# АКТИВНЫЕ СРЕДЫ

# Радиолюминесценция твердотельных лазерных материалов, активированных неодимом, при возбуждении α-частицами и осколками деления

Е.А.Серёгина, А.А.Серёгин

Представлены результаты исследования характеристик радиолюминесценции кристалла  $Y_3Al_5O_{12}$ :  $Nd^{3+}$  и лазерных стекол при возбуждении  $\alpha$ -частицами плутония-239 (<sup>239</sup>Pu) и  $\alpha$ -частицами и осколками спонтанного деления ядра калифорния-252 (<sup>252</sup>Cf). Для кристалла  $Y_3Al_5O_{12}$ :  $Nd^{3+}$  измерены коэффициенты ветвления  $\beta_{ij}$  радиолюминесценции для переходов с уровня  ${}^2F2_{5/2}$  на уровни  ${}^{2S+1}L_J$ . Обнаружена радиолюминесценция с уровня  ${}^2F2_{5/2}$ ,  ${}^4D_{3/2}$  и  ${}^2P_{3/2}$ . Измерены ветемена жизни метастабильных уровней  $Nd^{3+}$  при возбуждении осколками деления  ${}^{252}Cf$ . Получены данные об эффективности преобразования энергии  $\alpha$ -частиц и осколков деления в энергию оптического излучения для кристалла  $Y_3Al_5O_{12}$ :  $Nd^{3+}$  и лазерных стекол.

**Ключевые слова:** неодимовые лазерные материалы, радиолюминесценция, коэффициенты ветвления, времена жизни метастабильных состояний.

## 1. Введение

В современной квантовой электронике наибольшее применение получили лазерные материалы, активированные ионами неодима. Однако в этих материалах используется только небольшая часть возбужденных состояний иона неодима, поскольку лазерное излучение на них получают только в ИК области. В связи с этим было бы очень выгодно использовать эти материалы и для создания лазеров, генерирующих в УФ или в видимой области спектра, т.к. технологии изготовления лазерных материалов, активированных неодимом, хорошо отработаны. Работа в этом направлении была начата с изучения свойств высоколежащих возбужденных состояний иона неодима при облучении электронами, УФ, рентгеновским и другими видами излучения [1-8]. Так, при возбуждении кристалла Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>: Nd<sup>3+</sup> электронами наблюдалось стимулированное излучение с длиной волны 400.1 нм [2]. Исследования кинетики дезактивации уровня <sup>4</sup>G<sub>7/2</sub> иона Nd<sup>3+</sup> позволили сделать вывод о возможности получения генерации в видимой области спектра при наносекундной оптической накачке [5]. Были проведены эксперименты по ап-конверсионному возбуждению генерации в видимой области спектра на переходах с высоколежащих мультиплетов <sup>4</sup>D<sub>3/2</sub> (~28200 см<sup>-1</sup>) и <sup>2</sup>P<sub>3/2</sub> (~26100 см<sup>-1</sup>) в двух анизотропных кристаллах – LaF<sub>3</sub> и LiYF<sub>4</sub> [6, 7]. В работе [8] изучались люминесцентные свойства кристалла Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>: Nd<sup>3+</sup> при возбуждении α-частицами и осколками деления. Кроме экспериментальных, были выполнены и теоретические работы [9, 10], в которых раскрывались потенциальные возможности кристаллов, активирован-

Поступила в редакцию 16 ноября 2011 г., после доработки – 11 декабря 2012 г.

ных ионами Nd<sup>3+</sup>, и делался вывод о перспективности некоторых межмультиплетных переходов с уровней высоколежащих метастабильных состояний ионов Nd<sup>3+</sup> для возбуждения УФ и видимой генерации во фторидных и оксидных кристаллах.

В настоящей работе экспериментально и теоретически исследуется влияние высокоэнергетического возбуждения тяжелыми заряженными частицами на спектральные свойства неодима в твердотельных лазерных материалах. На основе новых экспериментальных данных проведен полный анализ спектров радиолюминесценции кристалла  $Y_3Al_5O_{12}$ : Nd<sup>3+</sup> и получена новая информация о радиолюминесцентных свойствах Nd<sup>3+</sup> в лазерных фосфатных стеклах.

#### 2. Методики эксперимента

Образцы кристалла или стекол в виде прямоугольных пластин толщиной 2 мм облучали  $\alpha$ -частицами <sup>239</sup>Pu и  $\alpha$ -частицами и осколками спонтанного деления ядра <sup>252</sup>Cf. Радиоактивные слои располагались поочередно в непосредственной близости от поверхности исследуемого образца. Измерения распределений интенсивности радиолюминесценции образцов по длинам волн  $P(\lambda)$  и по времени испускания фотонов Q(t) были выполнены в двух независимых экспериментах статистическим методом счета одиночных фотонов. Активность использованных слоев была равна ( $1.5 \pm 0.1$ ) ×  $10^5 \alpha$ -распадов в секунду для <sup>239</sup>Pu, ( $4.7 \pm 0.9$ ) ×  $10^4$  делений в секунду для <sup>252</sup>Cf на металлической подложке и ( $1.2 \pm 0.1$ ) ×  $10^3$  делений в секунду для <sup>252</sup>Cf на пленке из окиси алюминия.

Распределения  $P(\lambda)$  измерялись с помощью монохроматора МДР-23, работающего в режиме сканирования. Сборка (радиоактивный слой + образец) помещалась непосредственно перед входной щелью монохроматора, а за выходной щелью монохроматора располагался одноэлектронный фотоумножитель ФЭУ-100 (при работе в УФ и видимом диапазонах) или ФЭУ-62 (при работе в ИК об-

Е.А.Серёгина, А.А.Серёгин. ГНЦ РФ – Физико-энергетический институт имени А.И.Лейпунского, Россия, Калужская обл., 249033 Обнинск, пл. Бондаренко, 1; e-mail: seregina@ippe.ru

ласти спектра). Фотокатоды фотоумножителей охлаждались парами жидкого азота, что позволяло резко снижать уровень темнового тока и существенно повышать отношение сигнал/шум. Сигналы с фотоумножителя поступали на усилитель-формирователь и далее на пересчетное устройство, выполненное в стандарте КАМАК и работающее в режиме on-line с персональным компьютером (ПК). Для определения величины абсолютного выхода фотонов радиолюминесценции образцов на один акт возбуждения среды заряженной частицей была измерена спектральная эффективность регистрации данной экспериментальной установки с использованием калиброванной температурной лампы ТРШ-2050 по методике [11].

