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Abstract.  The boundary problem on the development of a small-
scale instability of arbitrarily polarised plane waves is solved. The 
influence of polarisation on the spatial-perturbation gain is analysed. 
The maximally allowable (i.e., causing no destruction of a nonlinear 
medium) average intensity at a specified input noise is determined 
for arbitrary polarisation.

Keywords: small-scale self-focusing, B integral, elliptical polarisation.

1. Introduction

The fundamental factor limiting the power of up-to-date 
solid-state pulsed lasers is the radiation resistance, which is 
determined by the concentration of defects in the bulk or on the 
surface of laser optical elements, induced by a high light flux. 
Laser systems are calculated so as to keep the radiation inten-
sity below the destruction threshold. Due to the dependence 
of the refractive index on intensity, n(I) = n0 + gnl I (n0 is the 
linear refractive index and gnl is the nonlinear characteristic of 
the medium), self-focusing of light can be observed. The increase 
in the light intensity due to self-focusing may damage laser 
elements. In this context, self-focusing is considered as a limiting 
factor for the power of pulsed solid-state lasers [1 – 3].

For nanosecond solid-state lasers, the most dangerous 
effect is the small-scale self-focusing (SSSF) rather than the 
self-focusing of a beam as a whole [4, 5]. As was shown by 
Bespalov and Talanov [6], small-scale amplitude and phase 
spatial inhomogeneities, which are always present in a beam, 
can be amplified in a cubic nonlinear medium in the presence 
of a high-power wave. This leads to beam splitting into fila-
ments, i.e., to SSSF. 

It is accepted to characterise the development of self-focus-
ing by the critical self-focusing power Pcr and the B integral 
(nonlinear phase shift in a medium of length L):

( ) ( , ) ,dB r I r z z2
nl

L

0

p
l

g= y 	 (1)

where l is the light wavelength. At B > 3 the beam is split into 
filaments, each with a power of about Pcr [6].

Another, no less important factor, which affects signifi-
cantly the development of self-focusing, is the polarisation 

of laser radiation. For example, when passing from linear to 
circular polarisation, the critical power is known to increase 
by a factor of 4 in media with orientational Kerr nonlinearity 
and by a factor of 1.5 in media with electronic Kerr nonlinear-
ity [7]. Using circularly polarised radiation, one can increase 
power in the cases where it is limited by self-focusing.

The SSSF theory considers the development of harmonic 
small-scale perturbations with a transverse wave number k^ 
in a cubic nonlinear medium against the background of an 
intense plane wave passing through it. This problem was solved 
for linearly polarised waves by Rozanov and Smirnov [8]. For 
arbitrarily polarised radiation, Vlasov and Talanov considered 
the exponentially growing solution within the linearised theory 
and found the boundary of the instability domain and the 
maximum increment [9].

The solution obtained by Vlasov and Talanov allows one 
to take into account the energy distribution over all spectral 
components of perturbation with the wave number k^. In 
addition, from the practical point of view, the following two 
factors must be considered. First, linearly or circularly polar-
ised radiation without a small additive of orthogonal compo-
nents cannot be obtained experimentally. Second, while radi-
ation propagates in a laser system, its polarisation may deviate 
from the initial, for example, due to the thermally induced 
birefringence in active elements [10]. Thus, it is necessary to 
find a complete solution to the problem of instability of arbi-
trarily polarised plane waves; specifically this was the purpose 
of our study. We obtained expressions for the main parameters 
characterising the change in the perturbation component when 
passing through a layer of nonlinear medium: the intensity 
gain, the polarisation ellipticity, and the angle of rotation of 
the polarisation ellipse. The influence of small deviation of 
ellipticity from zero or unity on the development of SSSF was 
analysed. We also estimated the maximally possible intensity 
(averaged over the beam cross section) for a specified noise 
level at the input of the nonlinear medium through which 
arbitrarily polarised radiation propagates.

2. Transfer matrix for elliptically polarised 
perturbation waves 

Let us consider the propagation of arbitrarily polarised laser 
radiation in a medium with cubic nonlinearity. In this case, 
it  is convenient to describe the change in the radiation 
parameters in terms of dimensionless complex amplitudes of 
right-handed (Y+) and left-handed (Y–) circularly polarised 
waves:
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where Ex and Ey are the transverse Cartesian components of 
the electric field vector and c is the speed of light in vacuum. 
The equations for the introduced complex amplitudes, which 
describe the propagation of radiation along the z axis in an 
isotropic medium with cubic nonlinearity, are well known 
[11 – 13]:
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where k = 2pn0 / l, D^ is the Laplacian with respect to the 
transverse coordinate r̂ , and the coefficient b is determined 
by the type of nonlinearity.

