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Online quantitative analysis of multispectral images

of human body tissues
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Abstract. A method is developed for online monitoring of structural
and morphological parameters of biological tissues (haemoglobin
concentration, degree of blood oxygenation, average diameter of
capillaries and the parameter characterising the average size of tis-
sue scatterers), which involves multispectral tissue imaging, image
normalisation to one of its spectral layers and determination of
unknown parameters based on their stable regression relation with
the spectral characteristics of the normalised image. Regression is
obtained by simulating numerically the diffuse reflectance spec-
trum of the tissue by the Monte Carlo method at a wide variation of
model parameters. The correctness of the model calculations is con-
firmed by the good agreement with the experimental data. The
error of the method is estimated under conditions of general vari-
ability of structural and morphological parameters of the tissue.
The method developed is compared with the traditional methods of
interpretation of multispectral images of biological tissues, based
on the solution of the inverse problem for each pixel of the image in
the approximation of different analytical models.

Keywords: mucosa, multispectral images, haemoglobin, oxygen-
ation degree, diameter of capillaries, multiple regressions, analyti-
cal methods.

1. Introduction

The effectiveness of cancer treatment is primarily dependent
on the accuracy of the diagnosis in the early stages of develop-
ment of a malignant tumour. In the respiratory tract and gas-
trointestinal tract, formation of precancerous lesions and
early cancer usually occurs in the surface layers of the mucous
membrane (hereinafter tissue), the total thickness of which is
200-500 pm [1].

Of all the existing methods for early diagnosis of tumours
affecting the mucous membrane of hollow organs, including
the respiratory and digestive tract, endoscopy still holds the
lead. Contemporary endoscopic systems produce a high-reso-
lution tissue image in real time directly on the computer dis-
play. However, images of the tissue in natural colour are
affected by the anatomical features and spectral sensitivity of
the endoscopic system, which prevents high diagnostic accu-
racy. In addition, conventional endoscopy is based on subjec-
tive assessment of images by a physician, based on his experi-
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ence, expertise and emotional state (colour perception is
reduced if the doctor is tired and enhanced if he is excited).

In the last decade image-enhanced endoscopy has been
widely used in clinical practice [2, 3]. Its essence consists in the
conversion of normal colour images of the tissue (by com-
puter processing) into several spectral images, each of which
corresponds to a specific wavelength of light — from violet
(400 nm) penetrating into the surface layers of the tissue to
red (700 nm) penetrating into deeper layers. This improves
the visibility of blood vessels and other structures in the
mucosa. However, such an endoscopy does not provide infor-
mation about structural and morphological parameters
(SMPs) of the tissue, which quantitatively characterise the
development of pathology.

Structural and morphological parameters of mucous
membranes can be quantitatively assessed by the methods of
diffuse reflectance spectroscopy [4—12], which are based on
the measurement of spectral and spatial characteristics of the
light field scattered by a tissue and on the calculation of the
sought-for quantities within the model of radiation transfer in
the medium under study. For the practical implementation of
these methods, use is made, as a rule, of fibre mini-probes,
administered or embedded in the instrument channel of the
endoscope. The main drawback of these measurements is
their locality, because they allow one to judge the state of the
tissue only at the point of contact with the end of the probe.
Meanwhile, accurate and reliable endoscopic diagnosis
requires information about the distribution of SMPs both in
the suspicious lesion and in the surrounding area. In this
sense, of higher diagnostic capability are the multispectral
imaging methods of biological objects [13—20]. In these meth-
ods, the results of measurements of light scattered by a tissue
are presented in the form of a N, X N,, x N; multilayer matrix,
wherein each kth layer (k=1,..., N;) is a monochrome image
with a spatial resolution N, X N,, obtained in the kth spectral
region. Until recently, the implementation of these methods
required unique and expensive equipment, where high spec-
tral resolution of the image was achieved at the expense of a
significant increase in the duration of the measurements
[13-16]. However, the advent of commercially available tun-
able liquid crystal filters [21, 22], allowing one to perform
high-speed spectral selection of images, permitted similar
measurements to be carried out on a much simpler instrumen-
tal base [17-20]. Currently, the only problem holding back
the practical use of these methods in clinical practice is the
large computational complexity of the quantitative analysis
of multispectral images. Mapping the distribution of SMPs of
a biological tissue involves the solution of the inverse problem
for a large number of pixels of its multispectral image, the
essence of which is to model the process of the light transport
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in the tissue under study and to compare the calculated and
experimental data. The known methods for calculating the
light fluxes scattered by a tissue are either approximate and
do not provide a sufficient accuracy, or involve large compu-
tational costs, and therefore exclude the possibility of real-
time interpretation of experimental data. Moreover, stable
solution of the inverse problem requires that the number of
spectral layers of the image be several times greater than the
number of model parameters, which further complicates the
interpretation of the measurement results in real time.