Обработка распределений  $P(\lambda)$  включала в себя следующие этапы: вычитание фона, который составлял менее 1 имп./с; введение поправки на спектральную чувствительность регистрирующей аппаратуры; определение энергетического выхода радиолюминесценции путем интегрирования данных в фиксированной области длин волн с учетом абсолютной эффективности регистрации; определение конверсионной эффективности образца  $\eta$  как отношения энергетического выхода радиолюминесценции к энергетического выхода радиолюминесценции к энерговкладу заряженных частиц.

Время жизни уровня  ${}^{4}F_{3/2}$  иона неодима при оптическом возбуждении измеряли на т-метре, в состав которого входили импульсный азотный лазер ( $\lambda_{las} = 337$  нм,  $\tau_{puls}$ = 20 нс, f = 10-100 Гц), фотоэлектронный умножитель ФЭУ-62 с набором светофильтров и запоминающий осциллограф TDS1012 (Tektronix).

Для измерений временных распределений Q(t) фотонов радиолюминесценции использовали метод «задержанных совпадений». Этот метод успешно применяется в экспериментальной ядерной физике с начала 1950-х годов, и он аналогичен широко известному методу времени пролета [12]. Суть метода состоит в накоплении информации о распределении фотонов по времени их испускания при исследовании достаточно большого числа статистически независимых актов возбуждения среды. Следует отметить, что метод задержанных совпадений применим при условии регистрации в опыте отдельных фотонов, причем в среднем существенно меньше одного на акт возбуждения среды.

Схема эксперимента для измерения распределений Q(t) этим методом показана на рис.1. Тонкая пленка *1* из окиси алюминия со слоем спонтанно делящегося изотопа <sup>252</sup>Cf располагалась между исследуемым образцом *2* и поверхностно-барьерным детектором осколков деления *3*. Вся сборка помещалась перед входным окном фотоэлектронного умножителя *4* ФЭУ-62 с охлаждаемым фотокатодом. Для выделения фотонов в исследуемом диапазоне



Рис.1. Схема эксперимента по измерению временных распределений фотонов радиолюминесценции  $Q(\lambda)$ :

1 – слой <sup>252</sup>Cf на плёнке из Al<sub>2</sub>O<sub>3</sub>; 2 – образец; 3 – поверхностнобарьерный кремниевый детектор осколков деления; 4 – ФЭУ-62; 5 – светофильтр; 6 – усилитель-формирователь сигналов ФЭУ-62; 7 – усилитель-формирователь сигналов детектора осколков деления; 8 – устройство логической задержки; 9 – анализатор временных интервалов; 10 – персональный компьютер.



Рис.2. Аппаратурное распределение скорости счета фотонов методом задержанных совпадений с использованием светофильтра OC11 (область пропускания 530–1500 нм); 106-й канал соответствует нулевой временной отметке, пунктиром показан уровень случайных совпадений.

длин волн перед входным окном ФЭУ помещались сменные светофильтры 5. В момент деления ядра <sup>252</sup>Сf осколки деления вылетали из радиоактивного слоя в противоположных направлениях. Один из них регистрировался полупроводниковым детектором (детектор «стоп»), который давал задержанную на 106 мкс отметку начала отсчета времени. Другой осколок тормозился в образце и возбуждал матрицу, в том числе и ионы Nd<sup>3+</sup>. Фотоны радиолюминесценции регистрировались ФЭУ-62 (детектор «старт»). Сигналы с детекторов «старт» и «стоп» через соответствующие формирователи 6, 7 и устройство логической задержки 8 поступали на анализатор временных интервалов 9, в памяти которого накапливалась информация о распределении Q(t). Анализатор работал в режиме непрерывной связи с персональным компьютером 10. Временные распределения интенсивности радиолюминесценции Q(t) кристалла Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>: Nd<sup>3+</sup> и фосфатных стекол при их возбуждении осколками деления <sup>252</sup>Сf были измерены со светофильтрами ОС11 (область пропускания 530-1500 нм), СЗС23 (область пропускания 340-650 нм), и ИКС1 (область пропускания 850 – 1500 нм). На рис.2 в качестве иллюстрации показано типичное аппаратурное распределение Q(t) для кристалла, измеренное со светофильтром OC11. «Нулевая» отметка времени находится в 106-м канале. Цена (длительность) канала равна 1 мкс.

Обработка данных измерения временных распределений интенсивности люминесценции Q(t) состояла в инверсии шкалы времени, вычитании фона случайных совпадений и в определении постоянной времени затухания интенсивности люминесценции  $\tau_{lum}$ .

### 3. Результаты и их обсуждение

Спектр радиолюминесценции  $P(\lambda)$  кристалла  $Y_3Al_5O_{12}$ : Nd <sup>3+</sup> при возбуждении  $\alpha$ -частицами <sup>239</sup>Pu представлен на рис.3 для УФ, видимого и ближнего ИК диапазонов длин волн. Здесь введена поправка на спектральную чувствительность регистрирующей аппаратуры. Спектры радиолюминесценции ионов неодима при возбуждении кристалла  $\alpha$ -частицами и осколками спонтанного деления <sup>252</sup>Cf идентичны.

Положения наиболее интенсивных линий радиолюминесцентных переходов иона неодима вполне удовлетворительно согласуются с данными работ [2–4] по высоко-



Рис.3. Спектр радиолюминесценции кристалла  $Y_3Al_5O_{12}$ : Nd<sup>3+</sup> при возбуждении  $\alpha$ -частицами <sup>239</sup>Pu. Спектральная ширина  $\delta\lambda$  выходной щели монохроматора составляла 1.04 нм в области длин волн 250–700 нм (*a*) и 2.08 нм в области 860–1100 нм (*б*).

