ВОЗДЕЙСТВИЕ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ВЕЩЕСТВО. ЛАЗЕРНАЯ ПЛАЗМА

PACS 78.60.Lc; 32.50.+d

Селективное излучение и люминесценция Er₂O₃ при интенсивном лазерном возбуждении

В.М.Марченко, Л.Д.Исхакова, М.И.Студеникин

Исследована микроструктура синтезированных лазерно-термическим методом поликристаллов Er_2O_3 . Обнаружен синтез слоев силиката эрбия Er_2SiO_5 при взаимодействии расплавов Er_2O_3 и SiO_2 . Проведены спектроскопические исследования зависимости селективного излучения (СИ) и люминесценции поликристаллов Er₂O₃ в области 200-1700 нм от интенсивности лазерно-термического (на длине волны $\lambda = 10.6$ мкм) и резонансного лазерного ($\lambda \approx 975$ нм) возбуждений. Излучение нагретых поликристаллов Er_2O_3 возникает в результате многофононной релаксации поглощенной энергии и представляется суперпозицией СИ на электронно-колебательных переходах ионов Er³⁺ и теплового излучения кристаллической решетки. Форма спектров СИ в области 400–1700 нм при лазерно-термическом нагреве от 300 до 1500 К и последующем охлаждении поликристаллов Er₂O₃ практически не изменяется и соответствует спектрам поглощения ионов Er³⁺. С увеличением температуры интенсивность теплового излучения растет быстрее, чем СИ, и форма спектра Er₂O₃ приближается к расчетному спектру абсолютно черного тела. Спектры антистоксовой люминесценции ионов Er³⁺ при интенсивном лазерном возбуждении уровня ⁴I_{11/2} объясняются появлением дополнительного СИ вследствие нагрева кристаллической матрицы из-за стоксовых потерь. Различие спектров СИ и люминесценции наблюдается при малой интенсивности резонансного лазерного возбуждения и низких температурах, когда происходит только стоксова люминесценция. Температурные зависимости спектров СИ и люминесценции поликристаллов Er₂O₃ от интенсивности лазерного возбуждения свидетельствуют о фундаментальной роли взаимодействия электронной f-оболочки ионов Er ³⁺ с собственными колебаниями кристаллической решетки в процессах многофононной излучательной и безызлучательной релаксации. Лазерно-термический синтез перспективен для оперативного варьирования химического состава редкоземельных образцов.

Ключевые слова: Er₂O₃, лазерно-термический синтез, микроструктура, лазерная спектроскопия, селективное излучение, люминесценция, квантовая электроника, микроэлектроника, термофотовольтаика, гиперзвуковая аэродинамика.

1. Оксид эрбия Er₂O₃ применяется в опто- и микроэлектронике [1-6], термофотовольтаических электрогенераторах [7-10], атомных реакторах [11-13], гиперзвуковой аэродинамике [14]. Спектры люминесценции Er₂O₃ соответствуют переходам между энергетическими состояниями экранированной электронной оболочки 4f¹¹ ионов Er³⁺ [1, 15, 16]. При повышении температуры происходит тушение люминесценции Er³⁺ вследствие многофононной безызлучательной релаксации [3,4]. Фундаментальный интерес представляет исследование природы теплового излучения Er₂O₃ [9, 17–19]. Нагрев Er₂O₃ выше 900 К вызывает интенсивное селективное излучение (СИ) в области 400-1700 нм, спектральные полосы которого соответствуют переходам между электронными состояниями ионов Er^{3+} . При T = 1540 - 1873 К спектральная излучательная способность полос $J_{se}(\lambda, T) = I_{se}(\lambda, T)/I_{bb}(\lambda, T) \leq 0.6$ $(I_{se}(\lambda, T)$ и $I_{bb}(\lambda, T)$ – интенсивности СИ и теплового излучения (ТИ) абсолютно чёрного тела) выше, чем у пьедестала – сплошного спектра кристаллической решетки [20].

Лазерный синтез тугоплавких оксидов используется для изготовления моно- и поликристаллических образцов,

В.М.Марченко, М.И.Студеникин. Институт общей физики им. А.М.Прохорова РАН, Россия, 119991 Москва, ул. Вавилова, 38; e-mail: vmarch@kapella.gpi.ru, mstud-iof@yandex.ru

Л.Д.Исхакова. Научный центр волоконной оптики РАН, Россия, 119333 Москва, ул. Вавилова, 38; e-mail: ldisk@fo.gpi.ru

Поступила в редакцию 18 февраля 2013 г.

