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Abstract.  We have theoretically investigated the spectral features 
of the light-induced drift (LID) effect, arising due to the depen-
dence of the collision broadening g and shift D of the absorption line 
on the velocity of resonance particles, u. It is shown that under cer-
tain conditions, account of this dependence can radically change the 
spectral shape of the LID signal, up to the appearance of additional 
zeros in the dependence of the drift velocity on the radiation fre-
quency. 

Keywords: kinetic equation, light-induced drift, collisions, collision 
broadening, collision shift. 

1. Introduction 

Light-induced drift (LID) [1] refers to the number of the most 
powerful effects of the radiation on the translational motion 
of particles and has been well studied both theoretically and 
experimentally (see, for example, [2 – 9] and references 
therein). The essence of the effect is the appearance of a mac-
roscopic directional flow of particles that absorb the radia-
tion and are in a mixture with buffer particles. 

The magnitude of the LID effect is proportional to the 
relative difference between the transport collision frequencies 
of the resonance particles in the ground and excited states 
with buffer particles. Until recently all the experimental 
results of the LID study were well described by the theory of 
light-induced drift with the velocity-independent transport 
collision frequencies [2 – 7]. This theory gave a characteristic 
dispersion-like (tilde-like) frequency dependence of the drift 
velocity uL(W) with one zero at zero detuning W of the radia-
tion frequency (the so-called normal LID, see below the 
dashed curves in Figs 2c and 3b – d). In 1992, in studying the 
LID of C2H4 molecules in a Kr buffer gas, Van der Meer et al. 
[10] found an unexpectedly sharp deviation of the frequency 
dependence of the drift velocity uL(W) on the dispersion-like 
curve: the authors observed an anomalous spectral LID 
velocity profile with three zeros instead of one. The difference 
from the predictions of the theory was so strong that the effect 
was called ‘anomalous LID’. By now anomalous LID has 
been largely studied both experimentally [8, 10 – 17] (anoma-

lous LID was observed for C2H4 molecules in buffer gases Ar, 
Kr, Xe, SF6 [10, 12, 13, 15, 17], for HF molecules in buffer 
gases Ar, Kr, Xe [14, 16], for CH3F molecules in a buffer gas 
Kr [11], for potassium atoms in the buffer mixture of neon 
with other inert gases [8]) and theoretically [9, 13, 15, 17 – 23]. 
It was found that this effect is entirely due to the dependence 
of the transport collision frequencies on the velocity u of reso-
nance particles, the abnormality occurring only when the dif-
ference of transport collision frequencies Dv(u) on the com-
bining (affected by radiation) levels changes sign as a function 
of u. 

In the theory of light-induced drift it is usually assumed 
that the collision broadening g and shift D of the levels do not 
depend on the velocity u of resonance particles: 

g(u) = g0 = const, D(u) = D0 = const.	 (1)

In the case of normal LID [when the difference of transport 
collision frequencies Dv(u) does not change its sign], the influ-
ence of dependences g(u) and D(u) on the LID line shape is 
insignificant and can be ignored. This effect is also negligible 
in the case of anomalous LID if the Doppler width of the 
absorption line is much greater than the collision broadening 
of the line (at g0 << kuT, where kuT is the Doppler width). 
That is why assumption (1) is used in the theory of anomalous 
LID. In the case of a significant excess of the collision broad-
ening of the absorption line by the Doppler line width (at 
g0 >>  kuT), assumption (1) can lead to severe distortion of the 
calculated line shape of anomalous LID. This fact was found 
out in theoretical paper [20] in the case of the Lorentz gas (the 
limiting case of heavy buffer particles). 

Apart from work [20], no other studies of the effect of the 
dependences g(u) and D(u) on the LID line shape have still 
been conducted. In this paper, this effect is studied for the 
general case of an arbitrary ratio of the masses of the absorb-
ing and buffer particles and an arbitrary ratio of the homoge-
neous and Doppler widths of the absorption line. 