энергетическому возбуждению  $Y_3Al_5O_{12}$ : Nd<sup>3+</sup>. Идентификация люминесцентных переходов Nd<sup>3+</sup> в УФ и видимом диапазонах была выполнена с использованием экспериментальных данных из работы [3]. В ИК диапазоне длин волн спектр радиолюминесценции кристалла с высокой точностью совпадает со спектром фотолюминесценции [13].

Анализ полученных спектров проводился в рамках подхода Джадда-Офелта [14, 15], согласно которому вероятности спонтанных переходов  $A_{JJ'}$ , являющиеся суммой вероятностей электро- и магнитодипольных межмультиплетных переходов  $J \rightarrow J'(A_{JJ'}^e u A_{JJ'}^m)$ , рассчитываются по формулам

$$A_{\rm JJ'} = A^{\rm e}_{\rm JJ'} + A^{\rm m}_{\rm JJ'},\tag{1}$$

$$A_{JJ'}^{e} = \frac{64\pi^{4}e^{2}}{3h(2J+1)\lambda^{3}} \frac{n(n^{2}+2)^{2}}{9} \times \\ \times \sum_{t=2,4,6} \Omega_{t} |\langle 4f^{3}\alpha[SL]J||U_{t}||4f^{3}\alpha'[S'L']J'\rangle|^{2},$$
(2)

$$A_{JJ'}^{m} = \frac{64\pi^{4}e^{2}}{3h(2J+1)\lambda^{3}}n^{3} |\langle 4f^{3}\alpha[SL]J \| L + 2S \|4f^{3}\alpha'[S'L']J'\rangle|^{2},$$
(3)

где  $\Omega_t$  – параметры Джадда – Офелта;  $U_t$  – единичный тензорный оператор ранга t; L + 2S – оператор полного орбитального и спинового моментов  $4f^3$  оболочки иона Nd<sup>3+</sup>;  $\alpha$  и  $\alpha'$  – дополнительные квантовые числа, классифицирующие повторяющиеся мультиплеты с одинаковыми полным спином S, полным орбитальным моментом Lи полным угловым моментом J; n –показатель преломления кристалла на средней длине волны  $\lambda$  перехода  $J \rightarrow J'$ . Зная вероятности переходов  $A_{JJ'}$ , можно рассчитать коэффициенты ветвления люминесценции

$$\beta_{JJ'} = A_{JJ'} / \sum_{J'} A_{JJ'} \tag{4}$$

и излучательные времена жизни начальных состояний

$$\tau_{\rm rad} = 1 / \sum_{J'} A_{JJ'}.$$
 (5)

Из приведенных выше соотношений видно, что  $A_{JJ'}$  зависят от трех параметров  $\Omega_t$  и матричных элементов единичных тензорных операторов ранга  $t\langle ||U_t||\rangle$ . Матричные элементы зависят от начальных и конечных состояний переходов иона неодима, и они одни и те же для всех материалов, активированных ионами неодима. Что касается параметров  $\Omega_t$ , то для разных материалов они различны. Фактически каждый материал характеризуется своим набором этих параметров, которые определяются из сравнения рассчитанных и экспериментально измеренных интенсивностей оптических переходов активатора в данной матрице.

В табл.1 приведены экспериментальные данные по коэффициентам ветвления радиолюминесценции  $\beta_{ij}^{exp}$  с верхнего лазерного уровня  ${}^{4}F_{3/2}$  иона Nd  ${}^{3+}$  на штарковские компоненты нижнего лазерного уровня  ${}^{4}I_{11/2}$  при возбуждении кристалла  $\alpha$ -частицами и осколками деления. Коэффициенты  $\beta_{ij}^{exp}$  определяли как отношение площади под контуром спектральной линии с  $\lambda_{ij}$  к полному выходу люминесценции с излучательного уровня *i*. В табл.1 для сравнения представлены коэффициенты  $\beta_{ij}$  люминесценции неодима при оптическом возбуждении Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>: Nd  ${}^{3+}$ из работы [13]. Из табл.1 видно, что коэффициенты ветвления, полученные в настоящей работе, вполне удовлетворительно согласуются с экспериментальными данными при оптическом возбуждении кристалла.

Табл.1. Коэффициенты ветвления люминесценции  $\beta_{ij}$  переходов с уровня  ${}^{4}F_{3/2}$  на подуровни уровня  ${}^{4}I_{11/2}$  ионов неодима в кристалле  $Y_{3}Al_{5}O_{12}$ : Nd <sup>3+</sup>.

| λ (HM) | $eta_{ij}^{	ext{exp}}$ | $\beta_{ij}$ [13] |
|--------|------------------------|-------------------|
| 1052   | 0.041                  | 0.046             |
| 1061   | 0.083                  | 0.091             |
| 1063   | 0.160                  | 0.125             |
| 1064   | _                      | 0.041             |
| 1068   | 0.038                  | 0.040             |
| 1073.5 | 0.066                  | 0.062             |
| 1078   | 0.054                  | 0.043             |

Результаты работ [9,10], в которых был проведен теоретический анализ новых возможностей лазерных кристаллов с ионами неодима для генерации в УФ и видимом диапазонах длин волн, делают особенно актуальным получение экспериментальных данных о спектрах радиолюминесценции с высоколежащих уровней <sup>2</sup>F2<sub>5/2</sub>, <sup>4</sup>D<sub>3/2</sub> и <sup>2</sup>P<sub>3/2</sub>. В табл.2 приведены экспериментальные и расчетные значения  $\beta_{ij}$  для наиболее интенсивных переходов с высоколежащего излучательного уровня <sup>2</sup>F2<sub>5/2</sub>. Экспериментальные значения  $\beta_{ij}$  получены из анализа спектров радиолюминесценции, представленных на рис.3. Теоретические расчеты коэффициентов ветвления люми-

Табл.2. Коэффициенты ветвления люминесценции  $\beta_{ij}$  для переходов  ${}^{2}F2_{5/2} \rightarrow {}^{2S+1}L_{J}$  ионов неодима в кристалле  $Y_{3}Al_{5}O_{12}$ : Nd  ${}^{3+}$ .