а также для их микроструктурных, спектрально-энергетических и теплофизических исследований [21–25]. В работе [26] изучены микроструктура и трансформация спектров люминесценции и СИ поликристаллов Yb₂O₃ при резонансном лазерном и лазерно-термическом возбуждении.

В настоящей работе сообщаются результаты экспериментальных исследований микроструктуры образцов Er_2O_3 и трансформации спектров СИ в области 400–1700 нм при лазерном нагреве кристаллической решётки на длине волны $\lambda = 10.6$ мкм вплоть до температуры плавления $T_m = 2691$ К в сравнении со спектрами отражения и люминесценции при интенсивном лазерном возбуждении переходов ${}^{4I}_{11/2} \leftarrow {}^{4I}_{15/2}$ ионов Er^{3+} на $\lambda \approx 975$ нм.

2. Образцы Er_2O_3 были синтезированы методом плавления порошков сверхвысокой чистоты «Итб0-1» (дисперсность 1–50 мкм) на кремниевой подложке непрерывным излучением CO₂-лазера ИЛГН-709 мощностью $P_{las} < 100$ Вт на длине волны $\lambda = 10.6$ мкм при $T \ge T_m$. Формообразование происходило под действием сил поверхностного натяжения при многократном оплавлении и перекристаллизации расплава в воздухе.

Исследование микроструктуры и энергодисперсионный микрозондовый анализ элементного состава синтезированных образцов проведены на электронном микроскопе JSM-5910LV с аналитической системой INCA ENERGY. Рентгенофазовый анализ образцов выполнен на дифрактометрах ДРОН-4-13 и D8 DISCOVER с GADDS (CuK_{α}-излучение), на котором были получены рентгенограммы неразрушенных оплавленных образцов.

Рис.1. Микрофотографии синтезированного лазерно-термическим методом поликристалла $Er_2O_3(a)$, ступенек роста микрокристаллов $Er_2O_3(b)$, рентгенограмма образца Er_2O_3 с примесью гексагональной модификации (*в*), рефлексы которой помечены стрелками, а также границы раздела между фазами Er_2O_3 (Spectrum 1 и 2) и Er_2SiO_5 (Spectrum 3 и 4) (*г*).

Форма (рис.1, а), а также химический и фазовый составы выращенных образцов Er₂O₃ зависели от условий синтеза. На оплавленных лазерным излучением фрагментах поверхности видны упорядоченные ступеньки роста с характерным размером 5-40 мкм (рис.1,б), которые свидетельствуют о микрокристаллической структуре синтезированных лазерно-термическим методом образцов Er₂O₃. Большая часть образцов имела однофазную кубическую модификацию Er_2O_3 (пространственная группа Ia-3, Z =16) с уточнённым по рентгенограмме образца параметром элементарной ячейки a = 10.5637(7) Å. Оплавленные поликристаллы Er₂O₃ малодефектны (угловая ширина на половине высоты для рефлекса (222) равна 0.16°). Сопоставление рентгенограмм неразрушенных и растёртых в порошок образцов позволяет сделать вывод, что поликристаллы имеют преимущественную текстуру (110). В некоторых образцах наряду с устойчивой кубической была обнаружена и гексагональная модификация (рис.1,в), которая появляется в результате фазового превращения при T = 2593 K [27].

Исследование элементного и фазового состава на границе сплава оксида эрбия и кварца свидетельствует об образовании силиката эрбия Er_2SiO_5 в химической реакции при лазерно-термическом взаимодействии. По микрофотографии (рис. 1, *г*), снятой в режиме *Z*-контраста, и по данным микрозондового анализа можно заключить, что в светлых участках (обозначены на рис. 1 как Spectrum 1 и 2) произошла кристаллизация Er_2O_3 без примеси силиката, а в более тёмных участках (Spectrum 3 и 4) среднее атомное соотношение Er:Si:O = 25.02:12.45:62.48, что соответствует стехиометрии силиката Er_2SiO_5 . Наличие фазы Er_2SiO_5 подтверждается также данными рентгенофазового анализа.