The nonlinearity due to the orientational Kerr effect plays 
an important role in liquids and gases. It arises in media with 
anisotropically polarised molecules and implies preferred ori-
entation of the polarisation axes of molecules along the elec-
tric field. In this case, b = 6 [14]. In solids the orientational 
Kerr effect is close to zero, and the dominant mechanism for 
nanosecond (and shorter) pulses is the electronic Kerr nonlin-
earity. This effect is caused by deformation of electron orbitals 
of atoms. Here, b = 1 [14].

Vlasov and Talanov [9] investigated the stability of the 
solution to system (2) in the form 
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where Y0± = const are the complex amplitudes correspond-
ing to an intense wave. Based on expression (3), one can easily 
determine the angle of rotation of the polarisation ellipse of 
the fundamental wave F0, which is due to the field-induced 
anisotropy in a medium with cubic nonlinearity. This angle is 
equal to the half phase difference of the left- and right-handed 
circularly polarised radiation components: F0 = 0.25b( |Y0– |2 – 
|Y0+ |2 )kz. It was found in [9] that weak harmonic perturba-
tions with a dimensionless transverse wave number k = ±k̂ /k 
are unstable in the spatial frequency band 
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with the instability increment 
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Analysis of expressions (4) showed that, when the funda-
mental-wave polarisation changes from linear (Y0+ = Y0–) to 
circular (Y0+ = 0 or Y0– = 0), the k2cr value, which determines 
the boundary of the instability domain, decreases by a factor 
of 1.5 for b = 1, provided that the intensity remains the same. 
Indeed, in the case of linear polarisation, the instability 
boundary is 

k2cr  lin = 4gnl I/n0,	 (6)

whereas for circular polarisation

k2cr  circ = 8/3 gnl I/n0.	 (7)

Therefore, circularly polarised waves are spatially more stable [9].
Expression (5) allows one to find the amplitude of har-

monic perturbations with a maximum increment at the out-
put of a nonlinear element (NE) but yields no data on the 
amplitude of other growing perturbations. Hence, one cannot 
calculate the gain for a perturbation wave (noise component) 
with a wide perturbation spectrum. In addition, the phases 
and polarisations of the noise component at the NE output 
remain unknown. To determine these parameters, we will find 
the general solution to the boundary problem on the develop-
ment of harmonic small-scale perturbations with a transverse 
wave number k. Detailed consideration of this problem is 
given in the Appendix. The solution will be presented in terms 
of the matrix Ut , which links the modulus |y±| and the phase 
j of the complex amplitudes of left- and right-handed circu-
larly polarised components of the perturbation wave at the 
input and output of a nonlinear medium of length L:
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Let us briefly dwell on the selected polarisation types (linear 
and circular), because both the fundamental wave Y0± and the 
perturbation wave, propagating in an NE, retain their polarisa-
tions. Therefore, the size of the matrix Ut  reduces to 2 ́  2.

The complex amplitudes of the circularly polarised pertur-
bation components y± change equally in the case of linearly 
polarised fundamental wave. The expression for the matrix Ut , 
which determines the change in the parameters of the perturba-
tion component after the passage through a nonlinear medium 
of length L, was obtained for the first time by Rozanov and 
Smirnov [8]:
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In the case of right(left)-handed circularly polarised radiation, 
the transfer matrix Ut  for the complex amplitudes y± takes the 
form
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Formulas (9) and (10) are particular cases of the general 
form of matrix Ut , the expressions for which are given in the 
Appendix. The waves with a polarisation corresponding to the 
amplitudes y± acquire a phase shift k^2Ln0 /(2k) with respect 
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to the fundamental wave. Expression (9) is transformed into 
(10) at the replacement В ® 1.5В. Note that this holds true 
only when the change in B is related to the change in intensity. 
If the change in B is related to the change in the NE length L 
(i.e., B /L = const), this statement does not hold true.