2. Drift velocity 

Consider the interaction of a travelling monochromatic elec-
tromagnetic wave E  = [Eexp(ikr – iwt) + c.c.]/2 with two-level 
absorbing particles that are mixed with the buffer particles. 
We will neglect the collisions between the absorbing particles, 
assuming the buffer gas concentration Nb to be much higher 
than the concentration of the absorbing gas N. The interac-
tion of the particles with the radiation is described by the 
equations for the density matrix [24]: 
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rn (u) and rm (u) are the velocity distributions of the particles 
in the ground (n) and excited (m) levels; N = Nm + Nn is the 
concentration of absorbing particles (Ni = ò ri (u)du, i = n, m); 
Si (u) and Smn (u) are the collision integrals; dmn is the matrix 
element of the dipole moment of the transition m – n; w and k 
are the radiation frequency and wave vector; wmn is the fre-
quency of the transition m – n; Gm is the velocity of the sponta-
neous relaxation of the excited level m; and P(u) is the prob-
ability of radiation absorption by a particle per unit time at a 
fixed velocity u. 

In the absence of the phase memory at optical transitions 
in collisions (natural assumption for atomic spectroscopy) the 
nondiagonal collision integral has the form 

Smn (u) = – [g(u) + iD(u)] rmn (u).	 (4)

In steady-state and spatially homogeneous conditions, for the 
absorption probability P (u) (3) from the last equation in (2) 
we find with the help of (4) the expression 

NP(u) = 2|G | 2Y(u)[ rn (u) – rm (u)],	 (5)

where
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W (u) = W0 – D(u).

For the diagonal collision integrals we will use the model 
of particle ‘arrival’ that is isotropic in velocity [9, 25]: 

Si (u) = –vi(u)ri (u) + Si
(2)(u),    i = n, m,	 (7)

where Si
(2)(u) is the function of the velocity modulus u = | u|; 

vi(u) is the transport collision frequency [25]. The collisional 
model (7) takes into account the dependence of the collision 
frequency on the velocity and at the same time allows one to 
obtain an analytical solution of the problem at any ratios of 
the masses of active and buffer particles. 

We find the drift velocity of the resonance particles, which 
by definition is 
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j j
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where ji  is the flux of particles in state i. In steady-state and 
spatially homogeneous conditions, from equations (2) for the 
drift velocity uL we find the expression 

( ) [ ( )]
( ) ( )

( )d
v v
v v

PuL
n m m

n m

u u
u u

u u u
G=

+

-y .	 (9)

To calculate the drift velocity (9) we restrict our consider-
ation by the condition of weak radiation intensity, assuming 
that in (5) the population of the excited level [ rm (u) = 0] can 
be neglected, and the population velocity distribution in the 
ground state can be considered close to the Maxwellian [ rn (u) 
= NW(u), where W(u) is the Maxwell distribution]. In this 
case, 

P(u) = 2|G |2Y(u)W(u).	 (10)

Integrating (9) over the velocity directions, u, we obtain 
the final expression for the drift velocity uL, which is repre-
sented in the form 

uL = u0 u(x0),	 (11) 

where we have introduced the vector u0 with the dimensions 
of velocity, 
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and the dimensionless velocity u as a function of dimension-
less detuning x0 = (W0 – D0)/(kuT) of the radiation frequency 

3
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Here we have introduced the function of the dimensionless 
velocity t = u/uT: 
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vn
tr is the average transport collision frequency of absorbing 
particles in state n with buffer particles; D0 is the average 
value of the collision shift D(u); M is the mass of the absorb-
ing particles; T is the temperature; and kB is the Boltzmann 
constant. Thus, the calculation of the drift velocity in the col-
lisional model (7) of the velocity isotropic ‘arrival’ of the par-
ticles with account for the dependence of the collision broad-
ening and shift on the velocity u of resonance particles is 
reduced to calculation of a single integral (13). 

3. Functions g(t) and D(t) 

To calculate the drift velocity, it is necessary to know the 
dependences g(t) and D(t). For the power potential of interac-
tion between the particles 

U(r) µ r –p,	 (15) 

the dependences of the collision broadening g and shift D of 
the levels on the velocity t can be calculated explicitly [26]: 
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where b = Mb/M is the mass ratio of the particles of buffer 
(Mb) and absorbing (M ) gases; 1F1(a; 3/2; – bt2) is the Kummer 
confluent hypergeometric function; g0 and D0 are the average 
values (in terms of the Maxwell distribution) of g(t) and D(t) 
[g0 = ò g(u)W(u)du and D0 = òD(u)W(u)du]. The sign of 
the shift of the absorption line centre can be either negative 
(D0 < 0, the red shift), or positive (D0 > 0, the blue shift). It 
follows from (16) that the values of g(t) and |D(t)| increase 
with increasing t at p > 3 and decrease with increasing t at 
p < 3. At p = 3, relation (1) is fulfilled: the values of g and D 
do not depend on the velocity. The dependence of g and D on 
t can also be neglected in the case of light buffer particles 
( b << 1). With increasing b the dependence of g and D on t 
increases and reaches a maximum in the case of heavy buffer 
particles ( b >>  1). Collision broadening and shift are related 
by the expression [26] 
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This formula is valid at p > 3. 

