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Abstract.  We have theoretically studied the effect of difference in 
particle shapes on the appearance of the diffraction pattern, which 
arises in the scattering of a laser beam on a dilute suspension of 
erythrocytes in an ectacytometer. We have proposed data process-
ing algorithms allowing one to estimate the red blood cell shape 
parameter variance under conditions of laser ectacytometry. The 
conclusions of the theoretical analysis are verified experimentally. 
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1. Introduction 

The flow of blood through small blood vessels (capillaries) is 
highly dependent on the deformability of erythrocytes, i.e., 
the ability of red blood cells to change their shape under the 
action of external forces and shear stresses. One of the methods 
of experimental research of deformability of red blood cells 
outside the body (in vitro) is laser ectacytometry that relies 
on the use of viscous friction forces and diffraction of light [1]. 
When illuminating a small amount of red blood cells in the 
suspension, a diffraction pattern appears on the observation 
screen located in the far-field zone, which contains informa-
tion about the shape of the particles under study. 

In the population of red blood cells of a healthy and espe-
cially a sick person, various cells have, in general, different 
ability to deform. This allows us to consider the deformability 
as a statistical characteristic of an ensemble of particles and to 
use for its description such notions as the distribution func-
tion, the mean and the variance. 

The purpose of this paper is to analyse analytically the 
effect of differences in the shapes of the particles deformed 
due to a shear stress on the appearance of the diffraction pat-
tern observed in the case of laser diffractometry of red blood 

cells, as well as to verify experimentally the conclusions of the 
theoretical analysis. 

2. Principle of ectacytometer operation 

In an ectacytometer, the erythrocyte suspension is placed into 
a gap between the walls of two transparent coaxial discs or 
cylindrical glasses, one of which is fixed and the other can be 
rotated at a variable speed (so-called Couette cell)*. The rotation 
of the movable glass causes the fluid flow and the appearance 
of shear stresses that deform red blood cells. In Couette flow, 
the shear rate and shear stress, which is proportional to this rate, 
are constant along the radial coordinate at a fixed speed of the 
cylinder rotation. In some (limited from above) range of shear 
stresses and in the absence of interaction between the particles 
(which is typical for dilute suspensions) the deformable cells 
become stretched and oriented along the fluid flow. To monitor 
the changes in the particle shape, the erythrocyte suspension is 
probed with a laser beam. The ectacytometer provides the condi-
tions for single scattering, which can be easily achieved by dilut-
ing appropriately the investigated cell suspension with a saline. 

Note that in the case of a standard suspension concentra-
tion, instantaneously about a thousand of cells are illuminated 
by the laser beam in the gap of the Couette cell, with some 
cells being constantly replaced by the others moving in the 
flow. This leads to an averaging of the observed diffraction 
pattern with respect to the cell population. 

Generally, in the case of normal blood, the diffraction pat-
tern contains a central intensity maximum and a few barely vis-
ible interference lines, which are similar in shape to the circles in 
the absence of shear stresses and to ellipses, if there are any [1]. 
This indicates that normal red blood cells in the flow acquire a 
shape similar to ellipsoidal one. The diffraction pattern is 
recorded with a video camera and transmitted to the computer. 
A special code makes it possible to observe on the monitor the 
points with the same intensity of light. Commonly for this pur-
pose use is made of the boundary of the central diffraction max-
imum (i.e., the first minimum of the diffraction pattern), which 
is approximated with an ellipse. The ratio of the semiaxes of the 
ellipse as a function of the shear rate (or shear stress) in the 
Couette cell characterises the average red blood cell deform-
ability, which is measured in these experiments. 