| <sup>2S+1</sup> L <sub>J</sub> | $\lambda_{\mathrm{exp}}$ (нм) | $\beta_{ij}^{\exp}$ (%) | $\beta_{ij}^{	ext{theor}}$ (%) |
|--------------------------------|-------------------------------|-------------------------|--------------------------------|
| <sup>4</sup> I <sub>9/2</sub>  | 265.5                         | 1.9                     | 0.5                            |
| ${}^{4}I_{11/2}$               | 280.0                         | 0.9                     | 0.1                            |
| ${}^{4}I_{13/2}$               | 295.9                         | 1.0                     | 0.6                            |
| ${}^{4}I_{15/2}$               | 311.8                         | 0.8                     | 0.3                            |
| $^{2}H_{9/2}$                  | 395.6-400.9                   | 14.7                    | 17.3                           |
| ${}^{4}F_{7/2}$                | 409.3                         | 1.2                     | 0.6                            |
| ${}^{4}F_{9/2}$                | 429.3-435.2                   | 3.7                     | 4.7                            |
| ${}^{2}\mathrm{H}_{11/2}$      | 455.7-461.0                   | 5.0                     | 10.7                           |
| ${}^{2}G_{5/2}$ +              | 477.5                         | 5.2                     | 6.1                            |
| ${}^{2}G1_{7/2}$               | 480.1-494.7                   |                         |                                |
| ${}^{2}K_{13/2}$ +             | 516.4                         | 42                      | 39.6                           |
| ${}^{4}G_{7/2}^{+}$            | 524.4                         |                         |                                |
|                                | 527.7-537.6                   |                         |                                |
| ${}^{4}G_{9/2}$                | 540.9                         |                         |                                |
|                                | 550-564                       |                         |                                |
| ${}^{2}K_{15/2}$ +             | 577.2                         | 16.4                    | 13.0                           |
| $^{2}G1_{9/2}$                 | 587.8                         |                         |                                |
| ${}^{2}D_{1/2}^{+}$            | 595.1                         |                         |                                |
|                                | 601.0                         |                         |                                |
| ${}^{4}G_{11/2}$               | 618.9                         |                         |                                |
| - 11/2                         | 620.8                         |                         |                                |
|                                | 624.8                         |                         |                                |

несценции  $\beta_{ij}$  для мультиплетов <sup>2</sup>F2<sub>5/2</sub>, <sup>4</sup>D<sub>3/2</sub> и <sup>2</sup>P<sub>3/2</sub> (табл.3) выполнены с привлечением набора приведенных матричных элементов из [9, 16], а параметры  $\Omega_t$  выбраны согласно данным работы [9]. Отметим еще, что переходы с уровня <sup>2</sup>F2<sub>5/2</sub> на более высоколежащие состояния, чем <sup>4</sup>G<sub>11/2</sub>, были рассчитаны, но в табл.2 не приведены, поскольку для них  $\beta_{ij} < 1\%$ , а полный выход люминесценции в области длин волн с $\lambda > 650$  нм был меньше 6%. Из табл.2 следует вполне удовлетворительное согласие между расчетными величинами  $\beta_{ij}$  и соответствующими экспериментальными коэффициентами ветвления радиолюминесценции для переходов с высоколежащего уровня <sup>2</sup>F2<sub>5/2</sub>.

В табл.3 приведены результаты расчетов  $\beta_{ii}$  для переходов с уровней  ${}^{4}D_{3/2}$  и  ${}^{2}P_{3/2}$ . Здесь представлены переходы с максимально большими коэффициентами ветвления люминесценции, которые можно было бы измерить экспериментально. Для повышения статистической точности был дополнительно измерен спектр радиолюминесценции кристалла Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>: Nd<sup>3+</sup> в УФ области. Полученные спектры представлены на рис.4. В диапазоне длин волн 370-385 нм обнаружены пики люминесценции, которые могли быть обусловлены как переходами 2F2<sub>5/2</sub> →  ${}^{4}\mathrm{F}_{3/2}$ , так и переходами  ${}^{4}\mathrm{D}_{3/2} \rightarrow {}^{4}\mathrm{I}_{11/2} \,(\sim 375$  нм) или  ${}^{2}\mathrm{P}_{3/2} \rightarrow$  $^{4}I_{9/2}$  (~380 нм). Ранее в работах [3,4] отмечалось, что вероятность перехода  ${}^{2}F2_{5/2} \rightarrow {}^{4}F_{3/2}$  очень мала и в экспериментах он не наблюдается. Если предположить, что линия в области 375 нм связана с переходом  ${}^{4}D_{3/2} \rightarrow {}^{4}I_{11/2}$ , то в таком случае должен был бы наблюдаться переход  ${}^{4}D_{3/2} \rightarrow {}^{4}I_{9/2}$  (~360 нм) с примерно таким же теоретическим коэффициентом ветвления (см. табл.3). Однако, как

Табл.3. Коэффициенты ветвления люминесценции  $\beta_{ij}$  с уровней мультиплетов  ${}^{4}D_{3/2}$  и  ${}^{2}P_{3/2}$  ионов неодима в кристалле  $Y_{3}Al_{5}O_{12}$ : Nd  ${}^{3+}$ .

| $^{4}D_{3/2} \rightarrow ^{2S+1}L_{J}$ | $\lambda_{\text{theor}}$ (HM) | $egin{aligned} η_{ m ij}\ (\%) \end{aligned}$ | $4P_{3/2} \rightarrow {}^{2S+1}L_J$ | λ <sub>theor</sub><br>(HM) | $eta_{ m ij}^{ m theor}$ (%) |
|----------------------------------------|-------------------------------|-----------------------------------------------|-------------------------------------|----------------------------|------------------------------|
| <sup>4</sup> I <sub>9/2</sub>          | 365                           | 37                                            | <sup>4</sup> I <sub>9/2</sub>       | 383                        | 3                            |
| <sup>4</sup> I <sub>11/2</sub>         | 380                           | 40                                            | <sup>4</sup> I <sub>11/2</sub>      | 412                        | 15                           |
| <sup>4</sup> I <sub>13/2</sub>         | 411                           | 0.6                                           | <sup>4</sup> I <sub>13/2</sub>      | 449                        | 14                           |
|                                        |                               |                                               | ${}^{2}H_{9/2}$                     | 733                        | 28                           |



Рис.4. Спектр радиолюминесценции кристалла  $Y_3Al_5O_{12}:Nd^{3+}$  в УФ области при возбуждении  $\alpha$ -частицами <sup>239</sup>Pu: переход <sup>2</sup>F2<sub>5/2</sub>  $\rightarrow$  <sup>4</sup>I<sub>1</sub> с J = 9/2 (1), 11/2 (2), 13/2 (3) и 15/2 (4) и переход <sup>2</sup>P<sub>3/2</sub>  $\rightarrow$  <sup>4</sup>I<sub>9/2</sub> (5, 6).