In this paper we solve the problem of online processing of
multispectral images of mucous membranes and obtain para-
metric maps characterising the development of pathology. It
is already known that the growth of tumours greater than a
few millimetres in diameter is possible only in the case of for-
mation and germination of small capillaries that feed tumour
cells with oxygen and nutrients [23]. As a result, a tumour tis-
sue is different from a surrounding normal tissue by a higher
hyperaemia and smaller blood vessels. Moreover, malignant
neoplasms are characterised by intensive consumption of
oxygen; therefore, the oxygen concentration in the vessels,
diverting blood from the pathological areas, is typically below
the normal level. In this regard, information about the distri-
bution of haemoglobin concentration, the degree of blood
oxygenation and diameters of blood vessels in the mucosa dis-
played on the screen during endoscopy could significantly
improve the current early diagnosis of cancer.

2. Multispectral image processing algorithm
for a biological tissue

The process of obtaining multispectral images of the tissue
can be schematically represented as follows [17-19]. As a
light source illuminating the tissue, a lamp or a ‘white’ light-
emitting diode is used. A tunable optical filter placed in front
of a radiation source ‘cuts’ from a wide spectrum of the emit-
ter narrow spectral components, which are successively deliv-
ered via the optical fibre to the tissue. The light reflected from
the tissue is collected by a lens on a CCD matrix, and a multi-
spectral image of the tissue is formed on the basis of the
matrix photosignals. To avoid glare in the tissue image, which
arises due to the incidence of the reflected light on the light-
sensitive elements, mutually orthogonal polarising filters are
placed in front of the radiation source and the radiation
detection unit. The light reflected from the tissue surface
retains the initial polarisation and therefore is blocked by the
filter in the recording channel. The remaining part of the light
penetrates deep into the tissue and, as a result of multiple
scattering, almost completely loses its original polarisation.
The diffusely backscattered light passes through a polarising
filter in the recording channel and is incident on the CCD
matrix.

The signals at the CCD-matrix output (spectral image lay-
ers) are determined in accordance with the formula

A2
V(x,p, Av) = G(O,x,y)f/l PQA)E(A)t(A) DA)R(x,p,A)dA, (1)

where A is the wavelength; x, y are the coordinates of the tis-
sue surface element; P(4) is the power of the radiation source;
F,(A) is the transmittance of the tunable optical filter in the
kth spectral region Ay, (k= 1,..., N;); t(4) is the transmittance
of the optical fibre, polarisation filters and lenses; D (1) is the
spectral sensitivity of the matrix; R(x, y,4) is the diffuse reflec-
tance of the tissue, which is the ratio of the diffusely reflected

radiation flux to the incident flux; G(6, x, y) is the geometric
factor which depends on the spatial distribution of the tissue
illumination and the angle 6 between the normal to the tissue
surface and the axis of the collecting lens; and A, and A, are the
boundary wavelengths by the detection unit.

Distributions of structural and morphological parameters
p(x,y) of mucosa are conveniently found based on the image
w(x,y, Ap) = V(x,y, AYIV (x,y, Arp) obtained by normalising
the original image V(x,y,A;) to one of its spectral layers
V(x,y, Awp) (reference layer). It follows from (1) that the nor-
malised image w (x, y, A;) is independent of the spatial distri-
bution of the tissue illumination and the tissue position rela-
tive to the scattered radiation detection unit. In this connec-
tion, the dependence of w(x,y,A;) on the spectral
characteristics of the components of the measuring device is
easily taken into account based on the above measurement
for the white diffuse reflector with the diffuse reflectance
independent of A;. When using narrow spectral regions, such
measurements allow one to pass from the normalised tissue
image w(x, y,4;) to the normalised distributions of the diffuse
reflectance of the tissue:

R(x,y, ) _ w(x,p,40)
R(X,y,lref) wO(X,y,/lk) ’

where A, and A,y are centre wavelengths of the regions A; and
Aper; and wg(x, y, Ay) is the normalised multispectral image of
a white diffuse reflector.