3. Propagation of elliptically polarised  
perturbation wave 

3.1. Ellipticity and the angle of rotation of the polarisation 
ellipse

The transfer matrix Ut  allows one to determine the ellipticity 
and the angle of rotation of the polarisation ellipse for a per-
turbation component at the NE output. These characteristics 
depend on the spatial frequency k, the initial perturbation 
phase j(z = 0) = j0, and the intense-wave polarisation at the 
NE input. Below we assume that the initial polarisation of 
the  noise component coincides with the fundamental-wave 
polarisation.

The expressions for the polarisation ellipticities of the fun-
damental (S ) and perturbation (s) waves have the form
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When passing from right- to left-handed circularly polarised 
radiation, the S and s values change from –1 to +1. The char-
acteristic changes in s at the NE output are described in 
Subsection 3.3.

The angle of rotation of the polarisation ellipse of the per-
turbation component F is proportional to the phase difference 
of the left- and right-handed circularly polarised perturbation 
components:
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The thus introduced angle F does not contain the rotation 
of the polarisation ellipse by the angle F0, which is acquired 
by the perturbation component along with the intense wave. 
Obviously, the resulting angle of rotation of the perturba
tion‑wave polarisation ellipse is the sum of F and F0. At large 
values of the B integral (B ~ 3), the angle F0 may be as large 
as several tens of degrees, while the angle F, by which the 
polarisation ellipse of the noise component is additionally 
rotated, does not exceed 10°.

Calculations showed that the polarisation of the perturba-
tion component at the NE output (in contrast to the NE input) 
does not coincide with the fundamental-wave polarisation, 
because we have different polarisation ellipticities (s ¹ S ) and 
angles of rotation of the polarisation ellipse (F ¹ 0). It is con-
venient to describe this polarisation difference by the overlap 
integral
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which indicates what part of the perturbation wave power 
Enoise (L) at the NE output is present in the fundamental wave 

E0 (L). For example, in the case of linearly or circularly polar-
ised radiation, the integral c = 1, because the polarisation of 
the perturbation component is retained in these cases.

3.2. Gain of the perturbation component 

When radiation passes through a nonlinear medium, it is 
convenient to describe the change in the modulus of complex 
perturbation amplitudes in terms of the intensity transfer 
coefficient:
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If the phase delay j0 of the high-power wave with respect 
to the perturbation wave at the input of the nonlinear medium 
is known, one can use (8) to obtain the gains of the right- and 
left-handed circularly polarised components G+ and G– :

G+(k, j0, S, z) = [cos j0 (V11 + Q11 tan q0) 

	 + sin j0 (V12 + Q12 tan q0)]2 + [cos j0 (V21 + Q21 tan q0)

	 + sin j0 (V11 + Q11 tan q0)]2,	

(15)

G–(k, j0, S, z) = {[cos j0 (Q11 + U11 tan q0) 

	 + sin j0 (Q12 + U12 tan q0)]2 + [cos j0 (Q21 + U21 tan q0)

	 + sin j0 (Q11 + U11 tan q0)]2}/tan2q0,

where q0 = (p/4)(S + 1). The expression for the gain of the 
perturbation component with an arbitrary polarisation ellip-
ticity S has the form
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Note that the SSSF theory of Bespalov and Talanov [6] con-
siders a partial, exponentially rising solution, for which the 
boundary of the instability domain is kcr. By definition, the 
perturbation gain beyond this region does not exceed unity. 
In this study we found the complete solution to the problem 
on the development of small-scale instability; therefore, kcr 
is the conditional boundary of the instability domain, and, at 
k2 > k2cr , the gain G can be much larger than unity.

Using (16), one can show that the maximum noise gain 
G for linear and circular polarisations is determined by the B 
integral: Gmax(S = 0) = exp(2B), Gmax(S = ±1) = exp(4/3B); 
these expressions coincide with the formulas derived in [5, 8].

Figure 1 shows the two-dimensional distribution of the 
total gain G(k, j0) for radiation with S = 0.5, the wavelength 
l = 1064 nm, and the intensity I0 = 3.2 GW cm–2 (averaged 
over the beam cross section), propagating through a layer 
of  nonlinear medium of length L = 33 cm; the medium was 
taken to be laser neodymium glass ( gnl = 3.2 ́  10–7 cm2 GW–1). 
It follows from expression (16) that each set of parameters 
(k, j0, S ) corresponds to a particular polarisation ellipse. Thus, 
the perturbation wave with initially uniform polarisation is 
split into differently polarised domains.

