
Quantum Electronics  43 (1)  76 – 78  (2013)	 © 2013  Kvantovaya Elektronika and Turpion Ltd

Abstract.  The model is proposed, which allows one to solve the 
problem of finding the energy spectrum and the wave function of an 
electron in a type-I core – shell quantum dot. It is shown that the 
size of the core and shell can serve as control parameters for the 
optimisation of the energy structure of the quantum dot in order to 
obtain the real structures with desired electrophysical and optical 
properties. 

Keywords: type-I core – shell quantum dot, Schrödinger equation, 
energy spectrum of the wave function. 

Quantum dots (QDs) are finding wide application in opto-
and nanoelectronic devices [1 – 3]. Among the variety of quan-
tum dots there are several main types that are most frequently 
used in experimental studies and practical applications. First 
of all, these are nanocrystals in glasses and wideband dielec-
tric matrices [4]. Another important type of quantum dots is 
so-called self-assembled quantum dots, which are grown by 
using the Volmer – Weber and Stranski – Krastanov tech-
niques with the help of the methods of molecular beam and 
vapour-phase epitaxy [5]. This type of quantum dots is stud-
ied in many experimental and theoretical papers [6, 7]. Recent 
advances in nanotechnology suggest the appearance of a new 
class of quantum dots, i.e., colloidal nanocrystals. 

In 1993 Bawendi et al. [8] described a method for the syn-
thesis of high-quality nearly monodisperse SdSe semiconduc-
tor nanocrystals. These quantum dots had a high-quality 
crystal structure and a narrow size distribution; however, they 
were weakly fluorescent (the quantum yield was about 10 %). 
A breakthrough was achieved after growing a shell of a wide-
band-gap semiconductor (ZnS) around the core, which made 
it possible to ensure a fluorescence quantum yield (after opti-
mising the technology) of over 80 % at room temperature [9]. 
Such structures were called type-I core – shell quantum dots 
(or core/shell QDs). It should be noted that, despite the large 
amount of experimental work on the preparation and investi-
gation of colloidal nanocrystals, the related theoretical 
research is sufficiently scarce. Describing core – shell quantum 
dots the authors of papers [10 – 12] consider the tunnelling of 
an electron from the QD core through the shell into the envi-
ronment. Real colloidal nanocrystals are prepared as sols; in 
this case, tunnelling is not possible, since the agent stabilising 
the QD is often a dielectric [13]. 

The aim of this study is to develop a theory of the energy 
spectrum of the levels in a type-I core – shell quantum dot 
(Fig. 1). We will show that due to the presence of a shell made 
of a material with a band-gap that is much wider than that of 
the core, there appear additional possibilities of control over 
the position of the quantum levels. 

The energy spectrum and the wave functions of the elec-
tron in a QD are calculated within a model with hard walls. 
We write the stationary Schrödinger equation in the effective 
mass approximation: 
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The electron potential U(r) and effective mass m(r) inside 
a quantum dot have the form 
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Figure 1.  Scheme of a type-I core – shell quantum dot and type of the 
potential energy of an electron as a function of radius: U0 is the height 
of the potential barrier; R0 is the core radius; L is the shell thickness. 
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where U0 is the height of the potential barrier; and m*
1 and m*

2 
are the effective electron masses in the core and shell, respec-
tively. 

Taking into account the spherical symmetry and the type 
of the potential, we find the solution to the Schrödinger equa-
tion using the method of separation of variables: 
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where R
(i)
l (r) is the radial part of the wave function in the cor-

responding regions (i = 1 –  core, and i = 2 – shell); Ylm (q, f) 
are the spherical harmonics; and l = 0, 1, 2, … and m = 0, ±1, 
±2, …, ±l are the orbital and magnetic quantum numbers. 

The radial parts of R
(i)
l (r) satisfy the equation for the 

Bessel function: 
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inside the QD shell, where 
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are the squares of the wave numbers inside the QD core and 
shell, respectively. 

Given the solutions to equations (1) and (2) we have 
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Here С1 and С2 are the normalisation factors determined 
from the condition that the wave functions are equal at the 
core – shell interface, and the normalisations by the discrete 
spectrum: 
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Proceeding from the above reasoning, the wave function 
of an electron in the type-I core – shell quantum dot can be 
written in the form 
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The solvability condition of equations (3) and (4) 
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determines the energy spectrum of electrons with the energy 
E(1) less than U0. 

Let us analyse the evolution of quasi-stationary states in 
the framework of the above model. Figure 2 shows the results 
of the numerical analysis (5) for electrons with E(1) < U0 in the 
type-I core – shell CdSe/ZnS QD [14] (the effective electron 
mass  mCdSe = 0.13m0, mZnS = 0.28m0, where m0 is the mass of 
a free electron; U0 = 0.70 eV; and l = 1). 

The analysis shows that the number of discrete levels with 
E(1) < U0 is finite, and moreover, the discrete levels appear 
only when the radius of the quantum dot exceeds a minimum 
value Rmin. For a fixed value of the angular momentum l, 
equation (5) can have several solutions, corresponding to dis-
crete energy levels with the principal quantum number n. 

The condition that the wave function vanishes on the QD 
boundary, 
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determines the energy spectrum of the electrons with energy 
E(2) > U0: 
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where x is the nth root of the Bessel function of the order l. 
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Figure 2.  Energy spectrum of the electrons [(E(1) < U0)] as a function of 
the core radius of the type-I core – shell quantum dot.
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Figure 3 shows the results of the numerical analysis (6) for 
the electrons with E(2) > U0 in the type-I CdSe(ZnS) core(shell) 
quantum dot (l = 1). The analysis shows that as the radius of 
the core decreases at a fixed shell thickness L the electron 
energy increases substantially due to the quantum size effect. 
One can see from Fig. 3 that the increase in the shell thickness 
from 2 to 3 nm leads to a decrease in the energy of charge car-
riers. Moreover, since the energy of the electrons in the QD is 
independent of the magnetic quantum number m, all the 
states with l ≠ 0 are degenerate in energy with multiplicity 2l + 1. 

Figure 4 shows the generalised energy spectrum of elec-
trons in the type-I CdSe(ZnS) core(shell) QD (l = 1). The 
analysis shows that at some radii of the QD core we can 
observe a jump in the energy of electrons, which is probably 
related to an additional quantum constraint on the charge 
carrier by the QD shell. It can be seen that as the size of the 
QD core increases, the energy levels converge, and at R0 > 
10 nm the quantum size effects at room temperature become 
unobservable. Furthermore, the presence of discrete energy 
levels E(1) < U0 may lead to up-conversion of photons. This 
effect can be observed in the form of fluorescence upon exci-
tation of a quantum dot by laser radiation with the energy 
that is lower than the band gap of the shell material [15]. 

Thus, this model provides a solution to the problem of 
finding the spectrum and wave functions of the electron in the 
type-I core – shell quantum dot. The results obtained can be 
used to grow QDs with specified electrical and optical proper-
ties for opto- and nanoelectronic devices of new generation.
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Figure 3.  Energy spectrum of the electrons [(E(2) > U0)] as a function of 
the core radius of the type-I core – shell quantum dot.  

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1.0 1.5 2.0 2.5 3.0 3.5 4.0 R0/nm

n = 1

n = 2

n = 1

n = 2

n = 3

0

E/eV

E(2)

E(1)

U0 = 0.70 eV

Figure 4.  Energy spectrum of the electrons as a function of the core 
radius of the type-I core – shell quantum dot.