Thus, the problem of determining the tissue SMP p(x,y)
can be reduced to the analysis of the spectral dependence of
r(x,y,A1) = R(x,,A)/R (x,y,A.p) for each point of the image.
The proposed algorithm for solving this problem is the same
for all points in the image; therefore, the dependence of the
coefficients r and parameters p on the coordinates (x, y) will
be omitted below for brevity. The spectral coefficients r(4;)
can be represented in the form of a measurement vector r =
(r) with the N; — 1 component r;, = —Inr(4;). With a large
number of spectral image layers it is convenient to use the
method of principal components, the essence of which is to
reduce the dimensionality of the original data and to select
the most essential information. To this end, the vector r is
expanded in the system of orthonormal basis vectors (princi-
pal components)

r=r+GEé, (2

where r is the average measurement vector; G = (g1,..., g7) 1S
the matrix of size (N; — 1) x T with the columns of the main
principal components g, (n = 1,..., T); T'is the number of the
principal component (T'=1,...,N;—1);and €= (&,,...,Ep) are
the expansion coefficients, which are found from the formula

E=G'(r-n) 3)

(t is the transposition operation).

As is known, the optimal approximation of a random vec-
tor r is the decomposition of its covariance matrix in eigenvec-
tors [24, 25]

1 & k-
Sy:?@kgl(r;c —”i)(r;( -7, 4)

where r = (r;) and o = (0;) are the mean value and variance of
the vector r, defined on the basis of the K ensemble of its real-
isations; and 1 < i, j < N; — 1. Due to the rapid convergence
of the expansion in question, the first principal components
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(eigenvectors) corresponding to the largest eigenvalues of
matrix (4) account for most of the variability of r. Thus, we
can significantly reduce the dimensionality of the experimen-
tal data and select several linearly independent components,
which contain as much information as the original data. The
number of linearly independent components is determined by
analysing the eigenvalues /7 (7= 1,...,N; — 1) of the covari-
ance matrix of the coefficients r(1;). To this end, its elements
are divided by the number of spectral segments N;, resulting
in the fulfilment of the condition X/ = 1. Each of the eigen-
values of the resulting matrix determines the relative contri-
bution of the corresponding eigenvector g4 to the variations
of r. The number of linearly independent components is
determined by the number of the smallest eigenvalue for
which /; > 82 [25], where &r is the measurement error 7 (A;).

Thus, to solve the inverse problem we may use not the
coefficients r(4;) directly measured in the experiment, but
their linearly independent components obtained as projec-
tions of the measurement vector r to the space of its eigenvec-
tors of the covariance matrix. The online method for solving
such problems has been proposed in [26—29]. The method is
based on the construction of explicit analytical expressions
Y,, relating the sought-for parameters of the medium, p, with
the linearly independent components (§) of the experimental
data as p = Y,(£,a,), where a, is the vector of the parameters
of the analytical expression. To construct the operators Y, the
radiative transfer model is used in the medium under study,
allowing one, for the given medium parameters, to calculate
the measurement vector r. On the basis of this model, a ‘train-
ing’ ensemble of realisations of p and & is formed, and the
method of least squares coefficients is employed to determine
the coefficients a, of the selected analytical expressions. In
most cases, the relationship between p and & is well described
by polynomial regressions of the form [26—29]:

Tr M
P =aw ), D amE)", )
n=1m=1
where M is the degree of the polynomial and g, are the
regression coefficients. Regressions (5) allow any number of
linearly independent coefficients to used for determining p,
and the increase in M makes it possible to achieve an arbi-
trarily accurate approximation of the statistical relationship
between p and & (although, as a rule, it is sufficient to use
M =3).

3. Optical model of a mucous membrane

The ensemble of SMP realisations and diffuse reflectance
spectra of mucosa required to obtain an average measure-
ment vector r, principal components (gi,..., g7) and regres-
sion coefficients (5) is found on the basis of model calcula-
tions. In the framework of the model used, the radiative
transfer process in a medium is described by its refractive
index #, absorption coefficient k£, mean cosine of the scatter-
ing indicatrix g and the transport scattering coefficient 8’ =
B(1 —g), where f§ is the scattering coefficient.

When the light flux falls on a biological tissue, part of this
flux is reflected from the tissue surface due to the difference of
the refractive index of light at the medium interface. Light
penetrating deep into the tissue is scattered, and then repeat-
edly re-reflected between the inner layers and the tissue sur-
face. In this connection, the surface layer of the tissue has a
significant influence on the characteristics of its diffuse reflec-
tion. To take diffuse reflection into account, the refractive

index of the tissue, , is included in the number of the variable
parameters of the model.