It follows also from (16) that in the G(k, j0) plane one can 
plot the curves
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along which the gain is maximum, and the curves

j0
min(k) = 

2
p  + j0max(k),	 (18)

along which G is minimum (here, m are integers). In Fig. 1 
these curves are presented by solid and dashed bold lines, 
respectively. The variables j±

max   in expression (17) have the 
same meaning as j0

max but for each component y± separately:

j+
max(k) = 1/2 arctan[2({Q11 tan[(p/4)(S + 1)] + V11}

	 ´{(Q12 + Q21) tan[(p/4)(S + 1)] + V12 + V21})
	 ´ ({Q21 tan[(p/4)(S + 1)] + V21}2

	 – {Q12 tan[(p/4)(S + 1)] + V12}2 )–1] + pm,	
(19)

j–
max (k) = 1/2 arctan[2({U11 tan[(p/4)(S + 1)] + Q11}

	 ´{(U12 + U21) tan[(p/4)(S + 1)] + Q12 + Q21})
	 ´ ({U21 tan[(p/4)(S + 1)] + Q21}2

	 – {U12 tan[(p/4)(S + 1)] + Q12}2 )–1] + pm.

Note that it is not only the amplitude of the perturbation 
wave that changes but also the phases j±, which are deter-
mined through the elements of the transfer matrix Ut  at the 
NE output:

tan j+(k, j0, S, z) = (V21 + Q21 tan[(p/4)(S + 1)]

	 + tan j0{V11 + Q11 tan[(p/4)(S + 1)]})

	 ´ (V11 + Q11 tan[(p/4)(S + 1)]

	 + tan j0{V12 + Q12 tan[(p/4)(S + 1)]})–1,	 (20)

tan j–(k, j0, S, z) = (Q21 + U21 tan[(p/4)(S + 1)]

	 + tan j0{Q11 + U11 tan[(p/4)(S + 1)]})

	 ´ (Q11 + U11 tan[(p/4)(S + 1)]

	 + tan j0{Q12 + U12 tan[(p/4)(S + 1)]})–1.

These expressions, in combination with (16), can be used 
to develop methods for suppressing SSSF in two successively 
located NEs, as was done in [5, 15, 16].

3.3. Integral characteristics of the perturbation component 

When solving practical problems, it is important to calculate 
the above-introduced characteristics of the perturbation com-
ponent in the entire range of instability (4) rather than at 
some spatial frequency k. For correct comparison of amplifi-
cation of perturbation waves with different polarisations, we 
will perform averaging over j0 and k. Averaging over k will be 
carried out in the widest range of instability 0 < k2 < k2cr  lin, 
corresponding to the linear polarisation
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where kcr  lin, G, s, and c are given by formulas (6), (16), (11), 
and (13), respectively. Averaging is performed on the assump-
tion that the perturbation wave amplitude at the NE input is 
independent of k; i.e., the noise component power is uniformly 
distributed over spatial frequencies. The dependences of áGñ, 
ásñ, and á cñ on the B integral and S are shown in Figs 2 and 3. 
Calculation based on formula (22) showed that, while radia-
tion with S ¹ 0, ±1 propagates in an NE, the perturbation-
wave ellipticity decreases in modulus; i.e., the polarisation 
becomes closer to linear (Fig. 2a). Thus, a small deviation 
(caused by the presence of orthogonal component) of the 
intense-wave polarisation S from ±1 may lead to a small 
increase in the self-focusing instability for waves with a polar-
isation close to circular.

The dependences shown in Fig. 2b suggest that the pertur-
bation-wave polarisation varies only slightly: á cñ decreases by 
no more than 0.04. The overlap integral for an initial polarisa-
tion close to linear or circular only slightly differs from unity; 
therefore, formulas (9) and (10) can be used in calculations.

The dependence áG(S, В)ñ indicates an advantage of circu-
lar polarisation in comparison with linear (Fig. 3). Let us con-
sider this situation in more detail. Recall that the transition 
from linear to circular polarisation leads to narrowing of the 
instability band by a factor of .1 5  [see (6), (7)], and the 
maximum gain for circular polarisation is equal to that for 
linear polarisation if the replacement В ® 1.5В is made. 
Therefore, at first glance, the solution to the problem of insta-
bility for radiation with linear polarisation and a specified B 
integral coincides with that for circularly polarised radiation 
and a B integral increased by a factor of 1.5. However, this 
does not always hold true, and the mean gain for a circularly 
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Figure 1.  Two-dimensional distribution of the total gain G(k, j0) of the 
perturbation component at the output of NE of length L = 33 cm, made 
of laser neodymium glass with gnl = 3.2 ́  10–7 cm2 GW–1, through which 
radiation with S = 0.5, l = 1064 nm, and intensity I0 = 3.2 GW cm–2 
(B = 2) propagates.