3. Температурная зависимость пространственного распределения интенсивности излучения поликристаллических образцов Er₂O₃ в видимой области спектра при лазерно-термическом возбуждении исследовалась экспериментально фотовидеокамерой Sony DSC-HX7V. Приплавленные к торцу кварцевого стержня диаметром 3 мм образцы Er₂O₃ нагревались в течение 30 с импульсно-периодическим (0.66/20 мс) излучением СО2-лазера со средней мощностью излучения ~2 Вт. Интенсивность излучения на поверхности образцов варьировалась перемещением линзы из NaCl с фокусным расстоянием 40 см вдоль оптической оси CO2-лазера. Измеренная пирометром «Питон-104» температура поверхности поликристалла Er₂O₃ с коэффициентом теплового излучения 0.4 на $\lambda = 1$ мкм [20] не превышала 1400 К. На рис.2 показана выборка видеокадров (интервал 5 с) трансформации распределения интенсивности СИ на образце после ступенчатого включения лазерного излучения. Нагрев образца поглощённым излучением в области лазерного пятна диаметром меньше 1 мм сопровождается увеличением площади, интенсивности и изменением цвета светящейся поверхности красного, жёлтого, а затем белого. В глубине под торцевой поверхностью нагрев происходит до более низкой температуры вследствие малой теплопроводности. Свечение поликристалла Er₂O₃ после перекрытия лазерного пучка прекращается примерно через секунду.

4. Спектры отражения и излучения Er_2O_3 в областях 300–1100 и 1100–1700 нм регистрировались дифракционными спектрометрами AvaSpec-2048 и NIR128-1.7-RS232

Рис.2. Трансформация распределения интенсивности излучения поликристаллических образцов Er_2O_3 на кварцевом стержне диаметром 3 мм (*a*) в видимой области спектра через 3–5 с после включения CO_2 -лазера с мощностью излучения ~2 Вт (δ -г).

с волоконно-оптическими входами. На рис. $3a, \delta$ представлены спектры отражения синтезированных лазернотермическим методом поликристаллов Er_2O_3 (полосы поглощения в видимой и ближней ИК областях спектра обозначены соответствующими термами возбужденных электронных состояний ионов Er^{3+}).

Спектры излучения поликристаллов Er_2O_3 в области 400–1700 нм исследовались при ступенчатом включении (рис.3,*в*,*г*) и выключении (вставка на рис.3,*в*) импульсно-периодического излучения СО₂-лазера со средней мощностью ~2 Вт. Цифрами обозначены моменты времени регистрации спектров.

Спектры СИ поликристаллов Er₂O₃ в диапазоне 1100– 1700 нм на рис.3, г представляют собой полосы в области переходов ⁴I_{13/2} \rightarrow ⁴I_{15/2} с максимумами на $\lambda \approx$ 1475, 1545 и 1640 нм, которые соответствуют спектрам поглощения на рис.3, δ . Форма спектров практически не изменяется при увеличении интенсивности лазерного излучения в ~250 раз и подобна спектрам люминесценции примесных оксидов SiO₂: Er³⁺ и Al₂O₃: Er³⁺ [1,22]. Интенсивность полос СИ на порядки превышает интенсивность равновесного ТИ кристаллической решетки (пьедестала).

Зависимость спектров СИ поликристаллов Er₂O₃ в области 400-1100 нм от времени лазерно-термического нагрева исследовалась спектрометром AvaSpec-2048 аналогичным методом. Спектры регистрировались при ступенчатом включении и выключении излучения СО2-лазера. Коррекция чувствительности спектрометра проводилась по спектру ТИ эталонной вольфрамовой лампы. Зарегистрированные спектры СИ (рис.3,в) представляют собой широкие слабо структурированные полосы на переходах ${}^{4}F_{9/2}, {}^{4}I_{9/2}, {}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$, соответствующих спектрам поглощения Er³⁺ в поликристаллах Er₂O₃. По спектрам СИ можно заключить, что изменение красного цвета мишени на жёлтый при варьировании интенсивности лазерного излучения определяется смешением интенсивностей спектральных полос на $\lambda = 660$ и 530 нм. Согласно [20] селективность спектров сохраняется до 1873 К.