The spectrum k(4) is modelled as a linear combination of
the absorption spectra of oxy- (HbO,) and deoxyhaemoglo-
bin (Hb), which are the major absorbers of light in the visible
region of the spectrum [4-9, 14]:

k(D) = (Do Df Cin B0 S, (1) + (1 = S)enn(R)1(6)

where f, is the volume concentration of capillaries; Cygp, =
150 g L' is the average concentration of haemoglobin in
blood; uy, = 64500 g L' is the molar mass of haemoglobin;
eypo, and ey, are the molar absorption coefficients of HbO,
and Hb [30]; S is the degree of blood oxygenation (the frac-
tion of oxygenated haemoglobin in the total haemoglobin);
and « is the correction factor that takes into account the dif-
ference between the absorptive capacities of haemoglobin
evenly distributed over the tissue volume and haemoglobin
localised in the capillaries [31, 32]. For randomly distributed
capillaries of diameter D, the coefficient & can be calculated
from the equation [32]:

a(Dy,2) =2V3

><1 — exp[— hwn(A) Dy (1 — 0.043lebDv)/2\/§ 7
Ttk () Dy ’

where kyp(1) = (CtHblnIO/ﬂtHb)[SgHboz(l) + (1 = S)emp@)] is
the absorption coefficient of haemoglobin.

The transport scattering coefficient of biological tissues in
the visible region of the spectrum can be approximated with
good accuracy by a power law [12, 33—-35]

B'(A) = Cy/2)", ®)

where 4y = 600 nm; and C = '(A4y) and v are the structural
parameters of the tissue characterising the concentration and
size of its ‘effective’ scatterers. To describe the single scatter-
ing indicatrix of the tissue, use is made of a one-parameter
Henyey—Greenstein function [36, 37] with the scattering
anisotropy factor g.

Thus, the optical model of a mucous membrane is deter-
mined by seven parameters: 7, g, C, v, f,, D, and S. Below we
present following ranges of variations in model parameters
selected by analysing the results of various authors
[4—12, 33-35, 38] for mucous membranes of the oral cavity,
oesophagus, gastrointestinal tract and lungs.

The ranges of variations in the model parameters

Moo e 1.35-1.45
o 0.5-0.95
Clmm™ . .. 0.5-3.0
Vo 0.3-2.0
FolO) . 0.5-20
Dyfum . .« oo 4.5-75
S) . o o 20-98

The diffuse reflectance of the tissue, R(A), is calculated
using the Monte Carlo method [36, 37] in the range A =
450-700 nm with a step in A, equal to 10 nm (N, = 26), which
approximately corresponds to the spectral resolution of mod-
ern tunable optical filters. The calculation was performed for
a homogeneous medium by modelling random trajectories of
5 x 10° photons injected into the medium along the normal to
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the surface. Varying the model parameters, the transport sin-
gle scattering albedo of the medium A’ = g/(k + f') for the
wavelength of 632 nm should not go beyond the range of
0.5-0.98, corresponding to biological tissues.

4. Estimating the number of linearly independent
components in the spectra of diffuse reflection

Based on the above model we formed an ensemble of 103 real-
isations of model parameters and corresponding vectors r =
(ry) with the components r, = —Inr(d;), where r(A,) =
R (AR (Arep); Arer = 700 nm; and k = 1,... , N; — 1. These
data allow us to calculate the average measurement vector r
and eigenvectors g, of its covariance matrix. Then, using for-
mula (3) we can find projections &€ of all realisation of r onto
the space of vectors g, (n=1,...,T) and use the least squares
method to obtain multiple regression coefficients a,,,, between
£ and the model parameters p. However, it is first necessary to
estimate the number of linearly independent components con-
tained in r (1;).

Analysis of the eigenvalues /7 of the covariance matrix of
the coefficients r (4;), shown in Fig. 1, demonstrates that at an
error or < 4% the measured coefficients r (4;) contain five lin-
early independent components. This means that the first five
eigenvectors g, of the covariance matrix (4) listed in Table 1
allow any model realisation of r(4;) to be approximated. The
error of this approximation calculated by the formula

S ) -
SEN I

where N; = 26 and r*(4;) is the approximation of r(1;) by
expression (2), does not exceed 4.7 %.

-5 1 1 1 1
10 1 3 5 7 9 T

Figure 1. First ten eigenvalues of the covariance matrix of the coeffi-
cient r(1;). The horizontal line corresponds to the r(1;) measurement
error of 4%.