25Small-scale instability of elliptically polarised waves in a medium with cubic nonlinearity

polarised wave (even with a B integral increased by a factor of 
1.5) can be smaller than for a linearly polarised one.

The point is that the instability boundary kcr [see (6), (7)] 
is determined by only the intensity, whereas the maximum 
gain depends on the B integral, i.e., the intensity and NE 
length. Below we will investigate the dependence of the gain 
on the intensity and NE length using the data in Fig. 4.

The dependences G[k, j0
max(k)] for linear (B = 2) and cir

cular (B = 3) polarisations coincide [curve ( 2 )], because an 
increase in the B integral is related to a rise in intensity. 
However, curve ( 4 ), although corresponding to the circular 
polarisation with B = 3, differs from curve ( 2 ): the maximum 
gain is 55 for both curves, but its mean is obviously smaller 
for curve ( 4 ) (i.e., for a long NE).

Let us consider the case where the B integral grows due 
to the increase in intensity. We will compare the mean gain of 
the perturbation component for linear polarisation at B = 2 
and circular polarisation at B = 3. Despite the fact that curves 
G[k, j0

max(k)] coincide in these cases, averaging according to 
expression (21) will be performed in different ranges of kcr  lin 
values, which are determined by the following pairs of the 
parameters I0 and L: I0 = 3.2 GW cm–2, L = 33 cm and I0 = 
4.8 GW cm–2, L = 33 cm, respectively. As follows from (6), 
the interval for the first pair of parameters is smaller than for 
the second pair; therefore, áG(S = 0, В = 2)ñ = 20, whereas 
áG(S = ±1, В = 3)ñ = 14.4 (Fig. 3).

The áG(S = ±1, В = 3)ñ value is retained for larger B 
values corresponding to longer NEs. Indeed, for S = ±1, 
I0 =  3.2 GW cm–2, and L = 49.5 cm, G[k, j0

max(k)] runs the 
same values as at I0 = 4.8 GW cm–2 and L = 33 cm, but in 
the range of spatial frequencies narrowed by a factor of .1 5 ; 
this leads again to áG(S = ±1, В = 3)ñ = 14.4.

4. Limiting noise level 

Small-scale amplitude spatial inhomogeneities, which are 
always present in a beam, are amplified against the back-
ground of intense wave. As a result, the fraction of power in 
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polarisation at the output of a nonlinear medium of length L = 33 cm 
( gnl = 3.2 ́  10–7 cm2 GW–1), through which radiation with l = 1064 nm 
propagates, for different B values.
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the noise component increases and, therefore, the beam-
intensity modulation is amplified. Finally, this leads to optical 
breakdown. These effects can be minimised by controlling the 
noise power in the input beam, choosing appropriate polari-
sation, and reducing the B integral. As was indicated above, 
the reduction of the B integral due to the decrease in intensity 
is not equivalent to the reduction related to a decreased NE 
length. Let us formulate requirements to the intensity averaged 
over the beam cross section at a specified noise level at the NE 
input for arbitrarily polarised radiation.

Let the noise power Pn  in at the NE input be distributed 
uniformly in the interval k Î [0, K ] and set by the power spec-
tral density p0 = const:

2 ,dP pn in

K

0
0

p k k= y 	 (24)

K > kcr for arbitrary polarisation and any intensity. Further
more, we assume for definiteness that K = 3 ́  10–3. Then, at a 
áGñ value much larger than unity, the noise power Pn  out at the 
NE output can be estimated from the formula

Pn  out = 
K
cr lin
2

2k  áGñ á cñ Pn  in.	 (25)

Here, the first factor is due to the following: when calculating 
áGñ from formula (21), we integrated up to kcr  lin. The factor 
á cñ indicates that we are interested in the noise power for only 
the polarisation coinciding with that of the fundamental wave, 
because the perturbation component with orthogonal polari-
sation does not interfere with the intense wave and, therefore, 
hardly contributes to the intensity modulation.