видно из рис.4, в области 360 нм небольшое превышение над фоном едва ли можно однозначно интерпретировать как переход  ${}^{4}D_{3/2} \rightarrow {}^{4}I_{9/2}$ . В этом случае наиболее вероятно, что дублет в области 375 и 380 нм обусловлен переходом с мультиплета  ${}^{2}P_{3/2}$  на основной уровень  ${}^{4}I_{9/2}$  и подуровень  ${}^{4}I_{9/2}$ , отстоящий от основного уровня примерно на 300 см<sup>-1</sup>.

Из теоретических расчётов следует, что интенсивности переходов с  $^2\mathrm{P}_{3/2}$  на  $^4\mathrm{I}_{11/2}$  и  $^4\mathrm{I}_{13/2}$  должны быть заметно выше интенсивности перехода  $^2\mathrm{P}_{3/2}\to {}^4\mathrm{I}_{9/2}$  (см. табл.3). В области длин волн 410 нм интенсивность люминесценции с уровня  ${}^{2}F2_{5/2}$  оказалась слишком высокой, и на её фоне не удалось выделить линию 411 нм, относящуюся к переходу  ${}^{2}P_{3/2} \rightarrow {}^{4}I_{11/2}$ . Однако в области длин волн 445–452 нм были выделены линии, не относящиеся к переходу с уровня <sup>2</sup>F2<sub>5/2</sub>. На рис.5 приведены спектры радиолюминесценции и фотолюминесценции ионов Nd<sup>3+</sup>. Спектр фотолюминесценции регистрировался при возбуждении кристалла светом с  $\lambda$  = 355 нм, т.е. в полосу поглощения неодима  ${}^{4}I_{9/2} \rightarrow {}^{2}P_{3/2}$ . Видно, что для части спектральных линий положения максимумов совпадают. Отсюда можно заключить, что триплет в области длин волн 445-452 нм относится к переходу  $^2\mathrm{P}_{3/2} \to {}^4\mathrm{I}_{13/2}$  . Действительно, соотношение интенсивностей для переходов  ${}^{2}P_{3/2} \rightarrow {}^{4}I_{9/2}$  и  $^{2}\mathrm{P}_{3/2} \rightarrow ^{4}\mathrm{I}_{13/2}$  равно ~5, что вполне удовлетворительно согласуется с теоретическими расчетами  $\beta_{ii}$  для этих переходов.

В работе [2] отмечалась высокая эффективность преобразования энергии быстрых электронов в энергию лю-



Рис.5. Части спектров люминесценции кристалла  $Y_3Al_5O_{12}$ : Nd<sup>3+</sup> при возбуждении  $\alpha$ -частицами <sup>239</sup>Pu (сплошная кривая) и при селективном оптическом возбуждении уровня  ${}^2P_{3/2}$  (штриховая кривая).

минесценции для кристалла  $Y_3Al_5O_{12}$ : Nd<sup>3+</sup>, а именно, конверсионная эффективность  $\eta_e$  кристалла составила в видимом диапазоне длин волн 6.5% ± 1.5%, в ИК области – 4% ± 1%. Большие значения  $\eta_e$  указывают на достаточно эффективный перенос энергии возбуждения от кристаллической матрицы к иону активатора. Полученные в настоящей работе спектры радиолюминесценции были использованы для расчета конверсионной эффективности  $\eta$  кристалла  $Y_3Al_5O_{12}$ : Nd<sup>3+</sup> при его возбуждении  $\alpha$ -частицами и осколками деления. Энергия люминесценции W, излучаемая образцом в единицу времени, была определена интегрированием распределений  $P(\lambda)$  в УФ, видимом и ИК диапазонах длин волн в соответствии с выражением

$$W = 4\pi \sum_{\lambda_0}^{\lambda_k} \frac{E(\lambda_i) P(\lambda_i) d\lambda}{S\Omega\delta\lambda}.$$
 (6)

Здесь  $P(\lambda_i) = R_{\exp}(\lambda_i)/\varepsilon(\lambda_i)$  – экспериментально измеренная скорость счета фотонов с поправкой на спектральную эффективность регистрации;  $E(\lambda_i) = hc/\lambda_i$  – энергия фотона;  $d\lambda$  – шаг сканирования; S – площадь входной щели моно-хроматора;  $\Omega$  – телесный угол, под которым из входной щели виден коллиматорный объектив монохроматора;  $\delta\lambda$  – спектральная ширина выходной щели монохроматора.

Конверсионная эффективность  $\eta$  определялась как отношение энергии люминесценции W, излучаемой образцом в единицу времени в телесном угле  $4\pi$ , к скорости энерговыделения  $W_{\alpha,f}$  тяжелых заряженных частиц в кристалле. Величина  $W_{\alpha,f}$  зависит от активности слоя, средней энергии частиц, вылетающих из слоя, и от расстояния между слоем и поверхностью кристалла. Активность использованных слоев была измерена в отдельных экспериментах с использованием поверхностно-барьерного кремниевого детектора. Расчеты скорости энерговыделения  $\alpha$ -частиц и осколков деления в образцах с учетом геометрии опыта дали  $W_{\alpha} = (9.9 \pm 0.5) \times 10^{11}$  эВ·см<sup>-2</sup>·с<sup>-1</sup> и  $W_{\alpha,f} = (8.9 \pm 0.5) \times 10^{12}$  эВ·см<sup>-2</sup>·с<sup>-1</sup> для слоев <sup>239</sup>Ри и <sup>252</sup>Сf соответственно.