It is of interest to estimate the approximation error of the
experimental dependences r(4;) with the help of the found
principal components g,,. For this purpose, use is made of the
results of in vivo measurements of the diffuse reflectance spec-
tra of the mucous membranes of the stomach and lungs, given
in [11, 39]. Measurements were carried out by using a broad-
band light source, spectrophotometer and optical fibres deliv-
ering the exciting radiation from the source to the tissue and
the radiation scattered by the tissue to spectrophotometer.
Because during the endoscopy it is difficult to follow the iden-
tical measurement conditions for the tissue under examina-

Table 1. Average measurement vector 7 and eigenvectors g, of its
covariance matrix.

A/nm - F &
n=1 n=2 n=3 n=4 n=>5

450 2.2809 0.2169  —0.0887  0.5324 0.4289  0.5408
460 1.7752 0.2065 —0.1774 -0.0950 0.3175 -0.0867
470 1.5756 0.2016 -0.1929  -0.2379  0.2615 -0.1538
480 1.4664 0.2017 -0.1916  -0.2954 0.2121 -0.1313
490 1.4673 0.2074 -0.1722  -0.2781  0.1603  —0.0525
500 1.5018 0.2159 -0.1375 -0.2259  0.1102  0.0761
510 1.5779 0.2218 —-0.1060  -0.1513  0.0577  0.1486
520 1.7406 0.2229 -0.1014  -0.0515  0.0028 0.1074
530 2.0215 0.2187 -0.1269  0.1074 -0.0312 -0.0755
540 2.2058 0.2167 —0.1327  0.2442 -0.0525 -0.1521
550 2.1928 0.2212  -0.1043  0.2683 -0.1115 -0.0262
560 2.1252 0.2248 —0.0756  0.2458 -0.1727 0.0535
570 2.1906 0.2184 -0.1216  0.2210 -0.2047 -0.2057
580 2.1993 0.2136  —0.1461  0.1814 -0.2334 -0.3942
590 1.6536 0.2272  -0.0454  -0.0441 -0.3623 -0.0144
600 0.9964 0.2216  0.1012 -0.1445  -0.2964 0.1575
610 0.6885 0.2109  0.1609 -0.1539  -0.2148 0.1617
620 0.4823 0.2050  0.1849 -0.1678  -0.1457 0.1675
630 0.3569 0.1906  0.2308 -0.1205 -0.0562 0.1413
640 0.2757 0.1747  0.2691 -0.0662  0.0105 0.0793
650 0.2167 0.1639  0.2904 -0.0320  0.0403  0.0425
660 0.1620 0.1528  0.3092 0.0084 0.0767  —0.0035
670 0.1151 0.1424  0.3247 0.0380 0.1001  —0.0422
680 0.0701 0.1284  0.3424 0.0912 0.1432  -0.1381
690 0.0275 0.1091  0.3599 0.1413 0.3008  —0.5086

tion and the calibration sample, the diffuse reflectance of the
tissue, Ry, is defined up to a constant factor. This is evident
in the fact that the experimental coefficients of Reyp,(4), shown
in Fig. 2, in some cases, exceed unity. However, for the pur-
poses of this work of interest is the relative spectral variation
in the diffuse reflectance of the tissue.

The experimental spectra Re,(A) of the mucous mem-
branes of the stomach were interpolated to the values of 4,
corresponding to the vectors g, (Table 1) and were normalised
t0 Reyp(Arer = 7000 nm) to obtain the vectors r. Next, formula
(3) was used to calculate the projections of r onto the space of
the vectors g, (n = 1,...,5) and equation (2) was employed
to approximate the dependences Rep(A)/ Rexp(Arer). The results
of the approximation, along with the experimental depen-
dences of Rey,(4), are shown in Fig. 2a. The error 6, for differ-
ent spectra ranges from 1.3% to 2.6%, which is consistent
with the model estimates.

The diffuse reflectance spectra of the mucous membrane
of the lungs are given in [11] for the range A = 475— 675 nm.
This range is narrower than that used in the simulation
(400—700 nm). Therefore, in this case, all model realisation of
R(A) were interpolated to 4, corresponding to the experimen-
tal data, and were normalised to R(A,.; = 675 nm). The data
obtained allowed us to calculate the vectors r and g,,, used to
approximate the experimental dependences Reyp(A)/ Roxp(Arer)-
The corresponding approximation errors amount to 3.9 % for
normal tissues and 5.0% for tumours (Fig. 2b). The latter
value is slightly greater than the upper limit of 6, for the simu-
lated data, but taking into account the measurement error
and digitisation of experimental data, as well as discrepancies
in the wavelengths used in the experiment and model calcula-
tions, this fact is quite natural.
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Figure 2. Approximation of the experimental diffuse reflectance spec-
tra of mucous membranes of (a) stomach and (b) lungs using the five
principal components; points are the experimental data, curves are the
results of calculations by formulas (2), (3). The arrow denotes the direc-
tion of the spectrum numbering.