Спектры люминесценции поликристаллов Er₂O₃ в области 1100 – 1700 нм (рис.3,*e*) исследовались при резонансном возбуждении уровня ⁴I_{11/2} ионов Er³⁺ непрерывным излучением линейки диодных лазеров мощностью $P_{\rm las} < 20$ Вт на $\lambda \approx 975$ нм через волоконный световод с

диаметром сердцевины 400 мкм. Мощность излучения варьировалась электрическим током линейки. На рис.3,е представлены спектры люминесценции ионов Er³⁺ в поликристаллах Er_2O_3 на переходах ${}^4I_{13/2} \rightarrow {}^4I_{15/2}$ при различных интенсивностях резонансного лазерного возбуждения I_{las} переходов ${}^{4}\text{I}_{11/2} \leftarrow {}^{4}\text{I}_{15/2}$ на $\lambda \approx 975$ нм. Формы полос СИ и люминесценции поликристалла Er₂O₃ практически совпадают во всём диапазоне интенсивностей возбуждения. Исключением является пик люминесценции при λ = 1570 нм и I_{las} ≤ 2000 Вт/см². При увеличении мощности возбуждения P_{las} в ~40 раз интенсивность максимума люминесценции на $\lambda \approx 1550$ нм увеличивается в ~230 раз (рис.3,e) и интерполируется формулой $I_{\text{max}} =$ $212\exp(P_{\text{las}}/0.97)$ + 76. Нелинейный рост интенсивности в этой области спектра люминесценции связан, по-видимому, с дополнительным тепловым многофононным возбуждением уровня ${}^{4}I_{13/2}$ при увеличении температуры.

Спектры люминесценции в поликристаллах Er₂O₃ в области 400-1100 нм исследовались при аналогичном возбуждении уровня ${}^{4}I_{11/2}$ ионов Er^{3+} той же линейкой диодных лазеров. На рис.3, д показаны спектры возбуждающего излучения (1) и люминесценции поликристалла $Er_2O_3(2-6)$ при различных интенсивностях лазерного излучения. В спектрах вырезан пик резонансной линии люминесценции на $\lambda = 975$ нм для демонстрации компонентов меньшей интенсивности. При интенсивности лазерного возбуждения $I_{\rm las} \leqslant 8~{\rm \kappa}{\rm Br/cm^2}$ в спектрах наблюдаются только стоксовы (рис.3,д, кривые 2 и 3) по отношению к спектру возбуждения (рис.3,*д*, кривая *I*) компоненты люминесценции переходов ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$. При увеличении интенсивности возбуждения в спектрах появляются также антистоксовы полосы, соответствующие СИ на электронно-колебательных переходах ионов $\mathrm{Er}^{3+} {}^{4}\mathrm{I}_{9/2} \rightarrow {}^{4}\mathrm{I}_{15/2},$ ${}^{4}\mathrm{F}_{9/2} \rightarrow {}^{4}\mathrm{I}_{15/2}$ и ${}^{2}\mathrm{H}_{11/2}, \, {}^{4}\mathrm{S}_{3/2} \rightarrow {}^{4}\mathrm{I}_{15/2}$ (рис.3,д, кривые 4 и 5), вследствие повышения температуры образцов. Дальнейшее увеличение интенсивности сопровождается уменьшением интенсивности этих переходов относительно пьедестала ТИ кристаллической решетки.

Сравним экспериментальные спектры СИ поликрисаллов Er_2O_3 при низких и высоких температурах. Спектры СИ поликристаллов Er_2O_3 в области 300–1100 нм (рис.4,*a*) получены в экспериментах с предельно высокой чувствительностью спектрометра AvaSpec-2048 без коррекции спектральной чувствительности. При малом реверсивном варьировании интенсивности лазерно-термического возбуждения с частотой больше 1 Гц сдвинутые для наглядности по оси ординат спектры Er^{3+} появляются как «вспышки» люминесценции над уровнем шумов с неизменной формой электронно-колебательных полос СИ.

При температурах поверхности образцов выше 1500 К селективность спектров сглаживается из-за увеличения излучательной способности сплошного спектра кристаллической решётки [20] и лазерное пятно становится белым. Форма экспериментального нормированного спектра лазерного расплава Er_2O_3 (рис.4, δ , кривая *I*) близка к расчётному спектру ТИ абсолютно чёрного тела (рис.4, δ , кривая *2*) при $T = T_{\rm m}$. Минимумы спектра лазерного расплава соответствуют полосам поглощения Er_2O_3 на рис.3,*a* и объясняются самопоглощением излучения ионов Er^{3+} в более холодных зонах образца.