3. Red blood cell model 

We model a red blood cell by a transparent elliptical disk, i.e., 
a cylinder whose bottom is formed by an ellipse. The model 
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* For definiteness, in what follows we will discuss the variant with a 
cylindrical Couette cell.
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relies on the images of red blood cells in a shear flow, obtained 
by microscopy and shown in Fig. 1 [2, 3]. Another argument 
in favour of our model is the proximity of the scattering phase 
function from biconcave and flat disks, calculated in the dis-
crete-dipole approximation for small angles. The lengths of 
the semiaxes of the elliptic disk a and b are assumed to be 
random variables: 

a = a0(1 + e),    b = b0(1 – e),

where a0 and b0 are the average lengths of the semiaxes and 
e is a random parameter (the particle shape parameter). We 
assume that the average value of the shape parameter is equal 
to zero: á eñ = 0, and its variance is á e2 ñ º m2 << 1. Thus, the 
inhomogeneity of the ensemble with respect to the shape of 
the particles is weak. In addition, ab » a0 b0, i.e., the elliptical 
discs have approximately the same surface areas and volumes, 
but different eccentricity.

4. Results 

Using the approach developed in our papers [4 – 6], we obtained 
an approximate analytical expression for the distribution of light 
intensity on the observation screen near the central maximum 
of the diffraction pattern. It has the form 
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Here I is the intensity of the scattered light and I (0) is the 
intensity in the central maximum of the diffraction pattern. 
Polar coordinates r and j are given by 
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where x and y are the Cartesian coordinates of points on the 
observation screen; A = q1z/(ka0) and B = q1z/(kb0) are the 
parameters determining the size of the diffraction pattern 
(i.e., the distance from the centre of the pattern to the first dif-
fraction minimum); z is the distance from the volume under 
study to the observation screen; k = 2p/l is the wave number; 
and l is the wavelength of light. Constants q1 and b are the 
parameters of the Bessel function and are defined by the for-
mulas q1 = 3.82 = const, b = –0.4 = const. In deriving (1) we 
assumed that the bases of elliptical discs lie in the same plane, 

perpendicular to the laser beam axis. This is in agreement 
with experimental observations. 

Note that the origin of the coordinates lies at the centre of 
the diffraction pattern. The x axis is directed horizontally and 
the y axis – vertically, with one of the axis being parallel to the 
direction of the flow in the Couette cell, and with the other 
being perpendicular to it. 

5. Characteristics of the diffraction pattern 

To interpret the experimental data obtained by laser diffrac-
tometry of erythrocytes, we introduce some new concepts, such 
as skeletal curve, polar curve, polar intensity, dark points, 
light points, characteristic points. Let us give their definitions. 

A skeletal curve is the locus of points on the observation 
screen, at which the light intensity as a function of distance 
from the point to the centre of the diffraction pattern reaches 
a minimum for the first time. This curve can be found on the 
observation screen in the case of both a homogeneous and an 
inhomogeneous ensemble of particles. The difference lies in 
the fact that for a homogeneous ensemble of particles the 
skeletal curve is the iso-intensity curve, and for an inhomoge-
neous ensemble, the light intensity will not be the same at 
various points on the skeletal curve. 

An iso-intensity curve is a curve on the observation screen, 
on which the intensity of light is constant. 

Dark points are the points of the skeletal curve, at which the 
light intensity reaches a minimum and becomes equal to zero. 

Polar (light) points are the points of the skeletal curve, at 
which the light intensity reaches a maximum.

Polar intensity is the minimum light intensity, at which the 
iso-intensity curve covers the centre of the diffraction pattern. 

A polar curve is an iso-intensity curve passing through 
polar points. In the experiment, the polar curve can be found 
as the curve of the minimum constant light intensity, covering 
the centre of the diffraction pattern. 

Characteristic points are the points, at which the radius 
vectors of the dark points intersect the polar curve.