5. Analysis of the model parameter
retrieval errors

Errors in retrieval of the model parameters p from the spec-
tral coefficients r(4;) are estimated by the closed numerical
experiment, the essence of which is as follows. For each of the
simulated realisation of r(4;), p is calculated using formulas
(3) and (5) by superimposing random deviations within & on
1 (A;) (simulating the optical measurement errors). The result-
ing value of the parameter p* is compared with its value for
the given realisation. After going through all realisations, the
average parameter retrieval error d, is calculated.

The results of the above analysis allow the following con-
clusions to be drawn. Assuming that the model parameters
exhibit total variability (their values are not rigidly fixed) in
the spectral coefficients r (4;), one can determine the degree of
blood oxygenation S, the average diameter of capillaries D,
and the dimensionless parameter v, which characterises the
average size of tissue scatterers and determines the spectral
behaviour of its coefficient 3'(1). As for the total haemoglobin
concentration in the tissue Fyy, = f,Cinp (g L™!) — the most
important parameter in the diagnosis of cancer, the informa-
tiveness of its retrieval (the ratio of the average retrieval error

to the a priori uncertainty) is close to unity. The same applies
to the model parameter C, which is a function of the concen-
tration of the scattering centres and the refractive index of the
tissue. The reason for this is the ambiguity of the inverse
problem solution because it is impossible to separate the con-
tributions of absorption and scattering coefficients into the
coefficients r(4;). In this regard, one can retrieve from r(4;)
only the ratio Fiuy/C or Fyy/B'(A), where A lies within the
range used by the multispectral tissue imaging system.
Fortunately, for most biological tissues we have reliable data
on the coefficient 3'(1), obtained in the laboratory conditions
by the integrating sphere spectrophotometry [12, 33-35]. It
should be also noted that for each type of the tissue 3'(4) var-
ies within a comparatively small limit. Thus, according to
data from [12, 34], for normal stomach tissues and pathologi-
cal lesions of various forms ' (600 nm) lies in the range from
1.73 to 2.4 mm~!. For normal and tumoured lung tissues
p' (632 nm) = 1.02—1.24 [33]. This suggests that in the pres-
ence of a priori information about the type of the biological
tissue, the measured coefficients r(1;) can also help to deter-
mine the haemoglobin concentration in the tissue.

Regression coefficients (5) for the parameters Fiy,/C, S,
D, and v are listed in Tables 2—5. One can judge the accuracy
of the estimates of these parameters by the diagrams shown in
Fig. 3, in which the known values of the parameters p are
compared with the values of p*, retrieved from the coefficients
r(Ay) at or = 2%.

Consider the examples of retrieval of SMPs of mucous
membranes from the experimental spectra of their diffuse
reflection, presented in Fig. 2. The diffuse reflectance spectra
corresponding to the stomach tissue were interpreted on the

Table 2. Regression coefficients a,, (5) for p = In(Fyy,/C) (agy = 1.8724).

n

m

1 2 3
1 0.4492 —-0.0359 0.0047
2 —-0.3411 0.0605 0.0269
3 -0.9042 0.2076 -0.1318
4 —1.3445 0.1198 0.2126
5 0.1033 -0.2700 -0.0668

Table 3. Regression coefficients a,,, (5) for p = In(Fy,/C) (agy = 0.5650).

n

m

1 2 3
1 -0.2187 0.0212 -0.0011
2 -0.5705 —-0.1322 -0.0183
3 -0.1272 0.0479 -0.0118
4 —-0.0766 0.1036 —-0.0264
5 -0.3603 —-0.1485 0.0737

Table 4. Regression coefficients a,, (5) for p = D, (ay, = 34.982).

n

m

1 2 3
1 -5.9109 —-2.3654 0.0846
2 —-68.526 4.2881 0.3785
3 -108.20 35.430 -11.785
4 —68.642 —-0.4489 5.5019
5 64.935 —-12.348 23.519
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Table 5. Regression coefficients a,,, (5) for p = v (ayy = 1.1176).