5. Экспериментально установлено, что синтезированные лазерно-термическим методом образцы Er_2O_3 имеют плотную кубическую микрокристаллическую структуру с постоянной решётки a = 10.5637(7) Å. Появление фраг-

Рис.3. Спектры отражения поликристаллов $Er_2O_3(a, \delta)$, спектры СИ поликристаллов Er_2O_3 на переходах ${}^{4I}I_{13/2} \rightarrow {}^{4I}I_{15/2}$ в указанные цифрами моменты времени при ступенчатом включении (*в*, 3–33 *с*, *г*) и выключении (*в*, 36–39 с) лазерно-термического возбуждения, а также спектры возбуждения уровня ${}^{4I}I_{11/2}$ ионов Er^{3+} на $\lambda \approx 975$ нм при интенсивности лазерного возбуждения $I_{las} \approx 48$ BT/см² (*I*) и люминесценции на переходах ${}^{4I}I_{11/2} \rightarrow {}^{4I}I_{15/2}$ при $I_{las} = 6320$ (*2*), 8000 (*3*), 9600 (*4*), 13120 (*5*), 16000 BT/см² (*b*) (*d*) и на переходах ${}^{4I}I_{13/2} \rightarrow {}^{4I}I_{15/2}$ при $I_{las} \approx 112$ (*I*), 456 (*2*), 800 (*3*), 1160 (*4*), 1560 (*5*), 1920 (*6*), 2320 (*7*), 3040 (*8*), 3840 (*9*) и 4320 BT/см² (*I*) (*e*).

Рис.4. Спектры СИ поликристаллов Er_2O_3 вблизи порога обнаружения при варьировании интенсивности лазерно-термического возбуждения (*a*), а также нормированные спектры лазерного расплава Er_2O_3 (*I*) и абсолютно черного тела (*2*) при $T_m = 2691$ K (*б*).

ментов с гексагональной модификацией решётки объясняется закалкой при T = 2593 К [27]. Термопрочность оксидных моделей на кварцевой подложке в экстремальных условиях синтеза и гиперзвуковой аэродинамики [14] связана с микроструктурой границы, на которой при лазерно-термической сварке происходит химическая реакция с выделением фазы силиката эрбия Er_2SiO_5 .

Цвет раскалённых поликристаллов Er_2O_3 при квазинепрерывном лазерно-термическом нагреве определяется установившимся распределением температуры в процессах многофононной и электронно-колебательной релаксации поглощённой решёткой лазерной энергии, теплопроводности и собственного излучения. Локальный спектр излучения образцов Er_2O_3 в области 400–1700 нм представляет собой суперпозицию спектров СИ на электронно-колебательных переходах ионов Er^{3+} и ТИ кристаллической решётки. Относительные интенсивности излучения СИ и ТИ определяются зависящей от локальной температуры излучательной способностью электронных состояний ионов $Er^{3+} J_{se}(\lambda, T)$ и решетки $J_{cl}(\lambda, T)$.

В процессе нагрева поликристаллов Er₂O₃ спектральные полосы СИ вырастают из шумов как «вспышка» люминесценции. В области 400-1700 нм при T < 1400 K спектры СИ поликристаллов Er₂O₃ соответствуют спектрам поглощения ионов Er³⁺ и их форма практически не зависит от температуры. Интенсивность полос СИ поликристаллов Er₂O₃ в квазинепрерывном режиме во много раз превышает интенсивность ТИ пьедестала вследствие того, что $J_{se} \gg J_{cl}$, и изменяется синхронно с интенсивностью лазерного излучения. В этом случае СИ поликристаллов Er₂O₃ при лазерно-термическом возбуждении поверхности является термодинамически неравновесным процессом. В этой области температур СИ идентично люминесценции ионов Er³⁺, возможность которой при тепловом (многофононном) возбуждении дискутируется в [28]. Спектры люминесценции поликристаллов Er₂O₃ при интенсивном лазерном возбуждении уровня ⁴I_{11/2} ионов Er³⁺ сходны со спектрами СИ. Антистоксовы полосы люминесценции ионов Er³⁺ объясняются появлением дополнительного СИ вследствие многофононного релаксационного нагрева кристаллической матрицы. Различие спектров СИ и люминесценции наблюдается при низких температурах и малой интенсивности резонансного лазерного возбуждения, когда происходит только стоксова люминесценция. Аналогичная трансформация спектров СИ и люминесценции поликристаллов Yb₂O₃ исследована в [26], а катодолюминесценции и СИ оксидов Er_2O_3 и YAG: Er^{3+} при возбуждении электронным пучком – в [29].