Оказалось, что при возбуждении тяжелыми заряженными частицами конверсионная эффективность кристалла  $Y_3Al_5O_{12}$ : Nd <sup>3+</sup> составляет  $\eta_1 = 2.9\% \pm 0.5\%$  в области 390-640 нм и  $\eta_2 = 2.0\% \pm 0.4\%$  в области 860-1130 нм. Это примерно в два раза ниже, чем конверсионная эффективность  $\eta_e$  при накачке  $Y_3Al_5O_{12}$ : Nd<sup>3+</sup> электронами [2]. Если предположить, как это сделано в работе [2], что вся энергия заряженных частиц идет на создание электроннодырочных пар (энергия образования пары в Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> равна 20 эВ), а последующие процессы рекомбинации пар и (или) обменно-резонансное взаимодействие на ионах неодима приводят к возбуждению последних, то можно оценить квантовый выход люминесценции у (отношение числа испущенных ионами Nd<sup>3+</sup> фотонов к числу электронно-дырочных пар, созданных заряженными частицами). Такие оценки были нами сделаны. Квантовый выход люминесценции  $\gamma$  при возбуждении кристалла  $Y_3Al_5O_{12}$ : Nd<sup>3+</sup> α-частицами и осколками деления оказался также примерно в два раза ниже, чем уе при электронном возбуждении, и составил 0.25 ± 0.05 в видимой области спектра и 0.35  $\pm$  0.08 в ИК диапазоне. Меньшие значения  $\eta$  и  $\gamma$  по сравнению с  $\eta_{\rm e}$  и  $\gamma_{\rm e}$  связаны, скорее всего, с различиями в процессах взаимодействия тяжелых заряженных частиц и электронов со средой. Значительно более высокие линейные потери энергии –d*E*/dx тяжелых заряженных частиц сопровождаются более высокой плотностью ионизации вещества в треке частицы и, как следствие, ростом плотности генерации электронно-дырочных пар [17]. С ростом плотности образования пар повышается вероятность рекомбинации электронов и дырок в треке, что приводит к неэффективным потерям носителей возбуждения и в результате – к уменьшению  $\eta$  и  $\gamma$ . Высокая плотность ионизации вещества в треке частицы может отразиться и на его спектрально-люминесцентных характеристиках. Прежде всего можно ожидать уменьшения времени жизни возбужденных состояний  ${}^{2}F2_{5/2}$  и  ${}^{4}F_{3/2}$ иона неодима, а также уширения линий люминесценции.

В связи с этим особое внимание было уделено получению экспериментальных данных о времени жизни  $\tau_m$  метастабильных уровней иона неодима и о ширине линии радиолюминесценции при возбуждении кристалла  $Y_3Al_5O_{12}$ : Nd <sup>3+</sup>  $\alpha$ -частицами и осколками деления.

Временные распределения интенсивности радиолюминесценции Q(t) кристалла Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>: Nd<sup>3+</sup> при его возбуждении осколками деления <sup>252</sup>Cf, измеренные с использованием абсорбционных светофильтров СЗС23 для регистрации распределений в видимом диапазоне 340-650 нм и ИКС1 для регистрации в традиционном ИК диапазоне 850-1500 нм, представлены на рис.6 после первичной обработки аппаратурных распределений. Радиолюминесценция в видимом диапазоне длин волн обусловлена в основном излучательными переходами с уровня <sup>2</sup>F2<sub>5/2</sub> на более низколежащие уровни, а в ИК диапазоне - переходами с уровня <sup>4</sup>F<sub>3/2</sub>. Информация о времени жизни была получена после обработки распределений Q(t) методом наименьших квадратов. Установлено, что время жизни  $\tau_1$ уровня <sup>2</sup>F2<sub>5/2</sub> при возбуждении кристалла осколками деления равно 3.2  $\pm$  0.2 мкс, а время жизни  $\tau_2$  уровня  ${}^4F_{3/2}$  – 215 ± 20 мкс. Приведенные погрешности определяются разбросом результатов серий измерений. В пределах указанных погрешностей эти результаты достаточно удовлетворительно согласуются с данными измерения  $\tau_1$  и  $\tau_2$ при других видах высокоэнергетического возбуждения Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>: Nd<sup>3+</sup> [1,4]. Время жизни уровня <sup>4</sup>F<sub>3/2</sub> также не зависит от способа возбуждения кристалла, и в пределах погрешностей измерения наши данные, полученные при возбуждении среды осколками деления, совпали как с результатами наших измерений т<sub>2</sub> при оптическом возбуждении, так и с литературными данными [2,13].

Несомненный интерес представляло выяснение влияния способа возбуждения на форму и ширину спектральных линий люминесценции Nd<sup>3+</sup> в кристалле Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>: Nd<sup>3+</sup>. С этой целью при возбуждении кристалла α-час-



Рис.6. Временные распределения интенсивности люминесценции для переходов с уровней  ${}^{2}F2_{5/2}(1)$  и  ${}^{4}F_{3/2}(2)$ 

| Номер образца | [Nd] (см <sup>-3</sup> ) | λ (HM) | Δλ (нм) | $	au_{ m m}$ (мкс) | $egin{aligned} η_{ij}(\%) \ &({}^4\mathrm{I}_{9/2},{}^4\mathrm{I}_{11/2},{}^4\mathrm{I}_{13/2}) \end{aligned}$ | η (%)           |
|---------------|--------------------------|--------|---------|--------------------|----------------------------------------------------------------------------------------------------------------|-----------------|
| 1             | $6 \times 10^{19}$       | 1063   | 5       | 215                | 38, 50, 12                                                                                                     | $2.0 \pm 0.4$   |
| 1ст           | $8.4 \times 10^{20}$     | 1054   | 21      | 110                | 42, 46, 12                                                                                                     | $0.11 \pm 0.02$ |
| 2ст           | $2.2 \times 10^{20}$     | 1054   | 21      | 300                | 45, 45, 10                                                                                                     | $0.15 \pm 0.02$ |
| Зст           | $2.9 \times 10^{20}$     | 1054   | 21      | 280                | 46, 43, 11                                                                                                     | 0.18 ±0.02      |

Табл.4. Основные спектрально-люминесцентные характеристики мультиплета <sup>4</sup>F<sub>3/2</sub> ионов Nd <sup>3+</sup> в кристалле Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>:Nd<sup>3+</sup> (образец № 1) и в лазерных фосфатных стеклах.