n
m
1 2 3

1 -0.5089 0.0387 —-0.0012
2 —-0.8043 -0.0379 0.0063
3 0.7425 -0.2666 0.0947
4 —-2.8033 -0.1219 0.6794
5 -1.8771 —-0.5878 0.5382

basis of formulas (3) and (5) with the vectors r, g, and coeffi-
cients a,,, from Tables 1-5. To assess the SMPs of the lung
tissue we used the same formulas, but with the vectors r, g,
and coefficients a,,, corresponding to the spectral range 475
to 675 nm. The parameters Fyyy,, S, D, and v, retrieved from
the experimental dependences Rex,(4)/Rexp(Arer) (Where Ayp is
the right boundary of the spectral range), are listed in Table 6
[according to the numeration of the R.y,(4) spectra in Fig. 2].
The haemoglobin concentrations in the tissue are obtained by
assuming that C is constant for each type of the tissue
(1.39 mm™! for lungs [33], and 1.74 mm™' for stomach [34]).
Unfortunately, the exact values of the tissue parameters cor-
responding to the experimental data are not known; there-
fore, it is impossible to draw conclusions about the accuracy
of their quantitative assessment. However, the parameters
obtained quantitatively characterise the structure and bio-

Table 6. Structural and morphological parameters of the mucous
membranes of the stomach (Nos 1-7) and lungs (Nos 8, 9; Fig. 2b),
retrieved from the experimental diffuse reflectance spectra.

No Fup/e L N D, v

1 1.9 0.77 45 0.39
2 2.7 0.89 49 0.03
3 2.7 0.83 57 0.55
4 4.9 0.91 62 0.11
5 2.5 0.68 65 0.76
6 5.6 0.91 65 1.02
7 7.5 0.96 66 0.94
8 3.8 0.94 60 0.39
9 6.4 0.94 41 0.29

chemical composition of the tissue and hence the maps of
their distributions in the mucous membranes under various
pathological conditions can be used for impartial quantitative
description of these pathologies.

Of interest is to note the significant differences between
the found values of the haemoglobin concentration and capil-
lary diameter for normal and tumoured lung tissues. These
differences are in good agreement with the morphological
changes in the tissue caused by the angiogenesis process [23]
(active growth of small capillaries in the tumour). With regard
to the degree of blood oxygenation, it is identical in both
cases. However, to verify the pathology, of importance is not
a specific value of this parameter but its distribution in the

(Fa/C)' /g L mm
40

301
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1
0 10 20 30 40

(Fap/C) /g L mm
D}/um
60}
40r c
20F
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Figure 3. Results of closed numerical experiments on retrieval of the parameters (a) Fiy,/C, (b) S), (¢) D, and (d) v using the five principal compo-

nents of r(4;) with &r = 2%; 6, is the average parameter retrieval error.
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vascular branches delivering/diverting blood to/from a suspi-
cious neoplasm.

6. Comparison with analytical methods

Traditional methods of analysis of multispectral images of
biological tissues are based on the determination of the spec-
tral values of the diffuse reflectance of the tissue (up to a con-
stant factor) for each point of its image and on the solution of
the inverse problem in the approximation of various numeri-
cal or analytical models [14, 15, 18-20, 38, 40]. In this case,
the same procedure (calculation of the diffuse reflectance of
the medium simulating a biological tissue) is repeated many
times. Obviously, the overall image processing time depends
on the speed of this procedure. In this connection, very popu-
lar among the researchers are various analytical methods of
radiation transfer theory, giving the final result in a simple
analytic form [14, 15,18-20, 40].

Consider the evaluation of the retrieval accuracy of the
SMPs of the tissue using the most popular analytical methods
for calculating diffuse reflectance, as well as the required
computer time. Without getting to the essence of the methods
and assumptions used in them, we give only the basic formu-
las (for more details we refer the reader to papers listed
below).

1. Engineering methods of radiation transfer theory,
developed at the Institute of Physics of the National Academy
of Sciences of Belarus [41, 42], yield for the diffuse reflectance
of a homogeneous medium illuminated by a directed light
beam the expression:

R U=DU=/)R o
1—-f"Ry
where fand ™ are the reflection coefficients from the surface
of a medium during its outside and inside illumination;

Ro=exp(=24/35 ) Ri=(-4y/35)

are the reflection coefficients of a medium without an external
border in the case of directed and diffuse illumination, respec-
tively; e'= k(1 —g) + B’ is the effective attenuation coefficient.

2. In the framework of the diffusion approximation of
radiation transfer theory [43] the diffuse reflectance of a
medium can be calculated by using the expression

R= O.SA’[I + exp(— %)\/3(1 —A) lexpl=v3(1 = A)1,(10)

where A’is the transport single scattering albedo; and 4 =
(L+ /A =17

3. Two-stream theory of Kubelka—Munk [44] describes
the process of the radiation transfer in a medium with the use
of two empirical coefficients (K and S) depending on the
absorbing and scattering properties of the medium. For
known values of these coefficients, the diffuse reflectance of a
medium can be calculated by the formula

[ K 25!
Ro_[1+S<1+\/1+K)] .