4. Analysis of results 

As was noted above, anomalous manifestation of the LID is 
entirely due to the sign-alternating dependence of the factor t 
on the velocity t. Let the factor t(t) change sufficiently 
smoothly and vanish at t = t0. Then the function t(t) can be 
written in the form 
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The coefficient B does not affect the shape of the LID line. 
Next, in the calculations we assume for definiteness that 
B = 0.1. 

The strong influence of the dependences g(u) and D(u) on 
the LID line shape is illustrated in Figs 1 – 4. The calculations 
of the drift velocity u(x0) by (13) were performed for the 
broadening and shift of the absorption line, corresponding to 
the power potential of interaction between particles with p = 6 
(van der Waals interaction of neutral atoms at large dis-
tances). The sign of the shift of the absorption line centre was 
assumed positive (D0 > 0). 

The sensitivity of the LID line shape to the mass ratio b of 
buffer and resonance particles is shown in Fig. 1. The influ-
ence of the velocity dependence of the broadening and shift 
on the LID line shape is minimal for light ( b << 1) buffer 
particles [in this case, g(u) and D(u) weakly depend on u] and 
maximal for heavy ( b >>  1) buffer particles. The numerical 
analysis shows that for the problem under study the 
limit  b >>  1 is reached, starting with b » 3. In other words, 
the value b = 3 is actually equivalent to the condition  b >>  1. 
The influence of the dependences g(u) and D(u) on the LID 
can significantly manifest itself even in the case of light buffer 
particles, which can be clearly seen from the comparison of 
curve ( 1 ) ( b = 0.1) with the dashed curve in Fig. 1. 

Under condition of large Doppler broadening of the 
absorption line (at   g0 << kuT) the influence of the depen-

dences g(u) and D(u) on the LID line shape is small and can be 
neglected (Fig. 2a). With increasing homogeneous width of 
the absorption line (with increasing g0) the influence of the 
dependences g(u) and D(u) on the LID line shape increases 
and can be significant even when the homogeneous width and 
Doppler width are equal: g0 =  kuT (Fig. 2b). Under conditions 
of large homogeneous broadening (at g0 >>  kuT) the influence 
of the dependences g(u) and D(u) on the LID line shape is 
maximal (Fig. 2c). 

Anomalous LID appears only when the difference of 
transport collision frequencies Dv(u) at the combining levels 
changes its sign near the average thermal velocity uT of reso-
nance particles (at t ~ 1). Strong sensitivity of the LID line 
shape to the value of the dimensionless velocity t0, at which 
the difference between the transport collision frequency [or a 
factor of t(t)] is zero, is presented in Fig. 3. If t0 ~ 1, then 
there appears anomalous LID and the dependences g(u) and 
D(u) strongly influence the LID line shape (Figs 3a and b). If 
t0 is several times less than or greater than unity, then there 
appears normal LID, at which the dependences g(u) and D(u) 
have little effect on the LID line shape (Figs 3c and d). 

The fact that the calculation of anomalous LED requires 
joint consideration of dependences of collision broadening g 
and shift D of the absorption on the resonance particle veloc-
ity u is illustrated in Fig. 4. Each of these dependences equally 
strongly affects the shape of the LID line. 

5. Conclusions 

The presented results show that in calculating the LID the 
account for the dependence of collision broadening g and 
shift D of the absorption line on the resonance particle veloc-
ity u can radically change the spectral shape of the LID signal, 
up to the appearance of additional zeros in the dependence of 
the drift velocity on the radiation frequency [see the dashed 
curve with curves ( 2 – 5 ) in Fig. 1 and the curves in Fig. 3b]. 
The strong influence of the dependences g(u) and D(u) on the 
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Figure 1.  Dimensionless drift velocity u vs. dimensionless detuning of 
the radiation frequency x0 at mass ratios of buffer and resonance par-
ticles b = 0.1 ( 1 ), 0.3 ( 2 ), 1 ( 3 ), 3 ( 4 ) and 10 ( 5 ), g0/(kuT) = 3, t0 = 1.43, 
p = 6, D0 > 0, (Gm/2)/(kuT) = 0.01. The dashed curve is given for g(u) = 
g0 = const, D(u) = D0 = const, solid curves are calculated taking into 
account the effect of the dependences g(u) and D(u) on the LID line 
shape. 
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LID can occur only when the difference of transport collision 
frequencies Dv(u) at the combining (affected by radiation) lev-
els changes its sign near the average thermal velocity uT of 
resonance particles (this is the criterion of possible manifesta-
tion of anomalous LID). 