To characterise the beam inhomogeneity, some researchers 
use the ratio of the peak intensity to its average value, Ipeak /I0, 
[15] and some apply the ratio of rms deviation of intensity to 
its average value: Irms /I0 [17, 18]. The Ipeak, I0, and Irms values 
are related to the fundamental-wave power P and the noise 
component power Рn by the following empirical formulas [15]:

/ / ,I I P P1 5peak n0
2

= +^ h 	 (26)

/ / .I I P P1 1rms n0
2

= + -^ h 	 (27)

The peak intensity at the NE output should not exceed the 
limiting value, determined by the breakdown threshold; it will 
be denoted as Ith. Using formulas (25) – (27), we arrive at a 
transcendental equation for the maximally allowable value 
(it will be denoted as Imax ) of the average beam intensity as a 
function of polarisation ellipticity S and the fraction of the 
noise component power at the NE input (Pn  in /P ):

Ith /Imax = ( , )
K

G I P
P1 5 max

cr lin n in
2

2
2

k cS+f p ,	 (28)

where kcr  lin, áGñ, and á cñ are determined by expressions (6), 
(21), and (23), respectively. Figure 5 shows the results of solu-
tion of Eqn (28) for Pn  in /P = 2.2 ́  10–4 and 6.1 ́  10–4, i.e., 
according to (27) at Irms /I0 = 3 % and 5 %, respectively.

First of all, we should note that for all curves Imax changes 
gradually from minimum for linear polarisation (S = 0) to 
maximum for circular polarisation (S = ±1); the range of 
variation does not exceed 1.5. The reason is as follows: when 
I0 increases by a factor of 1.5 and linear polarisation changes 
to circular, the gain áGñ (and, therefore, the ratio Ipeak /I0) 

barely changes; however, the Ipeak value increases by a factor 
of 1.5. For the same reason, Imax and Bmax are far from pro-
portional to Ith. Comparison of curves ( 1'  ) and ( 3'  ), ( 1''  ) 
and ( 3''  ) (Fig. 5a) shows that an increase in Ith by a factor of 
21/3 leads to an increase in Imax by factors of 1.6 and 1.8 for 
linear and circular polarisations, respectively. The rise in Imax 
and Bmax with a decrease in the noise level barely depends on the 
polarisation ellipticity S (the curves with single- and double-
primed numbers are almost parallel).

It was found in [5] that a decrease in the input beam noise 
power by a factor of about 6 (3) makes it possible to increase 
the B integral by unity (half) at the same Ith /Imax ratio. This 
result is confirmed by comparison of curves ( 1''  ) in Fig. 5a 
and ( 1' ) in Fig. 5b. The decrease in the noise power by a fac-
tor of 3, which indicates, according to (27), a decrease in Irms /
I0 from 5 % to 3 %, allows one to increase Bmax approximately 
by half, provided that the Imax value is retained.

Comparison of Fig. 5a at S = 0 and 5b at S = ±1 shows 
that an increase in the NE length by a factor of 1.5 and transi-
tion from linear to circular polarisation barely changes the 
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Figure 5.  Dependences of the maximally possible intensity Imax, averaged 
over the beam cross section, and the value Bmax = kgnl ImaxL/n0 on the po-
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with lengths L = (a) 33 and (b) 49.5 cm.



27Small-scale instability of elliptically polarised waves in a medium with cubic nonlinearity

Ith value; therefore, Bmax increases by a factor of ~1.5. This 
small difference is explained by the dependence of the insta-
bility boundary kcr on the intensity and polarisation type 
[see (6), (7)] and the dependence of the maximum gain Gmax 
on the intensity, NE length, and S. For the aforementioned 
reasons, kcr(S = 0) > kcr(S = ±1), while Gmax and the boundary 
kcr coincide in the cases we are interested in. Therefore, the 
product k2cr  lináG(S = 0)ñ is larger than k2cr  lináG(S = ±1)ñ.

Comparison of Figs 5a and 5b shows also that the use of 
a short NE at specified Ith and Irms /I0 values allows one to 
obtain larger Imax but smaller Bmax values. From the practical 
point of view, it is generally important to increase intensity 
rather than reduce the B integral; therefore, short NEs are 
preferred. However, an increase in Imax is not proportional to 
decrease in the NE length. It can be seen in Fig. 5 that a reduc-
tion of the NE length by a factor of 1.5 increases Imax by less 
than 20 %.