Burger et al. [45] showed that when the medium is illumi-
nated along the normal to its surface, one can use 0.2787k
instead of the ratio S/K. To account for light reflection from
the medium surface, we will use formula (9), where Ry = Ry.

4. Based on the Monte Carlo method, Jacques [46]
obtained a simple analytical expression relating the diffuse

(1

reflectance of a homogeneous medium with its optical param-
eters k and 3"

R = Aexp (12)

-7.8
V3(1 = p'lk) ]
where A4 is a constant, the value of which is not essential for
the analysis of the relative spectral variation in R(1).

Substituting expressions (6)—(8) for the coefficients k and
p'into formulas (9)—(12) we obtain the model dependence of
the diffuse reflectance of mucosa on A and the parameters#, g,
C, v, f,, D, and S. Then, using the least-squares method we
can calculate the values of these parameters corresponding to
the minimum difference between the experimental and model
diffuse reflectance spectra of the tissue. The effectiveness of
these analytical models can be estimated on the basis of the
analysis of the diffuse reflectance spectra calculated numeri-
cally by the Monte Carlo method — the most accurate method
for solving the radiation transfer equation, which has no
restrictions on the optical parameters of the medium. For this
purpose, we used the previously obtained ensemble of 10°
realisations of model parameters p and their respective coef-
ficients r (1) = R/ RAyep) (k= 1,...,25; Ao = 700 nm). We
introduced random errors (within 2%) in the spectra r(1;)
and selected the parameters p in the approximation of the
above analytical models. The found values of the model
parameters were compared with the values corresponding to
the spectra ().

The average retrieval errors of the parameters Fyy,/C, S,
D, and v are given in Table 7. It can be seen that the most
accurate estimates of the sought-for parameters correspond
to model 1 (according to the above numbering). However,
their comparison with similar errors for the regression model
(Fig. 3) showed that the accuracy of evaluation of any of the
model parameters did not increase. Model 4 allows one to
obtain satisfactory estimates of the parameters S, Fiy,/C and
v, which however are much less accurate than those obtained
with the regression model. This is apparently caused by an
insufficiently accurate description of the radiation transfer
process by analytical model 4. As shown in [40], the results of
calculations by formula (12) are in good agreement with the
experimental data only for media with A’ > 0.94. Meanwhile,
the variations of the model parameters listed in Section 3 cor-
respond to a much wider range of A’ values — from 0.1 to 0.99.
As for models 2 and 3, they are, as seen from these results,
practically unsuitable for quantitative analysis of the diffuse
reflectance spectra of mucous membranes (at least in the spec-
tral range).

Table 7. Average retrieval error of the model parameters.

Model 5(F1Hb/C) (%7) S (OA») 6DV (%)) Sy (O u)
1 6.9 3.0 15.5 9.0

2 144 13.4 35 37

3 58 12.1 46 26.8

4 15.6 4.1 34 12.71

Consider the evaluation of computer time needed to solve
the inverse problem in the framework of the regression and
analytical models. For a computer with the Intel Core 17-860
processor (2.8 GHz), the average curve fitting time for r(4;)
consisting of 25 points 4, in the approximation of the above
analytical models is 0.42—0.79 s (the shortest time corre-
sponds to model 1, the longest — to model 2). Calculation of
the model parameters based on their regression relation with
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r(Ay), i.e. by formulas (3) and (5), is ~2.3 x 1073 s. It is easy to
calculate, in the first case, the average processing time of
25 normalised spectral layers of images with a resolution of
250 x 250 pixels will be 7 to 14 hours. If use is made of the
regression model, the process of obtaining distribution maps
of the parameters Fyy,/C, S, D, and v will take only 1.45 s,
which suggests the possibility of monitoring (important for
oncology) parameters of mucous membranes in near real-
time.

Thus, the elaborated method allows one to obtain near
real-time maps of the distributions of the tissue parameters
characterising the process of pathology development. This
method may advantageously be used in the course of endo-
scopic examination of mucous membranes of mouth, oesoph-
agus, gastrointestinal tract and lungs. The data obtained by
this method permit passing from the subjective (visual) study
of the mucous membrane to an objective (quantitative) assess-
ment of its condition and significantly reducing the chance of
misdiagnosis.
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