тицами и осколками деления <sup>252</sup>Cf для одной из одиночных линий радиолюминесценции иона неодима с  $\lambda = 1051.2$  нм был измерен спектр с высоким разрешением ( $\delta \lambda = 0.15$  нм) и обработан с учетом влияния аппаратной функции монохроматора на ширину и форму истинного контура линии люминесценции. Известно, что аппаратурное распределение  $P_{\exp}(\lambda_i)$  описывается уравнением [18]

$$P_{\exp}(\lambda') = \int \varphi(\lambda) F(\lambda, \lambda') d\lambda, \qquad (7)$$

где  $\varphi(\lambda)$  – истинное распределение интенсивности линии люминесценции;  $F(\lambda, \lambda')$  – аппаратная функция. Аппаратная функция была измерена экспериментально с использованием ртутной лампы. Уравнение (7) решалось методом наименьшего направленного расхождения [19]. Форма линии люминесценции  $\varphi(\lambda)$  описывалась лоренцевым либо гауссовым распределением. Наилучшее описание распределения  $P_{exp}(\lambda_i)$  было достигнуто при использовании лоренцевой формы линии истинного распределения интенсивности  $\varphi(\lambda)$ . Данное обстоятельство указывает на сохранение преимущественно однородного уширения линий радиолюминесценции Nd<sup>3+</sup> при возбуждении кристалла α-частицами и осколками деления <sup>252</sup>Cf. Ширина этой линии радиолюминесценции на полувысоте оказалась равной  $0.70 \pm 0.10$  нм, что несколько больше ширины линии фотолюминесценции  $0.55 \pm 0.05$  нм.

Описанная выше методика была использована для исследования радиолюминесценции ряда лазерных фосфатных стекол, активированных неодимом. Наиболее детально изучено неодимовое стекло (образец № 1ст) с концентрацией неодима  $8.4 \times 10^{20}$  см<sup>-3</sup> следующего состава: 10Li<sub>2</sub>O·4(0.35Nd<sub>2</sub>O<sub>3</sub> + 0.65La<sub>2</sub>O<sub>3</sub>)·25P<sub>2</sub>O<sub>5</sub> + 7 вес. % SiO<sub>2</sub>. Это стекло имело в своем составе литий, обогащенный изотопом <sup>6</sup>Li, и по своим параметрам было близко к высококонцентрированным лазерным стеклам, разработанным в ИОФАНе [20, 21]. Оказалось, что в отличие от кристалла Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>: Nd<sup>3+</sup> неодимовое стекло под действием тяжелых заряженных частиц, таких как α-частицы и осколки деления, люминесцирует только в традиционной ИК области спектра. Время жизни уровня <sup>4</sup>F<sub>3/2</sub>, измеренное методом задержанных совпадений при возбуждении неодимового стекла осколками деления, с высокой точностью совпало с временем жизни этого уровня, измеренным при оптическом возбуждении, и составило 110 мкс. Люминесцентное время жизни уровня <sup>4</sup>F<sub>3/2</sub> иона неодима в образцах № 2ст (стекло типа ГЛС22 [22]) и № 3ст (стекло типа ЛГС40 [22]) было измерено только при оптическом возбуждении стекол и составило 300 и 280 мкс соответственно. Спектры радиолюминесценции неодима при облучении α-частицами <sup>239</sup>Ри были измерены в диапазоне длин волн 850-1200 нм как для образца № 1ст, так и для образцов № 2ст и 3ст. Положения и ширины линий радиолюминесценции, соответствующих переходам  ${}^4F_{3/2} \rightarrow$  ${}^{4}I_{11/2}$  и  ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ , с высокой точностью совпали с соответствующими характеристиками этого перехода при оптическом возбуждении образцов. Спектры радиолюминесценции неодимовых стёкол были использованы для расчета конверсионной эффективности образцов. Результаты измерений радиолюминесцентных характеристик лазерного перехода  ${}^4F_{3/2} \rightarrow {}^4I_{11/2}$  иона Nd  $^{3+}$  в кристалле Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>: Nd<sup>3+</sup> и в фосфатных стеклах приведены в табл.4. В настоящей работе коэффициенты ветвления  $\beta_{ii}$ для переходов  ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$  и  ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$  получены экспериментально в предположении, что для перехода  ${}^4F_{3/2} \rightarrow$  ${}^{4}I_{13/2}$  значения  $\beta_{ii}$  для кристалла соответствуют данным работы [13], а для стекол – работы [22]. Из табл.4 видно, что, несмотря на очень высокую концентрацию неодима, конверсионная эффективность этих стекол невысока и составляет 0.1 % -0.2 %, что на порядок ниже, чем  $\eta$  для кристалла Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>: Nd<sup>3+</sup> в области 850-1200 нм.

Если предположить, что механизм возбуждения ионов неодима в стеклах такой же, как и в кристаллах, т.е. что вся энергия заряженных частиц идет на создание электронно-дырочных пар, а последующие процессы рекомбинации пар и обменно-резонансное взаимодействие на ионах неодима приводят к возбуждению последних, то становится ясно, что низкая подвижность электроннодырочных пар и присутствие в стеклах большого количества центров рекомбинации резко снижают эффективность этого механизма переноса энергии возбуждения и, следовательно, конверсионную эффективность неодимового стекла. В то же время следует отметить, что величина  $\eta$  для стекол зависит от состава матрицы и, возможно, подбирая состав стекла, можно будет увеличить эффективность преобразования энергии заряженных частиц в оптическое излучение.

#### 4. Заключение

Подводя итоги данной работы, нужно отметить полученные результаты. Нами разработаны методы измерения временных распределения и распределений по длинам волн фотонов радиолюминесценции при возбуждении твердотельных лазерных материалов α-частицами и осколками деления. Применение этих методов позволило получить новые экспериментальные данные, из анализа которых можно сделать следующие выводы.

 Положения и ширины линий люминесценции иона Nd<sup>3+</sup> в изученных матрицах слабо зависят от вида возбуждающего излучения.

2. Теоретические расчеты коэффициентов ветвления  $\beta_{ij}$  люминесценции с высоколежащего состояния  ${}^{2}F2_{5/2}$  при возбуждении лазерного кристалла  $Y_{3}Al_{5}O_{12}$ : Nd <sup>3+</sup>  $\alpha$ - частицами  ${}^{239}$ Pu удовлетворительно согласуются с экспериментальными значениями коэффициентов ветвления  $\beta_{ij}$  радиолюминесценции.