5. Conclusions

We solved the boundary problem on the development of 
harmonic small-scale perturbations with a transverse wave 
number k̂  against the background of an intense arbitrary 
polarisation plane wave propagating in a medium with cubic 
nonlinearity. Analytical expressions were obtained for the 
elements of the transfer matrix, which links the complex 
amplitudes of the perturbation component at the input and 
output of the nonlinear medium. The dependences of the 
means of the ellipticity of perturbation-wave polarisation ásñ, 
the overlap integral á cñ, and the gain áGñ on the fundamental-
wave polarisation ellipticity S and the B integral were analysed.

While radiation with S ¹ 0, ±1 propagates, the ellipticity of 
the perturbation-component polarisation decreases in modulus; 
i.e., the polarisation becomes closer to linear (Fig. 2a). Thus, 
a small deviation (due to the presence of orthogonal component) 
of the intense-wave polarisation S from ±1 may increase the 
self-focusing instability for the waves with polarisation close 
to circular.

The polarisation of a perturbation wave during its propa-
gation changes almost in the same way as that of the intense 
wave: the deviation of the overlap integral from unity at the 
output of a nonlinear medium does not exceed 4 % (Fig. 2b). 
If the polarisation is close to linear or circular, the overlap 
integral barely differs from unity; therefore, formulas (9) and 
(10) can be used to calculate the gain.

The perturbation áG(S, В)ñ is maximum for linear polari-
sation and minimum for circular polarisation. It has the 
same value for these polarisations if the B integral for circular 
polarisation is larger by a factor of 1.5 (due to the increase 
in the length of the medium at the same intensity). However, if 
the B integral is increased by a factor of 1.5 due to the increase 
in intensity, the gain is even smaller than for linear polarisa-
tion. For example, for linear polarisation áGñ = 20 at B = 2 
(Fig. 3), whereas for circular polarisation áGñ = 14.4 at B = 3.

We determined the maximally allowable (causing no 
destruction of NE) mean intensity Imax at a specified limiting 
intensity Ith and noise level for radiation with arbitrary polar-
isation (Fig. 5). It was shown that retainment of the Ith /Imax 
ratio at the same level and decrease in the noise power by a 
factor of 3 make it possible to increase the maximally allow-
able value of the B integral (Bmax) by approximately 0.5.

An increase in the nonlinear-medium length by a factor of 
1.5 and transition from linear to circular polarisation barely 
change Ith; therefore, Bmax increases by a factor of 1.5. At the 

same time, in regard to the Imax value, the initial conditions 
1.5I0, L, S = ±1 and I0, 1.5L, S = ±1 are not equivalent. At 
specified Ith and Irms /I0 values for any polarisation, larger 
allowable Imax values can be obtained in shorter NEs, while 
longer NEs provide larger Bmax values.

Appendix

Having substituted the expression 

Y± = (Y0± + y±) | | (1 ) | | ,exp i kz
2 0

2
0

2bY Y- + +! "6 @' 1

(y– = [A1(z) + iA2(z)] cos(k^r̂ ) and y+ = [B1(z) + iB2(z)] 
´ cos(k^r̂ ) are small perturbations) into (2), we obtain a sys-
tem of differential equations for the real and imaginary parts 
of the complex amplitudes of perturbation waves:

A ,
d
d

k z
A2 1 2

2k=-

| | 2(1 ) ,
d
d

k z
A A B2 22 2

0
2

1 0 0 1k bY Y Y= - - +- - +^ h 	

(A1)

B ,
d
d

k z
B2 1 2

2k=-

| | 2(1 ) .
d
d

k z
B B A2 22 2

0
2

1 0 0 1k bY Y Y= - - ++ - +^ h

The left-hand side of system (A1) contains a derivative of the 
column vector 
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with respect to the longitudinal coordinate.
The right-hand side can be presented as a product of the 

4 ́  4 matrix Mt , whose elements are constants, and the same 
column vector. In this case, the solution to (A1) can be written 
as a matrix exponential:
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where y±(0) are the perturbation amplitudes at the input of 
nonlinear medium; j0 is the initial phase of perturbation with 
respect to the fundamental wave; and 
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is the transfer matrix, whose elements have the form 
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Here, the following designations are introduced for conve-
nience: 

a = k2 – 2|Y0–|2;   b = 2(1 + b)Y0+Y0–;   c = k2 – 2|Y0+|2;

K1 = |Y0+|2 – |Y0–|2 – D;   K2 = |Y0–|2 – |Y0+|2 – D;

K3 = |Y0+|2 – |Y0–|2 + D;   K4 = |Y0–|2 – |Y0+|2 + D;
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