conclusions 

The theoretical analysis and numerical calculations have 
shown the possibility of significant broadening of the spec-
trum in the case of self-phase modulation of high-power laser 
pulses and SSSF suppression in a quasi-periodic system con-
sisting of nonlinear elements and relay telescopes. In this case, 
the B integral in one nonlinear element is limited by the quan-
tity B1 < p/2, and the total B integral  –  by the quantity BN < 
30 for the radiation parameters considered in this paper. 

It is shown that phase-modulated pulses can be com-
pressed by diffraction gratings or chirped mirrors, accompa-
nied by an increase in the intensity by more than 15 times, if 
there are beams with sufficiently smooth transverse intensity 
distribution. 

This scheme of spectral broadening and pulse compres-
sion can increase the power up to several petawatt and can be 
used in ultra-high-power laser systems. 
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