Sign-alternating behaviour of Dv(u) is not at all exotic. In 
the case of the molecules such behaviour of Dv(u) may be due 
to inelastic collisional transitions between rotational levels, 
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Figure 2.  Dimensionless drift velocity u vs. dimensionless detuning of 
the radiation frequency x0 at the ratios of the collision and Doppler 
widths of the absorption line  g0 /(kuT) = 0.1 (a), 1 (b) and 10 (c), t0 = 
1.27 (a, b) and 1.43 (c), b = 3, p = 6, D0 > 0, (Gm/2)/(kuT) = 0.01. Dashed 
curves are given for g(u) = g0 = const, D(u) = D0 = const, solid curves are 
calculated taking into account the effect of the dependences g(u) and 
D(u) on the LID line shape. 
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Figure 3.  Sensitivity of the LID line shape to the value of the dimen-
sionless velocity t0, at which the difference between the transport colli-
sion frequencies [or the factor t(t)] is zero: t0 = 1.5 (a), 1.35 (b), 0.3 (c) 
and 3 (d), g0 /(kuT) = 3, b = 3, p = 6, D0 > 0,  (Gm /2)/(kuT) = 0.01. Dashed 
curves are given for g(u) = g0 = const, D(u) = D0 = const, solid curves are 
calculated taking into account the effect of the dependences g(u) and 
D(u) on the LID line shape. 
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and, therefore, the manifestation of anomalous LID of the 
molecules may have some regular pattern. In [23] it is shown 
that for any linear molecules with a small rotational constant 
one can always observe anomalous LID with an appropriate 
choice of the experimental conditions [temperature, rota-
tional quantum number, transition type (P or R)].

In the case of atoms the sign-alternating behaviour of 
Dv(u), necessary to observe anomalous LID, can be caused 
only by certain peculiarities in the behaviour of the interac-
tion potentials of atoms in the combining states with buffer 
particles. Therefore, to calculate anomalous LID of atoms it 
is needed to know the interaction potentials for each system 
of colliding particles (resonance atom – buffer particle). For 
atoms anomalous LID was theoretically predicted and calcu-
lated in the Li – Ne and Rb – Kr systems [21, 22] for the reso-
nant excitation of Li and Rb atoms. To observe anomalous 
LID in these systems requires very high temperatures (T ~ 
1000 K), and, therefore, targeted experiments on observation 
of anomalous LID in them have not been performed. 

For some of the atoms in a binary buffer gas mixture, the 
sign-alternating behaviour of Dv(u) can be controlled by 
changing the concentration of one of the components of the 
buffer mixture. This is how the authors of the experiment [8] 
observed anomalous LID of potassium atoms in a buffer 
medium consisting of a mixture of neon and some other inert 
gas. In a theoretical paper [9] it was shown that for lithium 
atoms anomalous LID can be observed virtually at any tem-
perature, depending on the concentration of neon atoms in 
mixtures of Ne – Ar, Ne – Kr and Ne – Xe. 

Since the transport collision frequencies vi (u) are entirely 
determined by the interaction potentials of resonance and 
buffer particles, the line shape of anomalous LID is very sen-
sitive to differences in the interaction potentials of resonant 
atoms in the ground and excited states with buffer particles. 
This allows for high-precision experimental testing of LID of 
interatomic interaction potentials used to calculate the spec-
tral shape of the anomalous LID signal, and, therefore, the 
possibility of a relatively simple experimental testing of the 
accuracy of various theoretical methods for calculating the 
interaction potentials.
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Figure 4.  Dimensionless drift velocity u vs. dimensionless detuning of 
the radiation frequency x0 at g0 /(kuT) = 3, b = 3, t0 = 1.43, p = 6, D0 > 0, 
(Gm /2)/(kuT) = 0.01. Curve ( 1 ) is given for g(u) = g0 = const, D(u) = D0 
= const, curve ( 2 ) – for g(u) = g0 = const, D(u) ¹ const, curve ( 3 ) – for 
g(u) ¹ const, D(u) = D0 = const, curve ( 4 ) – for g(u) ¹ const, D(u) ¹ const. 