В области T = 1540-1873 К излучательные способности СИ и пьедестала ТИ сравнимы, $J_{se} \approx J_{cl}$. При $T \approx T_{m}$ = 2691 К выполняется условие $J_{se} < J_{cl}$ и излучательная способность расплава Er_2O_3 приближается к J_{bb} абсолютно чёрного тела. Отметим, что насыщение интенсивности СИ при увеличении интенсивности лазерного возбуждения происходит из-за фазового перехода при приближении к температуре плавления Er_2O_3 [23].

Температурные зависимости спектров СИ и люминесценции поликристаллов $\rm Er_2O_3$ при лазерно-термическом и резонансном лазерном возбуждениях свидетельствуют о фундаментальной роли взаимодействия электронной оболочки $^4f_{11}$ ионов $\rm Er^{3+}$ с собственными колебаниями кристаллической решётки в процессах многофононной излучательной и безызлучательной релаксации.

Баланс энергии при лазерно-термическом нагреве поликристаллов $\mathrm{Er}_2\mathrm{O}_3$ описывается в стационарном случае соотношением

$$(1-r)I_{\text{las}}S = P_{\text{h}} + P_{\text{se}} + P_{\text{t}},$$

где r – коэффициент отражения лазерного излучения; S – сечение лазерного пучка; P_h , P_{se} и P_t – мощности теплопотерь и излучения мишени в спектрально селективном и сплошном спектрах. При уменьшении P_h увеличивается коэффициент конверсии поглощённой энергии в излучение лазерной мишени. Энергетическая эффективность СИ и ТИ поликристаллов Er_2O_3 характеризуется зависящими от температуры излучательными способностями ионов $Er^{3+} J_{se}$ и кристаллической решетки J_{cl} . При низких температурах $J_{se} \gg J_{cl}$ и $P_{se} \gg P_t$. С увеличением температуры P_t растёт быстрее, чем P_{se} , и интегральный спектр Er_2O_3 приближается к форме спектра абсолютно чёрного тела. Причиной температурной зависимости соотношения J_{se} и J_{cl} является, очевидно, квантовая природа соответствующих излучательных переходов.

Временные зависимости интенсивности спектральных полос СИ в области 400–1100 нм и центрального максимума СИ на $\lambda \approx 1545$ нм (рис.5) при ступенчатом включении и выключении излучения СО₂-лазера свидетельствуют о зависимости населённости энергетических уровней от установившейся на данном временном масштабе электронной температуры $T_e = T$, т. е. о термическом возбуждении ионов Er³⁺. Форма фронтов интенсивности СИ

Рис.5. Временные зависимости интенсивности спектральных полос СИ на $\lambda = 533 - 1028$ нм при ступенчатом включении и выключении излучения CO₂-лазера (*a*) и интенсивности СИ на $\lambda \approx 1545$ нм при ступенчатом включении (**b**) и выключении (**b**) излучения (*b*).

интерполируется формулой $I \approx 10^3 \{1 - [1 + (t/10)^3]^{-1}\}$. Затухание интенсивности СИ экспоненциально с постоянной времени $\tau \approx 1$ с. Пологий фронт и крутой спад СИ поликристаллов Er_2O_3 при ступенчатом включении и выключении лазерного излучения определяются балансом мощностей нагрева, тепловых и радиационных потерь.

Лазерно-термический синтез редкоземельных образцов варьируемого химического состава перспективен для оперативных исследований микроструктурных, спектрально-кинетических и теплофизических свойств моделей различной формы и для применений в квантовой электронике и микроэлектронике, термофотовольтаике и гиперзвуковой аэродинамике.

Работа выполнена при поддержке РФФИ (грант № 11-02-00930-а).