3. Обнаружены и идентифицированы излучательные переходы с высоколежащего уровня мультиплета <sup>2</sup>P<sub>3/2</sub>.

4. Из анализа полученных значений коэффициентов ветвления следует, что возбуждение уровней  ${}^{4}D_{3/2}$  и  ${}^{2}P_{3/2}$  высокоэнергетическими частицами малоэффективно и наибольший интерес для накачки тяжёлыми заряженными частицами представляют высоколежащий мультиплет  ${}^{2}F2_{5/2}$  и традиционный лазерный уровень  ${}^{4}F_{3/2}$  иона неодима.

5. Контур одиночной спектральной линии радиолюминесценции Nd<sup>3+</sup> в кристалле  $Y_3Al_5O_{12}$ : Nd<sup>3+</sup> описывается лоренцевым распределением, что указывает на преимущественно однородное уширение спектральной линии; ширина этой линии ( $\lambda = 1052$  нм) составляет 0.70 ± 0.10 нм, что примерно на 20% больше ширины линии при оптическом возбуждении неодима в  $Y_3Al_5O_{12}$ : Nd<sup>3+</sup>.

6. Люминесцентное время жизни  $\tau_{lum}$  высоколежащего уровня  ${}^{2}F2_{5/2}$  иона Nd  ${}^{3+}$  в кристалле Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>:Nd  ${}^{3+}$  слабо зависит от вида высокоэнергетического возбуждающего излучения и составляет 3.2  $\pm$  0.2 мкс.

7. Люминесцентное время жизни  $\tau_{lum}$  верхнего лазерного уровня  ${}^{4}F_{3/2}$  иона Nd<sup>3+</sup> как в кристалле Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>: Nd<sup>3+</sup>, так и в неодимовых стеклах также слабо зависит от вида возбуждающего излучения; при возбуждении этих сред осколками деления  ${}^{252}$ Cf значения  $\tau_{lum}$  в пределах экспериментальных ошибок измерений совпало с данными для  $\tau_m$ , полученными при оптической накачке.

8. Эффективность преобразования  $\eta$  энергии  $\alpha$ -частиц и осколков деления в оптическое излучение для кристалла  $Y_3Al_5O_{12}$ : Nd<sup>3+</sup> составляет 2.9% ± 0.5% в видимом диапазоне и 2.0% ± 0.4% в ИК области спектра.

9. Для изученных фосфатных неодимовых стекол излучение в видимом диапазоне спектра не обнаружено; в ИК области спектра эффективность преобразования  $\eta$ энергии  $\alpha$ -частиц и осколков деления в оптическое излучение составляет не более 0.2 %.

 Полученные результаты представляют интерес для создания уникального стабильного источника спонтанного излучения фотонов в широкой области длин волн (от УФ до ближнего и среднего ИК диапазонов) на основе кристалла  $Y_3Al_5O_{12}\colon Nd^{3+}$  и источника  $\alpha$ -частиц  $^{239}Pu.$ 

- Воронько Ю.К., Денкер Б.И., Осико В.В., Прохоров А.М. Тимошечкин М.И. ДАН СССР, 188, 1258 (1969).
- Воронько Ю.К., Ноле Э.Л., Осико В.В., Тимошечкин М.И. Письма в ЖЭТФ, 13, 125 (1971).
- 3. Niklas A., Jelenski. W. Phys. Stat. Sol. (a), 77, 393 (1983).
- Коломийцев А.И., Мейльман М.Л., Володина И.С., Чукичев М.В., Смагин А.Г., Багдасаров Л.С. Оптика и спектроскопия, 56, 365 (1984).
- 5. Басиев Т.Т., Дергачев А.Ю., Кирпиченкова Е.О., Орловский Ю.В., Осико В.В. Квантовая электропика, 14, 2021 (1987).
- Macfarlane R.M., Tong F., Silversmith A.J., Lenth W. Appl. Phys. Lett., 82, 1300 (1988).
- 7. Lenth W., Macfarlane R.M. Luminescence, 45, 346 (1990).
- Серёгина Е.А., Дьяченко П.П., Калинин В.В., Шевчук О.Д. ЖПС, 54, 788 (1991).
- Каминский А.А., Миронов В.С., Багаев С.Н., Шау Л., Джонсон В.Б. Докл. РАН, 339, 182 (1994).
- Каминский А.А., Миронов В.С., Багаев С.Н. Квантовая электроника, 21, 711 (1994).
- Seregina E.A., D'yachenko P.P., Kalinin V.V. Nucl. Instr. Meth. B, 89, 412 (1994).
- Нейлер Дж., Гуд В. Техника спектрометрии быстрых нейтронов. В сб. Физика быстрых нейтронов. Под ред. Дж. Мариона и Дж. Фаулера. (М.: Госатомиздат. 1963, т. 1).
- 13. Каминский А.А. Лазерные кристаллы (М.: Наука, 1975).
- 14. Judd B.R. Phys. Rev., 127, 750 (1962).
- 15. Ofelt G.S. J. Chem. Phys., 37, 511 (1962).
- Kaminskii A.A., Boulon G., Buoncristiani M., Bartolo B.Di, Kornienko A., Mironov V. *Phys. Stat. Sol.* (a), 141, 471 (1994)
- 17. Шварц К.К., Экманис Ю.А. Радиационная физика, 5, 259 (1967).
- Малышев В.И. Введение в экспериментальную спектроскопию (М.: Наука. 1979).
- 19. Тараско М.З. Препринт ФЭИ № 1446 (Обнинск, 1983).
- 20. Батыгов С.Х., Воронько Ю.К., Денкер Б.И., Зленко А.А., Карасик А.Я., и др. *Квантовая электроника*, **3**, 2243 (1976).
- Денкер Б.И., Осико В.В., Пашинин П.П., Прохоров А.М. Квантовая электроника, 8, 459 (1981).
- Алексеев Н.Е., Гапонцев В.П., Жаботинский М.Е., Кравченко В.Б., Рудницкий Ю.П. Лазерные фосфатные стекла (М.: Наука, 1980).