Using formulas (1) and (2) it is easy to obtain the equa-
tions of the skeletal and polar curves and, also, to determine 
the coordinates of dark, light and characteristic points. The 
equation of the skeletal curve has the form r = 1, or 
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Thus, the skeletal curve is an ellipse with semiaxes A and B. 
Note that this curve would comprise the first minimum of the 
diffraction pattern in the absence of a spread in the particle 
shapes (when m = 0). The ratio of the semiaxes of the skeletal 
curve is equal to the ratio of the sizes of average semiaxes of 
the elliptical discs: A/B = b0 /a0. The distribution of the nor-
malised intensity of light on the skeletal curve is described by 
the expression 

fs = m2 cos 2 2j.	 (3)

The equation of an iso-intensity curve has the form r = 
1 ± cosf 22 2m j- . The lowest light intensity, at which the 
iso-intensity curve is closed and covers the centre of the dif-
fraction pattern is given by the formula  fp = m2, or 
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Figure 1.  Microscopic images of red blood cells in a shear flow [2, 3]. 
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where Ip is the polar intensity. The same light intensity Ip will 
be on the polar curve, which actually represents the boundary 
of the central maximum of the diffraction pattern. According 
to formula (4), this boundary will be the lighter, the greater 
the inhomogeneity of the ensemble of particles. 

The equation of the polar curve has the form 

r(j) = 1 – m|sin 2j|,	 (5)

or, in the Cartesian coordinates, 

x(j) = A(1 – m|sin 2j|) cos j,	
(6)

y(j) = B(1 – m|sin 2j|) sin j.

The dark points have the coordinates xd = ±A/ 2  and 
yd = ±B/ 2 . These expressions follow from formulas (2) for 
r = 1 and j = p/4 + np/2, where n = 0, 1, 2, ... . The dark points 
form vertices of a rectangle on the observation screen. The 
aspect ratio of the rectangle is equal to the ratio of the lengths 
of the average semiaxes of the elliptical discs: xd /yd = b0 /a0. 
According to our model, the intensity of light in the dark 
points must be equal to zero. 

The light (polar) points have the coordinates xp = 0, 
yp = ±B and xp = ±A, yp = 0. These points lie at the inter
sections of the polar curve with the axes of the coordinates 
and form the vertices of a rhombus. The coordinates of char-
acteristic points are as follows: xc = (1 – m) (A/ 2 ), yc = 
(1 – m) (B/ 2 ). 

The skeletal curve, dark and polar points are presented in 
Fig. 2. This figure also shows the polar curve and characteristic 
points. Note that the shape of the polar curve is very close to 
the shape of the iso-intensity curve obtained in [7], where the 
method of laser diffraction was used to study the erythrocyte 
suspension containing normal cells and cells with reduced 
deformability. This fact can be considered as an experimental 
confirmation of our model. 

The existence of four dark points on the boundary of the 
central diffraction maximum, which form the vertices of a 
rectangle can be regarded as an indicator of the inhomo
geneity of the ensemble with respect to the shapes (the degree 
of elongation) of the cells. 

The curves and points we introduced into consideration 
can be found in the diffraction pattern. 

6. Methods for estimating the particle shape 
parameter variance 

The particle shape parameter variance can be determined by 
the characteristics of the polar curve, dark, light and charac-
teristic points. Here are several ways to estimate the parameter 
m from the experimental data obtained by the method of laser 
diffractometry. 

The parameter m can be estimated by making use of the 
light intensity in the polar points

m2 = 1.5Ip /I(0),	 (7)

by making use of the coordinates of dark and characteristic 
points 

m = 1 – lc /ld,	 (8)

by making use of the coordinates of characteristic points 
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by making use of the direction of the tangent to the polar 
curve at the polar point 
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where lc is the distance from the centre of the diffraction pat-
tern to the characteristic points; ld is the distance from the 
centre of the diffraction pattern to the dark point; and c is 
the  angle between the vertical and the tangent to the polar 
curve at the polar point.

Finally, the particle shape parameter variance can be deter-
mined directly by means of formulas (6). In the latter case m 
should be considered as a fitting parameter of the theoretical 
model. The value of m must be sought from the condition of 
the best fit of the shapes of the experimental iso-intensity 
curve and polar curve. 