- Miritello M., Lo Savio R., Piro A.M., Franzò G., Priolo F., Iacona F., Bongiorno C. J. Appl. Phys., 100, 013502 (2006).
- Michael C.P., Yuen H.B., Sabnis V.A., Johnson T.J., Sewell R., Smith R., Jamora A., Clark A., Semans S., Atanackovic P.B., Painter O. *Opt. Express*, 16, 19651 (2008).
- Savchyn O., Todi R.M., Coffey K.R., Kik P.G. Appl. Phys. Lett., 93, 233120 (2008).
- Savchyn O., Todi R.M., Coffey K.R., Kik P.G. Appl. Phys. Lett., 94, 241115 (2009).
- Kamineni H.S., Kamineni V.K., Moore R.L. II, Gallis S., Diebold A.C., Huang M., Kaloyeros A.E. J. Appl. Phys., 111, 013104 (2012).
- Phung T.H., Srinivasan D.K., Steinmann P., Wise R., Yu M.-B., Yeo Y.-C., Chunxiang Z. J. Electrochem. Soc., 158, H1289 (2011).
- Licciulli A., Diso D., Torsello G., Tundo S., Maffezzoli A., Lomascolo L., Mazzer M. Semicond. Sci. Technol., 18, S174 (2003).
- Bitnar B., Durisch W., Palfinger G., Von Roth F., Vogt U., Brönstrup A., Seiler D. Semiconductors, 38, 980 (2004).

В.М.Марченко, Л.Д.Исхакова, М.И.Студеникин

- 9. Chubb D.L. Fundamentals of Thermophotovoltaic Energy Conversion (Amsterdam, Netherlands, Boston, Oxford, UK: Elsevier, 2007).
- Teofilo V.L., Choong P., Chang J., Tseng Y.L., Ermer S. J. Phys. Chem. C, 112, 7841 (2008).
- Pint B.A., Tortorelli P.F., Jankowski A., Hayes J., Muroga T., Suzuki A., Yeliseyeva O.I., Chernov V.M. J. Nucl. Mater., 329–333, 119 (2004).
- Hishinuma Y., Murakami S., Matsuda K., Tanaka T., Tasaki Y., Tanaka T., Nagasaka T., Sagara A., Muroga T. *Plasma Fusion Res.*, *Special Issue 1*, 7, 2405127 (2012).
- Tsisar V., Yeliseyeva O., Muroga T., Nagasaka T. Plasma Fusion Res., Special Issue 1, 7, 2405123 (2012).
- 14. Алферов В.И., Марченко В.М. ТВТ, **50**, 550 (2012).
- 15. Kasuya A., Suezawa M. Appl. Phys. Lett., 71, 2728 (1997).
- Chen K.M., Saini S., Lipson M., Duan X., Kimerling L.C. Proc. SPIE Int. Soc. Opt. Eng., 4282, 168 (2001).
- Golovlev V.V., Chen C.H.W., Garrett W.R. Appl. Phys. Lett., 69, 280 (1996).
- Krishna M.G., Biswas R.G., Bhattacharya A.K. J. Phys. D: Appl. Phys., 30, 1167 (1997).
- Torsello G., Lomascollo M., Licciulli A., Diso D., Tundo S., Mazzer M. Nature Mater., 3, 632 (2004).
- 20. Guazzoni G.E. Appl. Spectrosc., 26, 60 (1972).
- 21. Seat H.C., Sharp J.H. Meas. Sci. Technol., 14, 279 (2003).
- Буфетова Г.А., Кашин В.В., Николаев Д.А. и др. Квантовая электроника, 36, 616 (2006).
- 23. Marchenko V.M. Laser Phys., 17, 1146 (2007).
- 24. Marchenko V.M. Laser Phys., 20, 1390 (2010).
- 25. Marchenko V.M. Laser Phys., 21, 383 (2011).
- Marchenko V.M., Iskhakova L.D., Kir'yanov A.V., Mashinsky V.M., Karatun N.M., Sholokhov E.M. *Laser Phys.*, 22, 177 (2012).
- 27. Zinkevich M. Prog. Mater. Sci., 52, 597 (2007).
- 28. Адирович Э.И. УФН, 40, 341 (1950).
- Marchenko V.M., Voitik M.G., Yuryev V.A. Laser Phys., 18, 756 (2008).