More accurate estimates can be obtained by numerical 
calculation of the diffraction patterns and more sophisticated 
models of red blood cells. To this end, use can be made of the 
discrete-dipole [8] and ray-wave [9, 10] approximations.

7. Experimental study of an inhomogeneous 
ensemble of red blood cells 

The data presented in Fig. 2 show that when a laser beam is 
scattered on a homogeneous ensemble of deformed red blood 
cells, the boundary of the central diffraction maximum should 
have an elliptical shape (the skeletal curve in Fig. 2). If an 
ensemble of red blood cells contains cells of different shapes, 
the boundary of the central diffraction maximum acquires 
not an elliptical, but, for example, a diamond shape (polar 
curve in Fig. 2). To verify the conclusions of our model, we 
conducted an experiment on scattering of a laser beam on the 
erythrocyte suspension containing cells of different shapes. In 
this experiment, we used rat erythrocytes. We prepared an 
erythrocyte suspension, which contained equal amounts of 
the two cell types: normal (deformable) red blood cells and 
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Figure 2.  ( 1 ) Skeletal and ( 2 ) polar curves, (d) dark, (p) polar and 
(c) characteristic points. The polar curve is constructed by formula (6) 
for m = 0.1.
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red blood cells with reduced deformability. The latter were 
obtained by treating the cells with a solution of glutaralde-
hyde. The photograph of the diffraction pattern is shown in 
Fig. 3b. For comparison, Fig. 3a shows a photograph of the 
diffraction pattern observed in the scattering of the laser 
beam on the suspension of normal (deformable) rat erythro-
cytes. One can see that in Fig. 3a the boundary of the central 
diffraction maximum is elliptical, and in Fig. 3b it is diamond-
shaped. Thus, the experimental data confirm the main con-
clusions of our theoretical model. 

8. Conclusions 

We have considered the effect of different shapes (the degree 
of elongation) of the particles on the appearance of the dif-
fraction pattern produced in the scattering of a laser beam on 
a dilute suspension of erythrocytes in an ectacytometer. An 
analytical expression has been derived for the light intensity 
distribution in the diffraction pattern near the central diffrac-
tion maximum. We have established the relation between the 
erythrocyte shape parameter variance and the characteristics 
of the observed diffraction pattern. The algorithms have been 
proposed to process the experimental data obtained by laser 
diffractometry, allowing one to estimate the erythrocyte shape 
parameter variance in the suspension under study. 

According to our calculations, the diffraction pattern, 
arising in the scattering of a laser beam on an inhomogeneous 
ensemble of red blood cells in the single-scattering regime, 
should have special characteristics. An indicator of the inho-
mogeneity of the ensemble with respect to the particle shapes 
can be the presence of four dark points, which form the verti-
ces of a rectangle, on the boundary of the central diffraction 
maximum. The lighter the boundary of the central diffraction 
maximum (i.e., the higher the intensity of light on the polar 
curve), the greater the inhomogeneity of the ensemble of par-
ticles. Another indicator of the inhomogeneity of the ensemble 
of erythrocytes with respect to the particle shapes is the fact 
that the boundary of the central maximum of the diffraction 
pattern becomes diamond shaped. These and other features 
make it possible to quantify such a population characteristic 
as the erythrocyte shape parameter variance. 

Usually an ectacytometer measures the average deform-
ability of erythrocytes in a blood sample. We believe that it 

can also be used to measure the variance of the red blood cell 
deformability. To do this, it is needed to measure the light 
intensity distribution along straight lines passing through the 
centre of the diffraction pattern (we call them intersecting 
lines). The most important are the horizontal and vertical lines, 
and the lines passing through the dark and the characteristic 
points of the diffraction pattern. 
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Figure 3.  Photographs of the diffraction patterns obtained with a labo-
ratory ectacytometer in the scattering of the laser beam on suspensions 
of different rat erythrocytes: (a) normal (deformable) erythrocytes and 
(b) a mixture of normal (deformable) and non-deformable erythrocytes 
at a ratio of 1:1.


